Spaces:
Running
Running
Format code
Browse files- .gitignore +1 -0
- .vscode/settings.json +6 -0
- app.py +52 -14
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env/
|
.vscode/settings.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[python]": {
|
3 |
+
"editor.defaultFormatter": "ms-python.black-formatter"
|
4 |
+
},
|
5 |
+
"editor.formatOnSave": true
|
6 |
+
}
|
app.py
CHANGED
@@ -5,50 +5,79 @@ import torch
|
|
5 |
from transformers import AutoModel, AutoTokenizer
|
6 |
import meilisearch
|
7 |
|
8 |
-
|
9 |
-
|
|
|
10 |
model.eval()
|
11 |
|
12 |
cuda_available = torch.cuda.is_available()
|
13 |
print(f"CUDA available: {cuda_available}")
|
14 |
|
15 |
-
meilisearch_client = meilisearch.Client(
|
|
|
|
|
16 |
meilisearch_index_name = "docs-embed"
|
17 |
meilisearch_index = meilisearch_client.index(meilisearch_index_name)
|
18 |
|
19 |
output_options = ["RAG-friendly", "human-friendly"]
|
20 |
|
|
|
21 |
def search_embeddings(query_text, output_option):
|
22 |
start_time_embedding = time.time()
|
23 |
-
query_prefix =
|
24 |
-
query_tokens =
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# step1: tokenizer the query
|
26 |
with torch.no_grad():
|
27 |
# Compute token embeddings
|
28 |
model_output = model(**query_tokens)
|
29 |
sentence_embeddings = model_output[0][:, 0]
|
30 |
# normalize embeddings
|
31 |
-
sentence_embeddings = torch.nn.functional.normalize(
|
|
|
|
|
32 |
sentence_embeddings_list = sentence_embeddings[0].tolist()
|
33 |
elapsed_time_embedding = time.time() - start_time_embedding
|
34 |
-
|
35 |
# step2: search meilisearch
|
36 |
start_time_meilisearch = time.time()
|
37 |
response = meilisearch_index.search(
|
38 |
-
"",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
elapsed_time_meilisearch = time.time() - start_time_meilisearch
|
41 |
hits = response["hits"]
|
42 |
|
43 |
-
sources_md = [
|
|
|
|
|
44 |
sources_md = ", ".join(sources_md)
|
45 |
|
46 |
# step3: present the results in markdown
|
47 |
if output_option == "human-friendly":
|
48 |
md = f"Stats:\n\nembedding time: {elapsed_time_embedding:.2f}s\n\nmeilisearch time: {elapsed_time_meilisearch:.2f}s\n\n---\n\n"
|
49 |
for hit in hits:
|
50 |
-
text, source_page_url, source_page_title =
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
md += text + f"\n\n{source}\n\n---\n\n"
|
53 |
return md, sources_md
|
54 |
elif output_option == "RAG-friendly":
|
@@ -59,11 +88,20 @@ def search_embeddings(query_text, output_option):
|
|
59 |
|
60 |
demo = gr.Interface(
|
61 |
fn=search_embeddings,
|
62 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
outputs=[gr.Markdown(), gr.Markdown()],
|
64 |
title="HF Docs Emebddings Explorer",
|
65 |
-
allow_flagging="never"
|
66 |
)
|
67 |
|
68 |
if __name__ == "__main__":
|
69 |
-
demo.launch()
|
|
|
5 |
from transformers import AutoModel, AutoTokenizer
|
6 |
import meilisearch
|
7 |
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-base-en-v1.5")
|
10 |
+
model = AutoModel.from_pretrained("BAAI/bge-base-en-v1.5")
|
11 |
model.eval()
|
12 |
|
13 |
cuda_available = torch.cuda.is_available()
|
14 |
