Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,23 @@
|
|
| 1 |
import os
|
| 2 |
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
|
| 3 |
|
|
|
|
| 4 |
import deepdoctection as dd
|
| 5 |
-
|
| 6 |
-
from deepdoctection.extern.model import ModelProfile
|
| 7 |
-
from deepdoctection.analyzer.dd import build_analyzer, _auto_select_lib_and_device, _maybe_copy_config_to_cache
|
| 8 |
-
from deepdoctection.utils.metacfg import set_config_by_yaml
|
| 9 |
-
from deepdoctection.dataflow import DataFromList
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
|
| 13 |
-
_DD_ONE = "deepdoctection/configs/conf_dd_one.yaml"
|
| 14 |
-
_TESSERACT = "deepdoctection/configs/conf_tesseract.yaml"
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
name="layout/model_final_inf_only.pt",
|
| 18 |
description="Detectron2 layout detection model trained on private datasets",
|
| 19 |
config="dd/d2/layout/CASCADE_RCNN_R_50_FPN_GN.yaml",
|
| 20 |
size=[274632215],
|
| 21 |
tp_model=False,
|
| 22 |
-
hf_repo_id=
|
| 23 |
hf_model_name="model_final_inf_only.pt",
|
| 24 |
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
|
| 25 |
categories={"1": dd.LayoutType.text,
|
|
@@ -28,53 +26,211 @@ dd.ModelCatalog.register("layout/model_final_inf_only.pt",ModelProfile(
|
|
| 28 |
"4": dd.LayoutType.table,
|
| 29 |
"5": dd.LayoutType.figure},
|
| 30 |
))
|
| 31 |
-
|
| 32 |
-
def get_space_dd_analyzer():
|
| 33 |
-
# get a dd analyzer with a special layout model
|
| 34 |
-
lib, device = _auto_select_lib_and_device()
|
| 35 |
-
dd_one_config_path = _maybe_copy_config_to_cache(_DD_ONE)
|
| 36 |
-
_maybe_copy_config_to_cache(_TESSERACT)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
cfg.freeze(freezed=False)
|
| 42 |
-
cfg.
|
| 43 |
-
cfg.
|
| 44 |
-
cfg.
|
| 45 |
-
cfg.TAB_REF = True
|
| 46 |
-
cfg.OCR = True
|
| 47 |
-
cfg.LANG = None
|
| 48 |
-
cfg.WEIGHTS.D2LAYOUT = "layout/model_final_inf_only.pt"
|
| 49 |
cfg.freeze()
|
| 50 |
-
|
| 51 |
-
return build_analyzer(cfg)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
image.image = img[:,:,::-1]
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
out = dp.as_dict()
|
| 68 |
out.pop("image")
|
| 69 |
-
|
| 70 |
-
return dp.viz(show_table_structure=False), out
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
|
| 80 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
|
| 3 |
|
| 4 |
+
from os import getcwd, path, environ
|
| 5 |
import deepdoctection as dd
|
| 6 |
+
from deepdoctection.dataflow.serialize import DataFromList
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
_DD_ONE = "conf_dd_one.yaml"
|
| 12 |
+
_DETECTIONS = ["table", "ocr"]
|
| 13 |
+
|
| 14 |
+
dd.ModelCatalog.register("layout/model_final_inf_only.pt",dd.ModelProfile(
|
| 15 |
name="layout/model_final_inf_only.pt",
|
| 16 |
description="Detectron2 layout detection model trained on private datasets",
|
| 17 |
config="dd/d2/layout/CASCADE_RCNN_R_50_FPN_GN.yaml",
|
| 18 |
size=[274632215],
|
| 19 |
tp_model=False,
|
| 20 |
+
hf_repo_id=environ.get("HF_REPO"),
|
| 21 |
hf_model_name="model_final_inf_only.pt",
|
| 22 |
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
