initial files
Browse files
app.py
CHANGED
@@ -1,24 +1,22 @@
|
|
1 |
import requests
|
2 |
-
import json
|
3 |
import pandas as pd
|
4 |
from tqdm.auto import tqdm
|
5 |
|
6 |
import gradio as gr
|
7 |
-
#import streamlit as st
|
8 |
from huggingface_hub import HfApi, hf_hub_download
|
9 |
from huggingface_hub.repocard import metadata_load
|
10 |
-
|
11 |
|
12 |
# Based on Omar Sanseviero work
|
13 |
# Make model clickable link
|
14 |
def make_clickable_model(model_name):
|
15 |
link = "https://huggingface.co/" + model_name
|
16 |
-
return f'<a target="_blank" href="{link}">{model_name}</a>'
|
17 |
|
18 |
# Make user clickable link
|
19 |
def make_clickable_user(user_id):
|
20 |
link = "https://huggingface.co/" + user_id
|
21 |
-
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
22 |
|
23 |
def get_model_ids(rl_env):
|
24 |
api = HfApi()
|
@@ -80,14 +78,17 @@ def get_data_per_env(rl_env):
|
|
80 |
dataframe = get_data(rl_env)
|
81 |
dataframe = dataframe.fillna("")
|
82 |
|
83 |
-
#import pdb; pdb.set_trace()
|
84 |
if not dataframe.empty:
|
85 |
# turn the model ids into clickable links
|
86 |
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
|
87 |
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
|
88 |
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
89 |
table_html = dataframe.to_html(escape=False, index=False)
|
90 |
-
table_html = table_html.replace("<
|
|
|
|
|
|
|
|
|
91 |
return table_html,dataframe,dataframe.empty
|
92 |
else:
|
93 |
html = """<div style="color: green">
|
@@ -98,9 +99,9 @@ def get_data_per_env(rl_env):
|
|
98 |
|
99 |
|
100 |
|
101 |
-
RL_ENVS = ['
|
102 |
-
RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing
|
103 |
-
'MountainCar-v0':{'title':"The Mountain Car
|
104 |
'LunarLander-v2':{'title':" The Lunar Lander π Leaderboard π",'data':get_data_per_env('LunarLander-v2')}
|
105 |
}
|
106 |
|
@@ -113,18 +114,27 @@ with block:
|
|
113 |
with gr.TabItem(rl_env):
|
114 |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
115 |
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
|
121 |
-
We use lower bound result to sort the models: mean_reward - std_reward.
|
122 |
|
123 |
-
|
124 |
|
125 |
-
|
|
|
|
|
|
|
126 |
|
127 |
-
|
128 |
gr.Markdown(markdown)
|
129 |
gr.HTML(data_html)
|
130 |
|
|
|
1 |
import requests
|
|
|
2 |
import pandas as pd
|
3 |
from tqdm.auto import tqdm
|
4 |
|
5 |
import gradio as gr
|
|
|
6 |
from huggingface_hub import HfApi, hf_hub_download
|
7 |
from huggingface_hub.repocard import metadata_load
|
8 |
+
|
9 |
|
10 |
# Based on Omar Sanseviero work
|
11 |
# Make model clickable link
|
12 |
def make_clickable_model(model_name):
|
13 |
link = "https://huggingface.co/" + model_name
|
14 |
+
return f'<a style="text-decoration: underline; color: #1f3b54 " target="_blank" href="{link}">{model_name}</a>'
|
15 |
|
16 |
# Make user clickable link
|
17 |
def make_clickable_user(user_id):
|
18 |
link = "https://huggingface.co/" + user_id
|
19 |
+
return f'<a style="text-decoration: underline; color: #1f3b54 " target="_blank" href="{link}">{user_id}</a>'
|
20 |
|
21 |
def get_model_ids(rl_env):
|
22 |
api = HfApi()
|
|
|
78 |
dataframe = get_data(rl_env)
|
79 |
dataframe = dataframe.fillna("")
|
80 |
|
|
|
81 |
if not dataframe.empty:
|
82 |
# turn the model ids into clickable links
|
83 |
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
|
84 |
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
|
85 |
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
86 |
table_html = dataframe.to_html(escape=False, index=False)
|
87 |
+
table_html = table_html.replace("<table>", '<table style="width: 100%; margin: auto; border:0.5px solid; border-spacing: 7px 0px">') # center-align the headers
|
88 |
+
|
89 |
+
table_html = table_html.replace("<thead>", '<thead align="center">') # center-align the headers
|
90 |
+
|
91 |
+
table_html = "<div style='text-align: center ; width:100%'>"+table_html+"</div>"
|
92 |
return table_html,dataframe,dataframe.empty
|
93 |
else:
|
94 |
html = """<div style="color: green">
|
|
|
99 |
|
100 |
|
101 |
|
102 |
+
RL_ENVS = ['LunarLander-v2','CarRacing-v0','MountainCar-v0']
|
103 |
+
RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing ποΈ Leaderboard π",'data':get_data_per_env('CarRacing-v0')},
|
104 |
+
'MountainCar-v0':{'title':"The Mountain Car β°οΈ π Leaderboard π",'data':get_data_per_env('MountainCar-v0')},
|
105 |
'LunarLander-v2':{'title':" The Lunar Lander π Leaderboard π",'data':get_data_per_env('LunarLander-v2')}
|
106 |
}
|
107 |
|
|
|
114 |
with gr.TabItem(rl_env):
|
115 |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
116 |
|
117 |
+
if not is_empty:
|
118 |
+
markdown = """
|
119 |
+
# {name_leaderboard}
|
120 |
+
|
121 |
+
This is a leaderboard of **{len_dataframe}** agents playing {env_name} π©βπ.
|
122 |
+
|
123 |
+
We use lower bound result to sort the models: mean_reward - std_reward.
|
124 |
+
|
125 |
+
You can click on the model's name to be redirected to its model card which includes documentation.
|
126 |
|
127 |
+
You want to try your model? Read this [Unit 1](https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md) of Deep Reinforcement Learning Class.
|
128 |
|
|
|
129 |
|
130 |
+
""".format(len_dataframe = len(data_dataframe),env_name = rl_env,name_leaderboard = RL_DETAILS[rl_env]['title'])
|
131 |
|
132 |
+
else:
|
133 |
+
markdown = """
|
134 |
+
# {name_leaderboard}
|
135 |
+
""".format(name_leaderboard = RL_DETAILS[rl_env]['title'])
|
136 |
|
137 |
+
|
138 |
gr.Markdown(markdown)
|
139 |
gr.HTML(data_html)
|
140 |
|