print(f"CUDA available: {cuda_available}")
|
15 |
|
16 |
+
meilisearch_client = meilisearch.Client(
|
17 |
+
"https://edge.meilisearch.com", os.environ["MEILISEARCH_KEY"]
|
18 |
+
)
|
19 |
meilisearch_index_name = "docs-embed"
|
20 |
meilisearch_index = meilisearch_client.index(meilisearch_index_name)
|
21 |
|
22 |
output_options = ["RAG-friendly", "human-friendly"]
|
23 |
|
24 |
+
|
25 |
def search_embeddings(query_text, output_option):
|
26 |
start_time_embedding = time.time()
|
27 |
+
query_prefix = "Represent this sentence for searching code documentation: "
|
28 |
+
query_tokens = tokenizer(
|
29 |
+
query_prefix + query_text,
|
30 |
+
padding=True,
|
31 |
+
truncation=True,
|
32 |
+
return_tensors="pt",
|
33 |
+
max_length=512,
|
34 |
+
)
|
35 |
# step1: tokenizer the query
|
36 |
with torch.no_grad():
|
37 |
# Compute token embeddings
|
38 |
model_output = model(**query_tokens)
|
39 |
sentence_embeddings = model_output[0][:, 0]
|
40 |
# normalize embeddings
|
41 |
+
sentence_embeddings = torch.nn.functional.normalize(
|
42 |
+
sentence_embeddings, p=2, dim=1
|
43 |
+
)
|
44 |
sentence_embeddings_list = sentence_embeddings[0].tolist()
|
45 |
elapsed_time_embedding = time.time() - start_time_embedding
|
46 |
+
|
47 |
# step2: search meilisearch
|
48 |
start_time_meilisearch = time.time()
|
49 |
response = meilisearch_index.search(
|
50 |
+
"",
|
51 |
+
opt_params={
|
52 |
+
"vector": sentence_embeddings_list,
|
53 |
+
"hybrid": {"semanticRatio": 1.0},
|
54 |
+
"limit": 5,
|
55 |
+
"attributesToRetrieve": [
|
56 |
+
"text",
|
57 |
+
"source_page_url",
|
58 |
+
"source_page_title",
|
59 |
+
"library",
|
60 |
+
],
|
61 |
+
},
|
62 |
)
|
63 |
elapsed_time_meilisearch = time.time() - start_time_meilisearch
|
64 |
hits = response["hits"]
|
65 |
|
66 |
+
sources_md = [
|
67 |
+
f"[\"{hit['source_page_title']}\"]({hit['source_page_url']})" for hit in hits
|
68 |
+
]
|
69 |
sources_md = ", ".join(sources_md)
|
70 |
|
71 |
# step3: present the results in markdown
|
72 |
if output_option == "human-friendly":
|
73 |
md = f"Stats:\n\nembedding time: {elapsed_time_embedding:.2f}s\n\nmeilisearch time: {elapsed_time_meilisearch:.2f}s\n\n---\n\n"
|
74 |
for hit in hits:
|
75 |
+
text, source_page_url, source_page_title = (
|
76 |
+
hit["text"],
|
77 |
+
hit["source_page_url"],
|
78 |
+
hit["source_page_title"],
|
79 |
+
)
|
80 |
+
source = f'src: ["{source_page_title}"]({source_page_url})'
|
81 |
md += text + f"\n\n{source}\n\n---\n\n"
|
82 |
return md, sources_md
|
83 |
elif output_option == "RAG-friendly":
|
|
|
88 |
|
89 |
demo = gr.Interface(
|
90 |
fn=search_embeddings,
|
91 |
+
inputs=[
|
92 |
+
gr.Textbox(
|
93 |
+
label="enter your query", placeholder="Type Markdown here...", lines=10
|
94 |
+
),
|
95 |
+
gr.Radio(
|
96 |
+
label="Select an output option",
|
97 |
+
choices=output_options,
|
98 |
+
value="RAG-friendly",
|
99 |
+
),
|
100 |
+
],
|
101 |
outputs=[gr.Markdown(), gr.Markdown()],
|
102 |
title="HF Docs Emebddings Explorer",
|
103 |
+
allow_flagging="never",
|
104 |
)
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
+
demo.launch()
|