ThomasSimonini's picture
Update app.py
1c0393e
raw
history blame
12.4 kB
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download, Repository
from huggingface_hub.repocard import metadata_load
from PIL import Image, ImageDraw, ImageFont
from datetime import date
import time
import os
import pandas as pd
from utils import *
api = HfApi()
DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/Deep-RL-Course-Certification"
CERTIFIED_USERS_FILENAME = "certified_users.csv"
CERTIFIED_USERS_DIR = "certified_users"
HF_TOKEN = os.environ.get("HF_TOKEN")
repo = Repository(
local_dir=CERTIFIED_USERS_DIR, clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
def get_user_models(hf_username, env_tag, lib_tag):
"""
List the Reinforcement Learning models
from user given environment and lib
:param hf_username: User HF username
:param env_tag: Environment tag
:param lib_tag: Library tag
"""
api = HfApi()
models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag])
user_model_ids = [x.modelId for x in models]
return user_model_ids
def get_metadata(model_id):
"""
Get model metadata (contains evaluation data)
:param model_id
"""
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
def parse_metrics_accuracy(meta):
"""
Get model results and parse it
:param meta: model metadata
"""
if "model-index" not in meta:
return None
result = meta["model-index"][0]["results"]
metrics = result[0]["metrics"]
accuracy = metrics[0]["value"]
return accuracy
def parse_rewards(accuracy):
"""
Parse mean_reward and std_reward
:param accuracy: model results
"""
default_std = -1000
default_reward= -1000
if accuracy != None:
accuracy = str(accuracy)
parsed = accuracy.split(' +/- ')
if len(parsed)>1:
mean_reward = float(parsed[0])
std_reward = float(parsed[1])
elif len(parsed)==1: #only mean reward
mean_reward = float(parsed[0])
std_reward = float(0)
else:
mean_reward = float(default_std)
std_reward = float(default_reward)
else:
mean_reward = float(default_std)
std_reward = float(default_reward)
return mean_reward, std_reward
def calculate_best_result(user_model_ids):
"""
Calculate the best results of a unit
best_result = mean_reward - std_reward
:param user_model_ids: RL models of a user
"""
best_result = -100
best_model_id = ""
for model in user_model_ids:
meta = get_metadata(model)
if meta is None:
continue
accuracy = parse_metrics_accuracy(meta)
mean_reward, std_reward = parse_rewards(accuracy)
result = mean_reward - std_reward
if result > best_result:
best_result = result
best_model_id = model
return best_result, best_model_id
def check_if_passed(model):
"""
Check if result >= baseline
to know if you pass
:param model: user model
"""
if model["best_result"] >= model["min_result"]:
model["passed_"] = True
def certification(hf_username, first_name, last_name):
results_certification = [
{
"unit": "Unit 1",
"env": "LunarLander-v2",
"library": "stable-baselines3",
"min_result": 200,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 2",
"env": "Taxi-v3",
"library": "q-learning",
"min_result": 4,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 3",
"env": "SpaceInvadersNoFrameskip-v4",
"library": "stable-baselines3",
"min_result": 200,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 4",
"env": "CartPole-v1",
"library": "reinforce",
"min_result": 350,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 4",
"env": "Pixelcopter-PLE-v0",
"library": "reinforce",
"min_result": 5,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 5",
"env": "ML-Agents-SnowballTarget",
"library": "ml-agents",
"min_result": -100,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 5",
"env": "ML-Agents-Pyramids",
"library": "ml-agents",
"min_result": -100,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 6",
"env": "AntBulletEnv-v0",
"library": "stable-baselines3",
"min_result": 650,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 6",
"env": "PandaReachDense-v2",
"library": "stable-baselines3",
"min_result": -3.5,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 7",
"env": "ML-Agents-SoccerTwos",
"library": "ml-agents",
"min_result": -100,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 8 PI",
"env": "GodotRL-JumperHard",
"library": "cleanrl",
"min_result": 100,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 8 PII",
"env": "Vizdoom-Battle",
"library": "cleanrl",
"min_result": 100,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
]
for unit in results_certification:
# Get user model
user_models = get_user_models(hf_username, unit['env'], unit['library'])
# Calculate the best result and get the best_model_id
best_result, best_model_id = calculate_best_result(user_models)
# Save best_result and best_model_id
unit["best_result"] = best_result
unit["best_model_id"] = make_clickable_model(best_model_id)
# Based on best_result do we pass the unit?
check_if_passed(unit)
unit["passed"] = pass_emoji(unit["passed_"])
print(results_certification)
df1 = pd.DataFrame(results_certification)
df = df1[['passed', 'unit', 'env', 'min_result', 'best_result', 'best_model_id']]
certificate, message, pdf = verify_certification(results_certification, hf_username, first_name, last_name)
print("MESSAGE", message)
return message, pdf, certificate, df
"""
Verify that the user pass.
