Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,871 Bytes
3aa0ca8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import torch
import gradio as gr
from PIL import Image
from diffusers import (
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
DDIMScheduler,
)
from diffusers.utils import load_image
from PIL import Image
controlnet = ControlNetModel.from_pretrained(
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
)
pipe.enable_xformers_memory_efficient_attention()
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
def resize_for_condition_image(input_image: Image.Image, resolution: int):
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(round(H / 64.0)) * 64
W = int(round(W / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
return img
def inference(
init_image: Image.Image,
qrcode_image: Image.Image,
prompt: str,
negative_prompt: str,
guidance_scale: float = 10.0,
controlnet_conditioning_scale: float = 2.0,
strength: float = 0.8,
seed: int = -1,
num_inference_steps: int = 50,
):
init_image = resize_for_condition_image(init_image, 768)
qrcode_image = resize_for_condition_image(qrcode_image, 768)
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=init_image, # type: ignore
control_image=qrcode_image, # type: ignore
width=768, # type: ignore
height=768, # type: ignore
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale, # type: ignore
generator=generator,
strength=strength,
num_inference_steps=num_inference_steps,
) # type: ignore
return out.images[0]
with gr.Blocks() as blocks:
gr.Markdown(
"""# AI QR Code Generator
model by: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v1p_sd15
"""
)
with gr.Row():
with gr.Column():
init_image = gr.Image(label="Init Image", type="pil")
qr_code_image = gr.Image(label="QR Code Image", type="pil")
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="ugly, disfigured, low quality, blurry, nsfw",
)
with gr.Accordion(label="Params"):
guidance_scale = gr.Slider(
minimum=0.0,
maximum=50.0,
step=0.1,
value=10.0,
label="Guidance Scale",
)
controlnet_conditioning_scale = gr.Slider(
minimum=0.0,
maximum=5.0,
step=0.1,
value=2.0,
label="Controlnet Conditioning Scale",
)
strength = gr.Slider(
minimum=0.0, maximum=1.0, step=0.1, value=0.8, label="Strength"
)
seed = gr.Slider(
minimum=-1,
maximum=9999999999,
step=1,
value=2313123,
label="Seed",
randomize=True,
)
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Result Image")
run_btn.click(
inference,
inputs=[
init_image,
qr_code_image,
prompt,
negative_prompt,
guidance_scale,
controlnet_conditioning_scale,
strength,
seed,
],
outputs=[result_image],
)
gr.Examples(
examples=[
[
"./examples/init.jpeg",
"./examples/qrcode.png",
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
"ugly, disfigured, low quality, blurry, nsfw",
10.0,
2.0,
0.8,
2313123,
]
],
fn=inference,
inputs=[
init_image,
qr_code_image,
prompt,
negative_prompt,
guidance_scale,
controlnet_conditioning_scale,
strength,
seed,
],
outputs=[result_image],
)
blocks.queue()
blocks.launch()
|