Spaces:
Runtime error
Runtime error
File size: 1,405 Bytes
d748bf5 ac7b15a 03b7a8b ac7b15a cfa812c ac7b15a 6199455 ac7b15a 1543781 ac7b15a 72386ad 6c47f29 72386ad 95ea484 ac7b15a cfa812c 95ea484 ac7b15a 72386ad 95ea484 ac7b15a 423104f ac7b15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import os
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
from deepdoctection.dataflow import DataFromList
from deepdoctection import get_dd_analyzer
from deepdoctection import Image
import gradio as gr
def analyze_image(img):
# creating an image object and passing to the analyzer by using dataflows
image = Image(file_name="input.png", location="")
image.image = img[:,:,::-1]
df = DataFromList(lst=[image])
analyzer = get_dd_analyzer()
df = analyzer.analyze(dataset_dataflow=df)
df.reset_state()
dp = next(iter(df))
out = dp.as_dict()
out.pop("image")
return dp.viz(show_table_structure=False), dp.get_text(), out
inputs = [gr.inputs.Image(type='numpy', label="Original Image")]
outputs = [gr.outputs.Image(type="numpy", label="Output Image"), "text", gr.JSON()]
title = "Deepdoctection - A Document AI Package"
description = "Demonstration of layout analysis and output of a document page. This demo uses the deepdoctection analyzer with Tesseract's OCR engine. Models detect text, titles, tables, figures and lists as well as table cells. Based on the layout it determines reading order and generates an JSON output."
examples = [['sample_1.jpg'],['sample_2.png']]
gr.Interface(analyze_image, inputs, outputs, title=title, description=description, examples=examples).launch() |