If yes:
- Generate the certification
- Send an email
- Print the certification
If no:
- Explain why the user didn't pass yet
"""
def verify_certification(df, hf_username, first_name, last_name):
# Check that we pass
model_pass_nb = 0
pass_percentage = 0
for unit in df:
if unit["passed_"] is True:
model_pass_nb += 1
pass_percentage = (model_pass_nb/12) * 100
print("pass_percentage", pass_percentage)
if pass_percentage == 100:
# Generate a certificate of excellence
certificate, pdf = generate_certificate("./certificate_models/certificate-excellence.png", first_name, last_name)
# Add this user to our database
add_certified_user(hf_username, first_name, last_name, pass_percentage)
# Add a message
message = """
Congratulations, you successfully completed the Hugging Face Deep Reinforcement Learning Course πŸŽ‰ \n
**Since you pass 100% of the hands-on you get a Certificate of Excellence πŸŽ“.**
"""
elif pass_percentage < 100 and pass_percentage >= 80:
# Certificate of completion
certificate, pdf = generate_certificate("./certificate_models/certificate-completion.png", first_name, last_name)
# Add this user to our database
add_certified_user(hf_username, first_name, last_name, pass_percentage)
# Add a message
message = """
Congratulations, you successfully completed the Hugging Face Deep Reinforcement Learning Course πŸŽ‰ \n
**Since you pass 80% of the hands-on you get a Certificate of Completion πŸŽ“**. You can try to get a Certificate of Excellence
if you pass 100% of the hands-on, don't hesitate to check which unit you didn't pass and update these models.
"""
else:
# Not pass yet
certificate = Image.new("RGB", (100, 100), (255, 255, 255))
pdf = ""
# Add a message
message = """
You **didn't pass the minimum of 80%** of the hands-on to get a certificate of completion. **But don't be discouraged**.
Check below which units you need to do again to get your certificate πŸ’ͺ
"""
print("return certificate")
return certificate, message, pdf
def generate_certificate(certificate_model, first_name, last_name):
im = Image.open(certificate_model)
d = ImageDraw.Draw(im)
name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100)
date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48)
name = str(first_name) + " " + str(last_name)
print("NAME", name)
# Debug line name
#d.line(((200, 740), (1800, 740)), "gray")
#d.line(((1000, 0), (1000, 1400)), "gray")
# Name
d.text((1000, 740), name, fill="black", anchor="mm", font=name_font)
# Debug line date
#d.line(((1500, 0), (1500, 1400)), "gray")
# Date of certification
d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
pdf = im.save("certificate"+".pdf")
return im, pdf
def add_certified_user(hf_username, first_name, last_name, pass_percentage):
"""
Add the certified user to the database
"""
print("ADD CERTIFIED USER")
repo.git_pull()
history = pd.read_csv(os.path.join(CERTIFIED_USERS_DIR, CERTIFIED_USERS_FILENAME))
# Check if this hf_username is already in our dataset:
check = history.loc[history['hf_username'] == hf_username]
if not check.empty:
history = history.drop(labels=check.index[0], axis=0)
new_row = pd.DataFrame({'hf_username': hf_username, 'first_name': first_name, 'last_name': last_name, 'pass_percentage': pass_percentage, 'datetime': time.time()}, index=[0])
history = pd.concat([new_row, history[:]]).reset_index(drop=True)
history.to_csv(os.path.join(CERTIFIED_USERS_DIR, CERTIFIED_USERS_FILENAME), index=False)
repo.push_to_hub(commit_message="Update certified users list")
with gr.Blocks() as demo:
gr.Markdown(f"""
# Get your certificate πŸŽ“
The certification process is completely free:
- To get a *certificate of completion*: you need to **pass 80% of the assignments before the end of April 2023**.
- To get a *certificate of honors*: you need to **pass 100% of the assignments before the end of April 2023**.
For more information about the certification process [check this](https://huggingface.co/deep-rl-course/communication/certification)
Don’t hesitate to share your certificate on Twitter (tag me @ThomasSimonini and @huggingface) and on Linkedin.
""")
hf_username = gr.Textbox(placeholder="ThomasSimonini", label="Your Hugging Face Username (case sensitive)")
first_name = gr.Textbox(placeholder="Jane", label="Your First Name")
last_name = gr.Textbox(placeholder="Doe", label="Your Last Name")
#email = gr.Textbox(placeholder="[email protected]", label="Your Email (to receive your certificate)")
check_progress_button = gr.Button(value="Check if I pass")
output_text = gr.components.Textbox()
output_pdf = gr.File()
output_img = gr.components.Image(type="pil")
output_dataframe = gr.components.Dataframe(headers=["Pass?", "Unit", "Environment", "Baseline", "Your best result", "Your best model id"], datatype=["markdown", "markdown", "markdown", "number", "number", "markdown", "bool"]) #value= certification(hf_username, first_name, last_name),
check_progress_button.click(fn=certification, inputs=[hf_username, first_name, last_name], outputs=[output_text, output_pdf, output_img, output_dataframe])#[output1, output2])
demo.launch(debug=True)