import gradio as gr title = "BERT" description = "Gradio Demo for BERT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
" examples = [ ['Paris is the [MASK] of France.', 'bert-base-cased'] ] # Lade die Interfaces für die Modelle io1 = gr.Interface.load("huggingface/bert-base-cased") io2 = gr.Interface.load("huggingface/bert-base-uncased") def inference(inputtext, model): if "[MASK]" not in inputtext: return {"error": "The input text must contain the [MASK] token."} if model == "bert-base-cased": return io1(inputtext) elif model == "bert-base-uncased": return io2(inputtext) else: return {"error": "Invalid model selected"} iface = gr.Interface( fn=inference, inputs=[ gr.Textbox(label="Context", lines=10, placeholder="Enter text with [MASK] token"), gr.Dropdown(choices=["bert-base-cased", "bert-base-uncased"], value="bert-base-cased", label="model") ], outputs=gr.JSON(label="Output"), # We use JSON to display errors or outputs examples=examples, article=article, title=title, description=description ) iface.launch(share=True)