import pandas_profiling as pp from huggingface_hub.hf_api import create_repo from huggingface_hub.repository import Repository import gradio as gr import pandas as pd import tempfile token = gr.Textbox(label = "Your Hugging Face Token") username = gr.Textbox(label = "Your Hugging Face User name") dataset_name = gr.Textbox(label = "Dataset Name") dataset = gr.File(label = "Dataset") output_text = gr.Textbox(label = "Status") title = "Dataset Profiler 🪄✨" description = "Drag and drop any dataset you want to get a detailed profile on, and this Space will profile and push it to your Hub profile as a new Space. 🌟✨" def profile_dataset(dataset, username, token, dataset_name): df = pd.read_csv(dataset.name) profile = pp.ProfileReport(df, title=f"{dataset_name} Report") url = create_repo(f"{username}/{dataset_name}", repo_type = "space", token = token, space_sdk = "static") repo = Repository( local_dir = f"{username}/{dataset_name}", clone_from=url, use_auth_token=token, repo_type = "space" ) repo.git_pull(rebase=True) profile.to_file(f"{username}/{dataset_name}/index.html") repo.git_add() repo.git_commit(commit_message = "Dataset report") repo.git_push() return f"Your dataset report will be ready at {url}" gr.Interface(profile_dataset, inputs = [dataset, username, token, dataset_name], outputs=[output_text], enable_queue = True).launch(debug=True)