Commit
β’
91cb2a2
1
Parent(s):
1f35814
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import HfApi, hf_hub_download
|
3 |
+
from huggingface_hub.repocard import metadata_load
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from utils import *
|
8 |
+
|
9 |
+
api = HfApi()
|
10 |
+
|
11 |
+
def get_user_models(hf_username, env_tag, lib_tag):
|
12 |
+
"""
|
13 |
+
List the Reinforcement Learning models
|
14 |
+
from user given environment and lib
|
15 |
+
:param hf_username: User HF username
|
16 |
+
:param env_tag: Environment tag
|
17 |
+
:param lib_tag: Library tag
|
18 |
+
"""
|
19 |
+
api = HfApi()
|
20 |
+
models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag])
|
21 |
+
|
22 |
+
user_model_ids = [x.modelId for x in models]
|
23 |
+
return user_model_ids
|
24 |
+
|
25 |
+
|
26 |
+
def get_metadata(model_id):
|
27 |
+
"""
|
28 |
+
Get model metadata (contains evaluation data)
|
29 |
+
:param model_id
|
30 |
+
"""
|
31 |
+
try:
|
32 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
33 |
+
return metadata_load(readme_path)
|
34 |
+
except requests.exceptions.HTTPError:
|
35 |
+
# 404 README.md not found
|
36 |
+
return None
|
37 |
+
|
38 |
+
|
39 |
+
def parse_metrics_accuracy(meta):
|
40 |
+
"""
|
41 |
+
Get model results and parse it
|
42 |
+
:param meta: model metadata
|
43 |
+
"""
|
44 |
+
if "model-index" not in meta:
|
45 |
+
return None
|
46 |
+
result = meta["model-index"][0]["results"]
|
47 |
+
metrics = result[0]["metrics"]
|
48 |
+
accuracy = metrics[0]["value"]
|
49 |
+
|
50 |
+
return accuracy
|
51 |
+
|
52 |
+
|
53 |
+
def parse_rewards(accuracy):
|
54 |
+
"""
|
55 |
+
Parse mean_reward and std_reward
|
56 |
+
:param accuracy: model results
|
57 |
+
"""
|
58 |
+
default_std = -1000
|
59 |
+
default_reward= -1000
|
60 |
+
if accuracy != None:
|
61 |
+
accuracy = str(accuracy)
|
62 |
+
parsed = accuracy.split(' +/- ')
|
63 |
+
if len(parsed)>1:
|
64 |
+
mean_reward = float(parsed[0])
|
65 |
+
std_reward = float(parsed[1])
|
66 |
+
elif len(parsed)==1: #only mean reward
|
67 |
+
mean_reward = float(parsed[0])
|
68 |
+
std_reward = float(0)
|
69 |
+
else:
|
70 |
+
mean_reward = float(default_std)
|
71 |
+
std_reward = float(default_reward)
|
72 |
+
else:
|
73 |
+
mean_reward = float(default_std)
|
74 |
+
std_reward = float(default_reward)
|
75 |
+
|
76 |
+
return mean_reward, std_reward
|
77 |
+
|
78 |
+
def calculate_best_result(user_model_ids):
|
79 |
+
"""
|
80 |
+
Calculate the best results of a unit
|
81 |
+
best_result = mean_reward - std_reward
|
82 |
+
:param user_model_ids: RL models of a user
|
83 |
+
"""
|
84 |
+
best_result = -100
|
85 |
+
best_model_id = ""
|
86 |
+
for model in user_model_ids:
|
87 |
+
meta = get_metadata(model)
|
88 |
+
if meta is None:
|
89 |
+
continue
|
90 |
+
accuracy = parse_metrics_accuracy(meta)
|
91 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
92 |
+
result = mean_reward - std_reward
|
93 |
+
if result > best_result:
|
94 |
+
best_result = result
|
95 |
+
best_model_id = model
|
96 |
+
|
97 |
+
return best_result, best_model_id
|
98 |
+
|
99 |
+
def check_if_passed(model):
|
100 |
+
"""
|
101 |
+
Check if result >= baseline
|
102 |
+
to know if you pass
|
103 |
+
:param model: user model
|
104 |
+
"""
|
105 |
+
if model["best_result"] >= model["min_result"]:
|
106 |
+
model["passed"] = True
|
107 |
+
|
108 |
+
def test_(hf_username):
|
109 |
+
results_certification = [
|
110 |
+
{
|
111 |
+
"unit": "Unit 1",
|
112 |
+
"env": "LunarLander-v2",
|
113 |
+
"library": "stable-baselines3",
|
114 |
+
"min_result": 200,
|
115 |
+
"best_result": 0,
|
116 |
+
"best_model_id": "",
|
117 |
+
"passed": False
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"unit": "Unit 2",
|
121 |
+
"env": "Taxi-v3",
|
122 |
+
"library": "q-learning",
|
123 |
+
"min_result": 4,
|
124 |
+
"best_result": 0,
|
125 |
+
"best_model_id": "",
|
126 |
+
"passed": False
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"unit": "Unit 3",
|
130 |
+
"env": "SpaceInvadersNoFrameskip-v4",
|
131 |
+
"library": "stable-baselines3",
|
132 |
+
"min_result": 200,
|
133 |
+
"best_result": 0,
|
134 |
+
"best_model_id": "",
|
135 |
+
"passed": False
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"unit": "Unit 4",
|
139 |
+
"env": "CartPole-v1",
|
140 |
+
"library": "reinforce",
|
141 |
+
"min_result": 350,
|
142 |
+
"best_result": 0,
|
143 |
+
"best_model_id": "",
|
144 |
