|
import pandas_profiling as pp |
|
from huggingface_hub.hf_api import create_repo |
|
from huggingface_hub.repository import Repository |
|
import gradio as gr |
|
import pandas as pd |
|
import tempfile |
|
|
|
token = gr.Textbox(label = "Your Hugging Face Token") |
|
username = gr.Textbox(label = "Your Hugging Face User name") |
|
dataset_name = gr.Textbox(label = "Dataset Name") |
|
dataset = gr.File(label = "Dataset") |
|
output_text = gr.Textbox(label = "Status") |
|
title = "Dataset Profiler πͺβ¨" |
|
description = "Drag and drop any dataset you want to get a detailed profile on, and this Space will profile and push it to your Hub profile as a new Space. πβ¨" |
|
|
|
def profile_dataset(dataset, username, token, dataset_name): |
|
|
|
df = pd.read_csv(dataset.name) |
|
profile = pp.ProfileReport(df, title=f"{dataset_name} Report") |
|
|
|
url = create_repo(f"{username}/{dataset_name}", repo_type = "space", token = token, space_sdk = "static") |
|
repo = Repository( |
|
local_dir = f"{username}/{dataset_name}", |
|
clone_from=url, |
|
use_auth_token=token, |
|
repo_type = "space" |
|
) |
|
repo.git_pull(rebase=True) |
|
profile.to_file(f"{username}/{dataset_name}/index.html") |
|
repo.git_add() |
|
repo.git_commit(commit_message = "Dataset report") |
|
repo.git_push() |
|
return f"Your dataset report will be ready at {url}" |
|
|
|
gr.Interface(profile_dataset, inputs = [dataset, username, token, dataset_name], outputs=[output_text], enable_queue = True).launch(debug=True) |