File size: 9,473 Bytes
b62b9e0
513af34
e155868
513af34
 
f980695
9e2baa6
513af34
157bcb5
b0dca6b
3da187b
eb1e3b7
463a806
b0dca6b
3ee7ba6
b0dca6b
b62b9e0
513af34
f980695
3ee7ba6
f980695
83afd2f
0c4a5ad
83afd2f
b0dca6b
b810fb0
3ff3ca5
f980695
513af34
 
 
 
 
 
 
 
 
ab30b6b
513af34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab30b6b
513af34
 
 
 
 
 
 
 
23293f3
463a806
513af34
 
 
 
 
 
 
 
 
 
 
0a48cbd
513af34
 
e155868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d310464
a0dbe55
0040128
 
ab30b6b
 
3da187b
 
b0dca6b
 
 
83afd2f
b0dca6b
83afd2f
e155868
 
 
 
 
 
 
513af34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
951b897
 
513af34
 
 
bbbfc9f
 
 
513af34
 
 
 
 
 
 
 
 
 
 
 
3a5a13b
 
 
 
513af34
4b1b8a4
513af34
 
 
72e56e4
485e890
463a806
 
 
 
3ee7ba6
f980695
513af34
 
e155868
513af34
d83b83b
 
513af34
 
 
 
e155868
 
b32b516
9a2e83b
fe8defd
513af34
 
3da187b
513af34
d83b83b
 
513af34
 
 
951b897
eb1e3b7
59ab830
513af34
3da187b
 
 
4b1b8a4
3da187b
513af34
3da187b
 
ba7d1ad
951b897
ba7d1ad
 
513af34
 
 
cddb1c1
d83b83b
 
 
 
 
cddb1c1
9e2baa6
 
cddb1c1
 
 
513af34
d83b83b
 
 
 
 
 
 
 
 
3da187b
 
ba7d1ad
 
 
66a64bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import random
import subprocess
import pandas as pd
from datetime import datetime
from huggingface_hub import HfApi, Repository
from utils import *

DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/bot-fight-data"
DATASET_TEMP_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/temp-match-results"
FILTER_FILE = "https://huggingface.co/datasets/huggingface-projects/filter-bad-models/raw/main/bad_models.csv"
ELO_FILENAME = "soccer_elo.csv"
HISTORY_FILENAME = "soccer_history.csv"
TEMP_FILENAME = "results.csv"
ELO_DIR = "soccer_elo"
TEMP_DIR = "temp"
HF_TOKEN = os.environ.get("HF_TOKEN")

repo = Repository(
    local_dir=ELO_DIR, clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
repo_temp = Repository(
    local_dir=TEMP_DIR, clone_from=DATASET_TEMP_REPO_URL, use_auth_token=HF_TOKEN
)

api = HfApi()
os.chmod('./SoccerTows.x86_64', 0o755)


class Model:
    """
    Class containing the info of a model.

    :param name: Name of the model
    :param elo: Elo rating of the model
    :param games_played: Number of games played by the model (useful if we implement sigma uncertainty)
    """

    def __init__(self, author, name, elo=1200, games_played=0):
        self.author = author
        self.name = name
        self.elo = elo
        self.games_played = games_played


class Matchmaking:
    """
    Class managing the matchmaking between the models.

    :param models: List of models
    :param queue: Temporary list of models used for the matching process
    :param k: Dev coefficient
    :param max_diff: Maximum difference considered between two models' elo
    :param matches: Dictionary containing the match history (to later upload as CSV)
    """

    def __init__(self, models):
        self.models = models
        self.queue = self.models.copy()
        self.k = 20
        self.max_diff = 500
        self.matches = {
            "model1": [],
            "model2": [],
            "timestamp": [],
            "result": [],
        }

    def run(self):
        """
        Run the matchmaking process.
        Add models to the queue, shuffle it, and match the models one by one to models with close ratings.
        Compute the new elo for each model after each match and add the match to the match history.
        """
        self.queue = self.models.copy()
        random.shuffle(self.queue)
        while len(self.queue) > 1:
            print(f"Queue length: {len(self.queue)}")
            model1 = self.queue.pop(0)
            model2 = self.queue.pop(self.find_n_closest_indexes(model1, 10))
            match(model1, model2)
        self.load_results()

    def load_results(self):
        """ Load the match history from the hub. """
        repo.git_pull()
        results = pd.read_csv(
            "https://huggingface.co/datasets/huggingface-projects/temp-match-results/raw/main/results.csv"
        )
        # while len(results) < len(self.matches["model1"]):
        #     time.sleep(60)
        #     results = pd.read_csv(
        #         "https://huggingface.co/datasets/huggingface-projects/temp-match-results/raw/main/results.csv"
        #     )

        for i, row in results.iterrows():
            model1 = row["model1"].split("/")
            model2 = row["model2"].split("/")
            model1 = self.find_model(model1[0], model1[1])
            model2 = self.find_model(model2[0], model2[1])
            result = row["result"]
            if model1 is not None and model2 is not None:
                self.compute_elo(model1, model2, row["result"])
                self.matches["model1"].append(model1.author + "/" + model1.name)
                self.matches["model2"].append(model2.author + "/" + model2.name)
                self.matches["result"].append(result)
                self.matches["timestamp"].append(row["timestamp"])
                model1.games_played += 1
                model2.games_played += 1
        data_dict = {"model1": [], "model2": [], "timestamp": [], "result": []}
        df = pd.DataFrame(data_dict)
        print(df.head())
        repo_temp.git_pull()
        df.to_csv(os.path.join(TEMP_DIR, TEMP_FILENAME), index=False)
        repo_temp.push_to_hub(commit_message="Reset results.csv")

