Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from huggingface_hub.hf_api import create_repo, upload_file
|
4 |
+
from huggingface_hub.repository import Repository
|
5 |
+
import subprocess
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
import sweetviz as sv
|
9 |
+
|
10 |
+
def analyze_datasets(dataset, dataset_name, username, token, column=None, pairwise="off"):
|
11 |
+
df = pd.read_csv(dataset.name)
|
12 |
+
if column is not None:
|
13 |
+
analyze_report = sv.analyze(df, target_feat=column, pairwise_analysis=pairwise)
|
14 |
+
else:
|
15 |
+
analyze_report = sv.analyze(df, pairwise_analysis=pairwise)
|
16 |
+
analyze_report.show_html('index.html', open_browser=False)
|
17 |
+
repo_url = create_repo(f"{username}/{dataset_name}", repo_type = "space", token = token, space_sdk = "static", private=False)
|
18 |
+
|
19 |
+
upload_file(path_or_fileobj ="./index.html", path_in_repo = "index.html", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
|
20 |
+
readme = f"---\ntitle: {dataset_name}\nemoji: ✨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---"
|
21 |
+
with open("README.md", "w+") as f:
|
22 |
+
f.write(readme)
|
23 |
+
upload_file(path_or_fileobj ="./README.md", path_in_repo = "README.md", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
|
24 |
+
|
25 |
+
return f"Your dataset report will be ready at {repo_url}"
|
26 |
+
|
27 |
+
def compare_column_values(dataset, dataset_name, username, token, column, category):
|
28 |
+
|
29 |
+
df = pd.read_csv(dataset.name)
|
30 |
+
arr = df[column].unique()
|
31 |
+
arr = list(arr[arr != column])
|
32 |
+
compare_report = sv.compare_intra(df, df[column] == category, arr[0])
|
33 |
+
compare_report.show_html('index.html', open_browser=False)
|
34 |
+
|
35 |
+
repo_url = create_repo(f"{username}/{dataset_name}", repo_type = "space", token = token, space_sdk = "static", private=False)
|
36 |
+
|
37 |
+
upload_file(path_or_fileobj ="./index.html", path_in_repo = "index.html", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
|
38 |
+
readme = f"---\ntitle: {dataset_name}\nemoji: ✨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---"
|
39 |
+
with open("README.md", "w+") as f:
|
40 |
+
f.write(readme)
|
41 |
+
upload_file(path_or_fileobj ="./README.md", path_in_repo = "README.md", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
|
42 |
+
|
43 |
+
return f"Your dataset report will be ready at {repo_url}"
|
44 |
+
|
45 |
+
def compare_dataset_splits(dataset, dataset_name, username, token, splits):
|
46 |
+
df = pd.read_csv(dataset.name)
|
47 |
+
train = df.sample(frac=splits)
|
48 |
+
test = df.loc[df.index.difference(train.index)]
|
49 |
+
|
50 |
+
compare_report = sv.compare([train, "Training Data"], [test, "Test Data"])
|
51 |
+
compare_report.show_html('index.html', open_browser=False)
|
52 |
+
|
53 |
+
repo_url = create_repo(f"{username}/{dataset_name}", repo_type = "space", token = token, space_sdk = "static", private=False)
|
54 |
+
|
55 |
+
upload_file(path_or_fileobj ="./index.html", path_in_repo = "index.html", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
|
56 |
+
readme = f"---\ntitle: {dataset_name}\nemoji: ✨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---"
|
57 |
+
with open("README.md", "w+") as f:
|
58 |
+
f.write(readme)
|
59 |
+
upload_file(path_or_fileobj ="./README.md", path_in_repo = "README.md", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
|
60 |
+
|
61 |
+
return f"Your dataset report will be ready at {repo_url}"
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
with gr.Blocks() as demo:
|
66 |
+
main_title = gr.Markdown("""# Easy Analysis🪄🌟✨""")
|
67 |
+
main_desc = gr.Markdown("""This app enables you to run three type of dataset analysis and pushes the interactive reports to your Hugging Face Hub profile as a Space. It uses SweetViz in the back.""")