|
| 23 |
categories={"1": dd.LayoutType.text,
|
|
|
|
| 26 |
"4": dd.LayoutType.table,
|
| 27 |
"5": dd.LayoutType.figure},
|
| 28 |
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input
|
| 31 |
+
# updates
|
| 32 |
+
cfg = dd.set_config_by_yaml(path.join(getcwd(),_DD_ONE))
|
| 33 |
+
cfg.freeze(freezed=False)
|
| 34 |
+
cfg.DEVICE = "cpu"
|
| 35 |
+
cfg.freeze()
|
| 36 |
+
|
| 37 |
+
# layout detector
|
| 38 |
+
layout_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2LAYOUT)
|
| 39 |
+
layout_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2LAYOUT)
|
| 40 |
+
categories_layout = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2LAYOUT).categories
|
| 41 |
+
assert categories_layout is not None
|
| 42 |
+
assert layout_weights_path is not None
|
| 43 |
+
d_layout = dd.D2FrcnnDetector(layout_config_path, layout_weights_path, categories_layout, device=cfg.DEVICE)
|
| 44 |
+
|
| 45 |
+
# cell detector
|
| 46 |
+
cell_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2CELL)
|
| 47 |
+
cell_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2CELL)
|
| 48 |
+
categories_cell = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2CELL).categories
|
| 49 |
+
assert categories_cell is not None
|
| 50 |
+
d_cell = dd.D2FrcnnDetector(cell_config_path, cell_weights_path, categories_cell, device=cfg.DEVICE)
|
| 51 |
+
|
| 52 |
+
# row/column detector
|
| 53 |
+
item_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2ITEM)
|
| 54 |
+
item_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2ITEM)
|
| 55 |
+
categories_item = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2ITEM).categories
|
| 56 |
+
assert categories_item is not None
|
| 57 |
+
d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE)
|
| 58 |
+
|
| 59 |
+
# word detector
|
| 60 |
+
det = dd.DoctrTextlineDetector()
|
| 61 |
+
|
| 62 |
+
# text recognizer
|
| 63 |
+
rec = dd.DoctrTextRecognizer()
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def build_gradio_analyzer(table, table_ref, ocr):
|
| 67 |
+
"""Building the Detectron2/DocTr analyzer based on the given config"""
|
| 68 |
|
| 69 |
cfg.freeze(freezed=False)
|
| 70 |
+
cfg.TAB = table
|
| 71 |
+
cfg.TAB_REF = table_ref
|
| 72 |
+
cfg.OCR = ocr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
cfg.freeze()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
pipe_component_list = []
|
| 76 |
+
layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True)
|
| 77 |
+
pipe_component_list.append(layout)
|
|
|
|
| 78 |
|
| 79 |
+
if cfg.TAB:
|
| 80 |
+
cell = dd.SubImageLayoutService(d_cell, dd.LayoutType.table, {1: 6}, True)
|
| 81 |
+
pipe_component_list.append(cell)
|
| 82 |
|
| 83 |
+
item = dd.SubImageLayoutService(d_item, dd.LayoutType.table, {1: 7, 2: 8}, True)
|
| 84 |
+
pipe_component_list.append(item)
|
| 85 |
|
| 86 |
+
table_segmentation = dd.TableSegmentationService(
|
| 87 |
+
cfg.SEGMENTATION.ASSIGNMENT_RULE,
|
| 88 |
+
cfg.SEGMENTATION.IOU_THRESHOLD_ROWS
|
| 89 |
+
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"]
|
| 90 |
+
else cfg.SEGMENTATION.IOA_THRESHOLD_ROWS,
|
| 91 |
+
cfg.SEGMENTATION.IOU_THRESHOLD_COLS
