ThomasSimonini HF staff commited on
Commit
e653f9c
Β·
1 Parent(s): 659a76d

Add BackgroundScheduler()

Browse files
Files changed (1) hide show
  1. app.py +45 -5
app.py CHANGED
@@ -3,10 +3,15 @@ import json
3
  import requests
4
 
5
  from datasets import load_dataset
 
6
  import gradio as gr
 
 
 
7
  from huggingface_hub import HfApi, hf_hub_download
8
  from huggingface_hub.repocard import metadata_load
9
  import pandas as pd
 
10
  from utils import *
11
 
12
 
@@ -75,6 +80,24 @@ rl_envs = [
75
  "global": None
76
  },
77
  {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  "rl_env_beautiful": "BipedalWalker-v3",
79
  "rl_env": "BipedalWalker-v3",
80
  "video_link": "",
@@ -146,13 +169,13 @@ def get_model_ids(rl_env):
146
  api = HfApi()
147
  models = api.list_models(filter=rl_env)
148
  model_ids = [x.modelId for x in models]
149
- print(model_ids)
150
  return model_ids
151
 
152
  def get_model_dataframe(rl_env):
153
  # Get model ids associated with rl_env
154
  model_ids = get_model_ids(rl_env)
155
- print(model_ids)
156
  data = []
157
  for model_id in model_ids:
158
  """
@@ -175,13 +198,14 @@ def get_model_dataframe(rl_env):
175
  row["Mean Reward"] = mean_reward
176
  row["Std Reward"] = std_reward
177
  data.append(row)
 
178
  ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
179
  print("RANKED", ranked_dataframe)
180
  return ranked_dataframe
181
 
182
 
183
  def rank_dataframe(dataframe):
184
- print("DATAFRAME", dataframe)
185
  dataframe = dataframe.sort_values(by=['Results'], ascending=False)
186
  if not 'Ranking' in dataframe.columns:
187
  dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
@@ -198,7 +222,7 @@ with block:
198
 
199
  Just choose which environment you trained your agent on and with Ctrl+F find your rank πŸ†
200
 
201
- **If you don't find your model, go to the bottom of the page and click on the refresh button**
202
 
203
  We use **lower bound result to sort the models: mean_reward - std_reward.**
204
 
@@ -226,10 +250,26 @@ with block:
226
  rl_env["global"] = gr.components.Dataframe(value= get_model_dataframe(rl_env["rl_env"]), headers=["Ranking πŸ†", "User πŸ€—", "Model id πŸ€–", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"])
227
  with gr.Row():
228
  data_run = gr.Button("Refresh")
229
- print("rl_env", rl_env["rl_env"])
230
  val = gr.Variable(value=[rl_env["rl_env"]])
231
  data_run.click(get_model_dataframe, inputs=[val], outputs =rl_env["global"])
232
 
233
 
234
  block.launch()
235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  import requests
4
 
5
  from datasets import load_dataset
6
+
7
  import gradio as gr
8
+ from apscheduler.schedulers.background import BackgroundScheduler
9
+
10
+
11
  from huggingface_hub import HfApi, hf_hub_download
12
  from huggingface_hub.repocard import metadata_load
13
  import pandas as pd
14
+
15
  from utils import *
16
 
17
 
 
80
  "global": None
81
  },
82
  {
83
+ "rl_env_beautiful": "PongNoFrameskip-v4 🎾",
84
+ "rl_env": "PongNoFrameskip-v4",
85
+ "video_link": "",
86
+ "global": None
87
+ },
88
+ {
89
+ "rl_env_beautiful": "BreakoutNoFrameskip-v4 🧱",
90
+ "rl_env": "BreakoutNoFrameskip-v4",
91
+ "video_link": "",
92
+ "global": None
93
+ },
94
+ {
95
+ "rl_env_beautiful": "QbertNoFrameskip-v4 🐦",
96
+ "rl_env": "QbertNoFrameskip-v4",
97
+ "video_link": "",
98
+ "global": None
99
+ },
100
+ {
101
  "rl_env_beautiful": "BipedalWalker-v3",
102
  "rl_env": "BipedalWalker-v3",
103
  "video_link": "",
 
169
  api = HfApi()
170
  models = api.list_models(filter=rl_env)
171
  model_ids = [x.modelId for x in models]
172
+ #print(model_ids)
173
  return model_ids
174
 
175
  def get_model_dataframe(rl_env):
176
  # Get model ids associated with rl_env
177
  model_ids = get_model_ids(rl_env)
178
+ #print(model_ids)
179
  data = []
180
  for model_id in model_ids:
181
  """
 
198
  row["Mean Reward"] = mean_reward
199
  row["Std Reward"] = std_reward
200
  data.append(row)
201
+ print("DATA", data)
202
  ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
203
  print("RANKED", ranked_dataframe)
204
  return ranked_dataframe
205
 
206
 
207
  def rank_dataframe(dataframe):
208
+ #print("DATAFRAME", dataframe)
209
  dataframe = dataframe.sort_values(by=['Results'], ascending=False)
210
  if not 'Ranking' in dataframe.columns:
211
  dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
 
222
 
223
  Just choose which environment you trained your agent on and with Ctrl+F find your rank πŸ†
224
 
225
+ **The leaderboard is updated every hour. If you don't find your model, go to the bottom of the page and click on the refresh button**
226
 
227
  We use **lower bound result to sort the models: mean_reward - std_reward.**
228
 
 
250
  rl_env["global"] = gr.components.Dataframe(value= get_model_dataframe(rl_env["rl_env"]), headers=["Ranking πŸ†", "User πŸ€—", "Model id πŸ€–", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"])
251
  with gr.Row():
252
  data_run = gr.Button("Refresh")
253
+ #print("rl_env", rl_env["rl_env"])
254
  val = gr.Variable(value=[rl_env["rl_env"]])
255
  data_run.click(get_model_dataframe, inputs=[val], outputs =rl_env["global"])
256
 
257
 
258
  block.launch()
259
 
260
+ def refresh_leaderboard():
261
+ """
262
+ Here we refresh the leaderboard:
263
+ we update the rl_env["global"] for each rl_envs in rl_env
264
+ """
265
+ for i in range(0, len(rl_envs)):
266
+ rl_env = rl_envs[i]
267
+ temp = get_model_dataframe(rl_env)
268
+ rl_env["global"] = temp
269
+ print("The leaderboard has been updated")
270
+
271
+ scheduler = BackgroundScheduler()
272
+ # Refresh every hour
273
+ scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=3600)
274
+ scheduler.start()
275
+