|
68 |
+
with gr.Tabs():
|
69 |
+
with gr.TabItem("Analyze") as analyze:
|
70 |
+
with gr.Row():
|
71 |
+
with gr.Column():
|
72 |
+
title = gr.Markdown(""" ## Analyze Dataset """)
|
73 |
+
description = gr.Markdown("Analyze a dataset or predictive variables against a target variable in a dataset (enter a column name to column section if you want to compare against target value). You can also do pairwise analysis, but it has quadratic complexity.")
|
74 |
+
dataset = gr.File(label = "Dataset")
|
75 |
+
column = gr.Text(label = "Compare dataset against a target variable (Optional)")
|
76 |
+
pairwise = gr.Radio(["off", "on"], label = "Enable pairwise analysis")
|
77 |
+
token = gr.Textbox(label = "Your Hugging Face Token")
|
78 |
+
username = gr.Textbox(label = "Your Hugging Face User Name")
|
79 |
+
dataset_name = gr.Textbox(label = "Dataset Name")
|
80 |
+
pushing_desc = gr.Markdown("This app needs your Hugging Face Hub user name, token and a unique name for your dataset report.")
|
81 |
+
inference_run = gr.Button("Infer")
|
82 |
+
inference_progress = gr.StatusTracker(cover_container=True)
|
83 |
+
outcome = gr.outputs.Textbox()
|
84 |
+
inference_run.click(
|
85 |
+
analyze_datasets,
|
86 |
+
inputs=[dataset, dataset_name, username, token, column, pairwise],
|
87 |
+
outputs=outcome,
|
88 |
+
status_tracker=inference_progress,
|
89 |
+
)
|
90 |
+
with gr.TabItem("Compare Splits") as compare_splits:
|
91 |
+
with gr.Row():
|
92 |
+
with gr.Column():
|
93 |
+
title = gr.Markdown(""" ## Compare Splits""")
|
94 |
+
description = gr.Markdown("Split a dataset and compare splits. You need to give a fraction, e.g. 0.8.")
|
95 |
+
dataset = gr.File(label = "Dataset")
|
96 |
+
split_ratio = gr.Number(label = "Split Ratios")
|
97 |
+
pushing_desc = gr.Markdown("This app needs your Hugging Face Hub user name, token and a unique name for your dataset report.")
|
98 |
+
token = gr.Textbox(label = "Your Hugging Face Token")
|
99 |
+
username = gr.Textbox(label = "Your Hugging Face User Name")
|
100 |
+
dataset_name = gr.Textbox(label = "Dataset Name")
|
101 |
+
inference_run = gr.Button("Infer")
|
102 |
+
inference_progress = gr.StatusTracker(cover_container=True)
|
103 |
+
|
104 |
+
outcome = gr.outputs.Textbox()
|
105 |
+
inference_run.click(
|
106 |
+
compare_dataset_splits,
|
107 |
+
inputs=[dataset, dataset_name, username, token, split_ratio],
|
108 |
+
outputs=outcome,
|
109 |
+
status_tracker=inference_progress,
|
110 |
+
)
|
111 |
+
|
112 |
+
with gr.TabItem("Compare Subsets") as compare_subsets:
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column():
|
115 |
+
title = gr.Markdown(""" ## Compare Subsets""")
|
116 |
+
description = gr.Markdown("Compare subsets of a dataset, e.g. you can pick Age Group column and compare adult category against young.")
|
117 |
+
dataset = gr.File(label = "Dataset")
|
118 |
+
column = gr.Text(label = "Enter column:")
|
119 |
+
category = gr.Text(label = "Enter category:")
|
120 |
+
pushing_desc = gr.Markdown("This app needs your Hugging Face Hub user name, token and a unique name for your dataset report.")
|
121 |
+
token = gr.Textbox(label = "Your Hugging Face Token")
|
122 |
+
username = gr.Textbox(label = "Your Hugging Face User Name")
|
123 |
+
dataset_name = gr.Textbox(label = "Dataset Name")
|
124 |
+
inference_run = gr.Button("Run Analysis")
|
125 |
+
inference_progress = gr.StatusTracker(cover_container=True)
|
126 |
+
|
127 |
+
outcome = gr.outputs.Textbox()
|
128 |
+
inference_run.click(
|
129 |
+
compare_column_values,
|
130 |
+
inputs=[dataset, dataset_name, username, token, column, category ],
|
131 |
+
outputs=outcome,
|
132 |
+
status_tracker=inference_progress,
|
133 |
+
)
|
134 |
+
|
135 |
+
demo.launch(debug=True)
|