|
| 92 |
+
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"]
|
| 93 |
+
else cfg.SEGMENTATION.IOA_THRESHOLD_COLS,
|
| 94 |
+
cfg.SEGMENTATION.FULL_TABLE_TILING,
|
| 95 |
+
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS,
|
| 96 |
+
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS,
|
| 97 |
+
)
|
| 98 |
+
pipe_component_list.append(table_segmentation)
|
| 99 |
+
|
| 100 |
+
if cfg.TAB_REF:
|
| 101 |
+
table_segmentation_refinement = dd.TableSegmentationRefinementService()
|
| 102 |
+
pipe_component_list.append(table_segmentation_refinement)
|
| 103 |
+
|
| 104 |
+
if cfg.OCR:
|
| 105 |
+
d_layout_text = dd.ImageLayoutService(det, to_image=True, crop_image=True)
|
| 106 |
+
pipe_component_list.append(d_layout_text)
|
| 107 |
+
|
| 108 |
+
d_text = dd.TextExtractionService(rec, extract_from_roi="WORD")
|
| 109 |
+
pipe_component_list.append(d_text)
|
| 110 |
+
|
| 111 |
+
match = dd.MatchingService(
|
| 112 |
+
parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES,
|
| 113 |
+
child_categories=dd.LayoutType.word,
|
| 114 |
+
matching_rule=cfg.WORD_MATCHING.RULE,
|
| 115 |
+
threshold=cfg.WORD_MATCHING.IOU_THRESHOLD
|
| 116 |
+
if cfg.WORD_MATCHING.RULE in ["iou"]
|
| 117 |
+
else cfg.WORD_MATCHING.IOA_THRESHOLD,
|
| 118 |
+
)
|
| 119 |
+
pipe_component_list.append(match)
|
| 120 |
+
order = dd.TextOrderService(
|
| 121 |
+
text_container=dd.LayoutType.word,
|
| 122 |
+
floating_text_block_names=[dd.LayoutType.title, dd.LayoutType.text, dd.LayoutType.list],
|
| 123 |
+
text_block_names=[
|
| 124 |
+
dd.LayoutType.title,
|
| 125 |
+
dd.LayoutType.text,
|
| 126 |
+
dd.LayoutType.list,
|
| 127 |
+
dd.LayoutType.cell,
|
| 128 |
+
dd.CellType.header,
|
| 129 |
+
dd.CellType.body,
|
| 130 |
+
],
|
| 131 |
+
)
|
| 132 |
+
pipe_component_list.append(order)
|
| 133 |
+
|
| 134 |
+
pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list)
|
| 135 |
+
|
| 136 |
+
return pipe
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def prepare_output(dp, add_table, add_ocr):
|
| 140 |
out = dp.as_dict()
|
| 141 |
out.pop("image")
|
|
|
|
|
|
|
| 142 |
|
| 143 |
+
layout_items = dp.items
|
| 144 |
+
if add_ocr:
|
| 145 |
+
layout_items.sort(key=lambda x: x.reading_order)
|
| 146 |
+
layout_items_str = ""
|
| 147 |
+
for item in layout_items:
|
| 148 |
+
layout_items_str += f"\n {item.layout_type}: {item.text}"
|
| 149 |
+
if add_table:
|
| 150 |
+
html_list = [table.html for table in dp.tables]
|
| 151 |
+
if html_list:
|
| 152 |
+
html = html_list[0]
|
| 153 |
+
else:
|
| 154 |
+
html = None
|
| 155 |
+
else:
|
| 156 |
+
html = None
|
| 157 |
+
|
| 158 |
+
return dp.viz(show_table_structure=False), layout_items_str, html, out
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def analyze_image(img, pdf, attributes):
|
| 162 |
+
|
| 163 |
+
# creating an image object and passing to the analyzer by using dataflows
|
| 164 |
+
add_table = _DETECTIONS[0] in attributes
|
| 165 |
+
add_ocr = _DETECTIONS[1] in attributes
|
| 166 |
+
|
| 167 |
+
analyzer = build_gradio_analyzer(add_table, add_table, add_ocr)
|
| 168 |
+
|
| 169 |
+
if img is not None:
|
| 170 |
+