+
"passed": False
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"unit": "Unit 4",
|
148 |
+
"env": "Pixelcopter-PLE-v0",
|
149 |
+
"library": "reinforce",
|
150 |
+
"min_result": 5,
|
151 |
+
"best_result": 0,
|
152 |
+
"best_model_id": "",
|
153 |
+
"passed": False
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"unit": "Unit 5",
|
157 |
+
"env": "ML-Agents-SnowballTarget",
|
158 |
+
"library": "ml-agents",
|
159 |
+
"min_result": -100,
|
160 |
+
"best_result": 0,
|
161 |
+
"best_model_id": "",
|
162 |
+
"passed": False
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"unit": "Unit 5",
|
166 |
+
"env": "ML-Agents-Pyramids",
|
167 |
+
"library": "ml-agents",
|
168 |
+
"min_result": -100,
|
169 |
+
"best_result": 0,
|
170 |
+
"best_model_id": "",
|
171 |
+
"passed": False
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"unit": "Unit 6",
|
175 |
+
"env": "AntBulletEnv-v0",
|
176 |
+
"library": "stable-baselines3",
|
177 |
+
"min_result": 650,
|
178 |
+
"best_result": 0,
|
179 |
+
"best_model_id": "",
|
180 |
+
"passed": False
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"unit": "Unit 6",
|
184 |
+
"env": "PandaReachDense-v2",
|
185 |
+
"library": "stable-baselines3",
|
186 |
+
"min_result": -3.5,
|
187 |
+
"best_result": 0,
|
188 |
+
"best_model_id": "",
|
189 |
+
"passed": False
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"unit": "Unit 7",
|
193 |
+
"env": "ML-Agents-SoccerTwos",
|
194 |
+
"library": "ml-agents",
|
195 |
+
"min_result": -100,
|
196 |
+
"best_result": 0,
|
197 |
+
"best_model_id": "",
|
198 |
+
"passed": False
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"unit": "Unit 8 Part 1",
|
202 |
+
"env": "GodotRL-JumperHard",
|
203 |
+
"library": "cleanrl",
|
204 |
+
"min_result": -100,
|
205 |
+
"best_result": 0,
|
206 |
+
"best_model_id": "",
|
207 |
+
"passed": False
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"unit": "Unit 8 Part 2",
|
211 |
+
"env": "Vizdoom-Battle",
|
212 |
+
"library": "cleanrl",
|
213 |
+
"min_result": -100,
|
214 |
+
"best_result": 0,
|
215 |
+
"best_model_id": "",
|
216 |
+
"passed": False
|
217 |
+
},
|
218 |
+
]
|
219 |
+
for unit in results_certification:
|
220 |
+
# Get user model
|
221 |
+
user_models = get_user_models(hf_username, unit['env'], unit['library'])
|
222 |
+
print(user_models)
|
223 |
+
# Calculate the best result and get the best_model_id
|
224 |
+
best_result, best_model_id = calculate_best_result(user_models)
|
225 |
+
|
226 |
+
# Save best_result and best_model_id
|
227 |
+
unit["best_result"] = best_result
|
228 |
+
unit["best_model_id"] = make_clickable_model(best_model_id)
|
229 |
+
|
230 |
+
# Based on best_result do we pass the unit?
|
231 |
+
check_if_passed(unit)
|
232 |
+
#pass_emoji(unit["passed"])
|
233 |
+
|
234 |
+
print(results_certification)
|
235 |
+
|
236 |
+
df = pd.DataFrame (results_certification)
|
237 |
+
|
238 |
+
return df
|
239 |
+
|
240 |
+
|
241 |
+
with gr.Blocks() as demo:
|
242 |
+
gr.Markdown(f"""
|
243 |
+
# π Check your progress in the Deep Reinforcement Learning Course π
|
244 |
+
You can check your progress here.
|
245 |
+
|
246 |
+
- To get a certificate of completion, you must **pass 80% of the assignments before the end of April 2023**.
|
247 |
+
- To get an honors certificate, you must **pass 100% of the assignments before the end of April 2023**.
|
248 |
+
|
249 |
+
To pass an assignment your model result (mean_reward - std_reward) must be >= min_result
|
250 |
+
|
251 |
+
**When min_result = -100 it means that you just need to push a model to pass this hands-on. No need to reach a certain result.**
|
252 |
+
|
253 |
+
Just type your Hugging Face Username π€ (in my case ThomasSimonini)
|
254 |
+
""")
|
255 |
+
|
256 |
+
hf_username = gr.Textbox(placeholder="ThomasSimonini", label="Your Hugging Face Username")
|
257 |
+
#email = gr.Textbox(placeholder="[email protected]", label="Your Email (to receive your certificate)")
|
258 |
+
check_progress_button = gr.Button(value="Check my progress")
|
259 |
+
output = gr.components.Dataframe(value= test_(hf_username), headers=["Unit", "Environment", "Library", "Baseline", "Your best result", "Your best model id", "Pass?"], datatype=["markdown", "markdown", "markdown", "number", "number", "markdown", "bool"])
|
260 |
+
check_progress_button.click(fn=test_, inputs=hf_username, outputs=output)
|
261 |
+
|
262 |
+
demo.launch()
|