Spaces:
Runtime error
Runtime error
File size: 2,900 Bytes
d748bf5 ac7b15a 4769339 ac7b15a 4769339 ac7b15a cfa812c ac7b15a 4769339 6199455 ac7b15a 4769339 ac7b15a 4769339 ac7b15a 72386ad 6c47f29 72386ad 3b9c7e0 ac7b15a cfa812c 3b9c7e0 ac7b15a 72386ad 95ea484 ac7b15a 423104f ac7b15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import os
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
from deepdoctection.dataflow import DataFromList
from deepdoctection import get_dd_analyzer
import deepdoctection as dd
import gradio as gr
_DD_ONE = "deepdoctection/configs/conf_dd_one.yaml"
_TESSERACT = "deepdoctection/configs/conf_tesseract.yaml"
dd.ModelCatalog.register("layout/model_final_inf_only.pt",dd.ModelProfile(
name="layout/model_final_inf_only.pt",
description="Detectron2 layout detection model trained on private datasets",
config="dd/d2/layout/CASCADE_RCNN_R_50_FPN_GN.yaml",
size=[274632215],
tp_model=False,
hf_repo_id=os.environ.get("HF_REPO"),
hf_model_name="model_final_inf_only.pt",
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
categories={"1": dd.names.C.TEXT,
"2": dd.names.C.TITLE,
"3": dd.names.C.LIST,
"4": dd.names.C.TAB,
"5": dd.names.C.FIG},
))
def get_space_dd_analyzer():
# get a dd analyzer with a special layout model
lib, device = _auto_select_lib_and_device()
dd_one_config_path = _maybe_copy_config_to_cache(_DD_ONE)
_maybe_copy_config_to_cache(_TESSERACT)
# Set up of the configuration and logging
cfg = set_config_by_yaml(dd_one_config_path)
cfg.freeze(freezed=False)
cfg.LIB = lib
cfg.DEVICE = device
cfg.TAB = tables
cfg.TAB_REF = table_refinement
cfg.OCR = ocr
cfg.LANG = language
cfg.WEIGHTS.D2LAYOUT = "layout/model_final_inf_only.pt"
cfg.freeze()
return build_analyzer(cfg)
def analyze_image(img):
# creating an image object and passing to the analyzer by using dataflows
image = dd.Image(file_name="input.png", location="")
image.image = img[:,:,::-1]
df = dd.DataFromList(lst=[image])
analyzer = get_space_dd_analyzer()
df = analyzer.analyze(dataset_dataflow=df)
df.reset_state()
dp = next(iter(df))
out = dp.as_dict()
out.pop("image")
return dp.viz(show_table_structure=False), out
inputs = [gr.inputs.Image(type='numpy', label="Original Image")]
outputs = [gr.outputs.Image(type="numpy", label="Output Image"), gr.JSON()]
title = "Deepdoctection - A Document AI Package"
description = "Demonstration of layout analysis and output of a document page. This demo uses the deepdoctection analyzer with Tesseract's OCR engine. Models detect text, titles, tables, figures and lists as well as table cells. Based on the layout it determines reading order and generates an JSON output."
examples = [['sample_1.jpg'],['sample_2.png']]
gr.Interface(analyze_image, inputs, outputs, title=title, description=description, examples=examples).launch() |