image = dd.Image(file_name="input.png", location="")
|
| 171 |
+
image.image = img[:, :, ::-1]
|
| 172 |
+
|
| 173 |
+
df = DataFromList(lst=[image])
|
| 174 |
+
df = analyzer.analyze(dataset_dataflow=df)
|
| 175 |
+
elif pdf:
|
| 176 |
+
df = analyzer.analyze(path=pdf.name, max_datapoints=3)
|
| 177 |
+
else:
|
| 178 |
+
raise ValueError
|
| 179 |
+
|
| 180 |
+
df.reset_state()
|
| 181 |
+
df_iter = iter(df)
|
| 182 |
+
|
| 183 |
+
dp = next(df_iter)
|
| 184 |
+
|
| 185 |
+
return prepare_output(dp, add_table, add_ocr)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
demo = gr.Blocks(css="scrollbar.css")
|
| 189 |
+
|
| 190 |
+
with demo:
|
| 191 |
+
with gr.Box():
|
| 192 |
+
gr.Markdown("<h1><center>deepdoctection - A Document AI Package</center></h1>")
|
| 193 |
+
gr.Markdown("<strong>deep</strong>doctection is a Python library that orchestrates document extraction"
|
| 194 |
+
" and document layout analysis tasks using deep learning models. It does not implement models"
|
| 195 |
+
" but enables you to build pipelines using highly acknowledged libraries for object detection,"
|
| 196 |
+
" OCR and selected NLP tasks and provides an integrated frameworks for fine-tuning, evaluating"
|
| 197 |
+
" and running models.\n This pipeline consists of a stack of models powered by <strong>Detectron2"
|
| 198 |
+
"</strong> for layout analysis and table recognition and <strong>DocTr</strong> for OCR.")
|
| 199 |
+
with gr.Box():
|
| 200 |
+
gr.Markdown("<h2><center>Upload a document and choose setting</center></h2>")
|
| 201 |
+
with gr.Row():
|
| 202 |
+
with gr.Column():
|
| 203 |
+
with gr.Tab("Image upload"):
|
| 204 |
+
with gr.Column():
|
| 205 |
+
inputs = gr.Image(type='numpy', label="Original Image")
|
| 206 |
+
with gr.Tab("PDF upload (only first image will be processed)"):
|
| 207 |
+
with gr.Column():
|
| 208 |
+
inputs_pdf = gr.File(label="PDF")
|
| 209 |
+
with gr.Column():
|
| 210 |
+
gr.Examples(
|
| 211 |
+
examples=[path.join(getcwd(), "sample_1.jpg"), path.join(getcwd(), "sample_2.png")],
|
| 212 |
+
inputs = inputs)
|
| 213 |
+
|
| 214 |
+
with gr.Row():
|
| 215 |
+
tok_input = gr.CheckboxGroup(
|
| 216 |
+
_DETECTIONS, value=_DETECTIONS, label="Additional extractions", interactive=True)
|
| 217 |
+
with gr.Row():
|
| 218 |
+
btn = gr.Button("Run model", variant="primary")
|
| 219 |
|
| 220 |
+
with gr.Box():
|
| 221 |
+
with gr.Row():
|
| 222 |
+
with gr.Column():
|
| 223 |
+
gr.Markdown("<h2><center>Text output</center></h2>")
|
| 224 |
+
gr.Markdown("Will only show contiguous text from text blocks, titles and lists")
|
| 225 |
+
image_text = gr.Textbox()
|
| 226 |
+
gr.Markdown("<h2><center>First table</center></h2>")
|
| 227 |
+
html = gr.HTML()
|
| 228 |
+
gr.Markdown("<h2><center>JSON output</center></h2>")
|
| 229 |
+
json = gr.JSON()
|
| 230 |
+
with gr.Column():
|
| 231 |
+
gr.Markdown("<h2><center>Layout detection</center></h2>")
|
| 232 |
+
image_output = gr.Image(type="numpy", label="Output Image")
|
| 233 |
|
| 234 |
+
btn.click(fn=analyze_image, inputs=[inputs, inputs_pdf, tok_input], outputs=[image_output, image_text, html, json])
|
| 235 |
|
| 236 |
+
demo.launch()
|