    def find_model(self, author, name):
        """ Find a model in the models list. """
        for model in self.models:
            if model.author == author and model.name == name:
                return model
        return None

    def compute_elo(self, model1, model2, result):
        """ Compute the new elo for each model based on a match result. """
        delta = model1.elo - model2.elo
        win_probability = 1 / (1 + 10 ** (-delta / 500))
        model1.elo += self.k * (result - win_probability)
        model2.elo -= self.k * (result - win_probability)

    def find_n_closest_indexes(self, model, n) -> int:
        """
        Get a model index with a fairly close rating. If no model is found, return the last model in the queue.
        We don't always pick the closest rating to add variety to the matchups.

        :param model: Model to compare
        :param n: Number of close models from which to pick a candidate
        :return: id of the chosen candidate
        """
        if len(self.queue) == 1:
            return 0
        indexes = []
        closest_diffs = [9999999] * n
        for i, m in enumerate(self.queue):
            modelid1 = model.author + "/" + model.name
            modelid2 = m.author + "/" + m.name
            if modelid1 == modelid2:
                continue
            diff = abs(m.elo - model.elo)
            if diff < max(closest_diffs):
                closest_diffs.append(diff)
                closest_diffs.sort()
                closest_diffs.pop()
                indexes.append(i)
        random.shuffle(indexes)
        return indexes[0]

    def to_csv(self):
        """ Save the match history as a CSV file to the hub. """
        data_dict = {"rank": [], "author": [], "model": [], "elo": [], "games_played": []}
        sorted_models = sorted(self.models, key=lambda x: x.elo, reverse=True)
        for i, model in enumerate(sorted_models):
            data_dict["rank"].append(i + 1)
            data_dict["author"].append(model.author)
            data_dict["model"].append(model.name)
            data_dict["elo"].append(model.elo)
            data_dict["games_played"].append(model.games_played)
        df = pd.DataFrame(data_dict)
        print(df.head())
        repo.git_pull()
        history = pd.read_csv(os.path.join(ELO_DIR, HISTORY_FILENAME))
        new_history = pd.DataFrame(self.matches)
        history = pd.concat([history, new_history])
        history.to_csv(os.path.join(ELO_DIR, HISTORY_FILENAME), index=False)
        df.to_csv(os.path.join(ELO_DIR, ELO_FILENAME), index=False)
        repo.push_to_hub(commit_message="Update ELO")


def match(model1, model2):
    """
    Simulate a match between two models using the Unity environment.

    :param model1: First Model object
    :param model2: Second Model object
    :return: match result (0: model1 lost, 0.5: draw, 1: model1 won)
    """
    model1_id = model1.author + "/" + model1.name
    model2_id = model2.author + "/" + model2.name
    print(f"Running {model1_id} against {model2_id}...")
    subprocess.run(["./SoccerTows.x86_64", "-model1", model1_id, "-model2", model2_id, "-nographics", "-batchmode"])
    print(f"Match {model1_id} against {model2_id} ended.")


def get_models_list(filter_bad_models) -> list:
    """
    Get the list of models from the hub and the ELO file.

    :return: list of Model objects
    """
    models = []
    models_ids = []
    data = pd.read_csv(os.path.join(DATASET_REPO_URL, "resolve", "main", ELO_FILENAME))
    models_on_hub = api.list_models(filter=["reinforcement-learning", "ml-agents", "ML-Agents-SoccerTwos", "onnx"])
    for i, row in data.iterrows():
        model_id = row["author"] + "/" + row["model"]
        if model_id in filter_bad_models:
            continue
        models.append(Model(row["author"], row["model"], row["elo"], row["games_played"]))
        models_ids.append(model_id)
    for model in models_on_hub:
        if model.modelId in filter_bad_models:
            continue
        author, name = model.modelId.split("/")[0], model.modelId.split("/")[1]
        if model.modelId not in models_ids:
            models.append(Model(author, name))
            print("New model found: ", author, "-", name)
    return models


def get_elo_data() -> pd.DataFrame:
    """
    Get the ELO data from the hub for all the models that have played at least one game.

    :return: ELO data as a pandas DataFrame
    """
    repo.git_pull()
    data = pd.read_csv(os.path.join(DATASET_REPO_URL, "resolve", "main", ELO_FILENAME))    
    
    return data


def init_matchmaking():
    """
    Run the matchmaking algorithm and save the results to the hub.

    1. Get the list of models from the hub and the ELO data
    2. Match models together based on their ELO rating
    3. Simulate the matches using Unity to get the match result
    4. Compute the new ELO rating for each model
    5. Save the results to the hub
    """
    filter_bad_models = pd.read_csv(FILTER_FILE)["model"].tolist()
    models = get_models_list(filter_bad_models)
    matchmaking = Matchmaking(models)
    matchmaking.run()
    matchmaking.to_csv()
    print("Matchmaking done --", datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))