|
import requests |
|
import json |
|
import pandas as pd |
|
from tqdm.auto import tqdm |
|
|
|
import gradio as gr |
|
|
|
from huggingface_hub import HfApi, hf_hub_download |
|
from huggingface_hub.repocard import metadata_load |
|
|
|
|
|
|
|
|
|
def make_clickable_model(model_name): |
|
link = "https://huggingface.co/" + model_name |
|
return f'<a target="_blank" href="{link}">{model_name}</a>' |
|
|
|
|
|
def make_clickable_user(user_id): |
|
link = "https://huggingface.co/" + user_id |
|
return f'<a target="_blank" href="{link}">{user_id}</a>' |
|
|
|
def get_model_ids(rl_env): |
|
api = HfApi() |
|
models = api.list_models(filter=rl_env) |
|
model_ids = [x.modelId for x in models] |
|
return model_ids |
|
|
|
def get_metadata(model_id): |
|
try: |
|
readme_path = hf_hub_download(model_id, filename="README.md") |
|
return metadata_load(readme_path) |
|
except requests.exceptions.HTTPError: |
|
|
|
return None |
|
|
|
def parse_metrics_accuracy(meta): |
|
if "model-index" not in meta: |
|
return None |
|
result = meta["model-index"][0]["results"] |
|
metrics = result[0]["metrics"] |
|
accuracy = metrics[0]["value"] |
|
print("ACCURACY", accuracy) |
|
return accuracy |
|
|
|
|
|
def parse_rewards(accuracy): |
|
if accuracy != None: |
|
parsed = accuracy.split(' +/- ') |
|
mean_reward = float(parsed[0]) |
|
std_reward = float(parsed[1]) |
|
else: |
|
mean_reward = -1000 |
|
std_reward = -1000 |
|
return mean_reward, std_reward |
|
|
|
def get_data(rl_env): |
|
data = [] |
|
model_ids = get_model_ids(rl_env) |
|
for model_id in tqdm(model_ids): |
|
meta = get_metadata(model_id) |
|
if meta is None: |
|
continue |
|
user_id = model_id.split('/')[0] |
|
row = {} |
|
row["User"] = user_id |
|
row["Model"] = model_id |
|
accuracy = parse_metrics_accuracy(meta) |
|
print("RETURNED ACCURACY", accuracy) |
|
mean_reward, std_reward = parse_rewards(accuracy) |
|
print("MEAN REWARD", mean_reward) |
|
row["Results"] = mean_reward - std_reward |
|
row["Mean Reward"] = mean_reward |
|
row["Std Reward"] = std_reward |
|
data.append(row) |
|
return pd.DataFrame.from_records(data) |
|
|
|
|
|
def get_data_per_env(rl_env): |
|
dataframe = get_data(rl_env) |
|
dataframe = dataframe.fillna("") |
|
|
|
|
|
if not dataframe.empty: |
|
|
|
dataframe["User"] = dataframe["User"].apply(make_clickable_user) |
|
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model) |
|
dataframe = dataframe.sort_values(by=['Results'], ascending=False) |
|
table_html = dataframe.to_html(escape=False, index=False) |
|
table_html = table_html.replace("<th>", '<th align="left">') |
|
return table_html,dataframe,dataframe.empty |
|
else: |
|
html = """<div style="color: green"> |
|
<p> β Please wait. Results will be out soon... </p> |
|
</div> |
|
""" |
|
return html,dataframe,dataframe.empty |
|
|
|
|
|
|
|
RL_ENVS = ['CarRacing-v0','MountainCar-v0','LunarLander-v2'] |
|
RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing π Leaderboard π",'data':get_data_per_env('CarRacing-v0')}, |
|
'MountainCar-v0':{'title':"The Mountain Car π Leaderboard π",'data':get_data_per_env('MountainCar-v0')}, |
|
'LunarLander-v2':{'title':" The Lunar Lander π Leaderboard π",'data':get_data_per_env('LunarLander-v2')} |
|
} |
|
|
|
|
|
block = gr.Blocks() |
|
with block: |
|
|
|
with gr.Tabs(): |
|
for rl_env in RL_ENVS: |
|
with gr.TabItem(rl_env): |
|
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] |
|
|
|
markdown = """ |
|
# {name_leaderboard} |
|
|
|
This is a leaderboard of {len_dataframe}** agents playing {env_name} π©βπ. |
|
|
|
We use lower bound result to sort the models: mean_reward - std_reward. |
|
|
|
You can click on the model's name to be redirected to its model card which includes documentation. |
|
|
|
You want to try your model? Read this Unit 1 of Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md. |
|
|
|
""".format(len_dataframe = len(data_dataframe),env_name = rl_env,name_leaderboard = RL_DETAILS[rl_env]['title']) |
|
gr.Markdown(markdown) |
|
gr.HTML(data_html) |
|
|
|
|
|
block.launch() |
|
|