merve HF staff commited on
Commit
131a353
1 Parent(s): b505f5d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -13
app.py CHANGED
@@ -1,14 +1,15 @@
1
  import gradio as gr
2
  import pandas as pd
3
- from huggingface_hub.hf_api import create_repo, upload_file
4
  from huggingface_hub.repository import Repository
5
  import subprocess
6
  import os
7
  import tempfile
8
  import sweetviz as sv
9
 
10
- def analyze_datasets(dataset, dataset_name, username, token, column=None, pairwise="off"):
11
  df = pd.read_csv(dataset.name)
 
12
  if column is not None:
13
  analyze_report = sv.analyze(df, target_feat=column, pairwise_analysis=pairwise)
14
  else:
@@ -24,9 +25,10 @@ def analyze_datasets(dataset, dataset_name, username, token, column=None, pairwi
24
 
25
  return f"Your dataset report will be ready at {repo_url}"
26
 
27
- def compare_column_values(dataset, dataset_name, username, token, column, category):
28
 
29
  df = pd.read_csv(dataset.name)
 
30
  arr = df[column].unique()
31
  arr = list(arr[arr != column])
32
  compare_report = sv.compare_intra(df, df[column] == category, arr[0])
@@ -42,10 +44,11 @@ def compare_column_values(dataset, dataset_name, username, token, column, catego
42
 
43
  return f"Your dataset report will be ready at {repo_url}"
44
 
45
- def compare_dataset_splits(dataset, dataset_name, username, token, splits):
46
  df = pd.read_csv(dataset.name)
47
  train = df.sample(frac=splits)
48
  test = df.loc[df.index.difference(train.index)]
 
49
 
50
  compare_report = sv.compare([train, "Training Data"], [test, "Test Data"])
51
  compare_report.show_html('index.html', open_browser=False)
@@ -75,15 +78,14 @@ with gr.Blocks() as demo:
75
  column = gr.Text(label = "Compare dataset against a target variable (Optional)")
76
  pairwise = gr.Radio(["off", "on"], label = "Enable pairwise analysis")
77
  token = gr.Textbox(label = "Your Hugging Face Token")
78
- username = gr.Textbox(label = "Your Hugging Face User Name")
79
  dataset_name = gr.Textbox(label = "Dataset Name")
80
- pushing_desc = gr.Markdown("This app needs your Hugging Face Hub user name, token and a unique name for your dataset report.")
81
  inference_run = gr.Button("Infer")
82
  inference_progress = gr.StatusTracker(cover_container=True)
83
  outcome = gr.outputs.Textbox()
84
  inference_run.click(
85
  analyze_datasets,
86
- inputs=[dataset, dataset_name, username, token, column, pairwise],
87
  outputs=outcome,
88
  status_tracker=inference_progress,
89
  )
@@ -94,9 +96,8 @@ with gr.Blocks() as demo:
94
  description = gr.Markdown("Split a dataset and compare splits. You need to give a fraction, e.g. 0.8.")
95
  dataset = gr.File(label = "Dataset")
96
  split_ratio = gr.Number(label = "Split Ratios")
97
- pushing_desc = gr.Markdown("This app needs your Hugging Face Hub user name, token and a unique name for your dataset report.")
98
  token = gr.Textbox(label = "Your Hugging Face Token")
99
- username = gr.Textbox(label = "Your Hugging Face User Name")
100
  dataset_name = gr.Textbox(label = "Dataset Name")
101
  inference_run = gr.Button("Infer")
102
  inference_progress = gr.StatusTracker(cover_container=True)
@@ -104,7 +105,7 @@ with gr.Blocks() as demo:
104
  outcome = gr.outputs.Textbox()
105
  inference_run.click(
106
  compare_dataset_splits,
107
- inputs=[dataset, dataset_name, username, token, split_ratio],
108
  outputs=outcome,
109
  status_tracker=inference_progress,
110
  )
@@ -117,9 +118,8 @@ with gr.Blocks() as demo:
117
  dataset = gr.File(label = "Dataset")
118
  column = gr.Text(label = "Enter column:")
119
  category = gr.Text(label = "Enter category:")
120
- pushing_desc = gr.Markdown("This app needs your Hugging Face Hub user name, token and a unique name for your dataset report.")
121
  token = gr.Textbox(label = "Your Hugging Face Token")
122
- username = gr.Textbox(label = "Your Hugging Face User Name")
123
  dataset_name = gr.Textbox(label = "Dataset Name")
124
  inference_run = gr.Button("Run Analysis")
125
  inference_progress = gr.StatusTracker(cover_container=True)
@@ -127,7 +127,7 @@ with gr.Blocks() as demo:
127
  outcome = gr.outputs.Textbox()
128
  inference_run.click(
129
  compare_column_values,
130
- inputs=[dataset, dataset_name, username, token, column, category ],
131
  outputs=outcome,
132
  status_tracker=inference_progress,
133
  )
 
1
  import gradio as gr
2
  import pandas as pd
3
+ from huggingface_hub.hf_api import create_repo, upload_file, HfApi
4
  from huggingface_hub.repository import Repository
5
  import subprocess
6
  import os
7
  import tempfile
8
  import sweetviz as sv
9
 
10
+ def analyze_datasets(dataset, dataset_name, token, column=None, pairwise="off"):
11
  df = pd.read_csv(dataset.name)
12
+ username = HfApi().whoami(token=token)["name"]
13
  if column is not None:
14
  analyze_report = sv.analyze(df, target_feat=column, pairwise_analysis=pairwise)
15
  else:
 
25
 
26
  return f"Your dataset report will be ready at {repo_url}"
27
 
28
+ def compare_column_values(dataset, dataset_name, token, column, category):
29
 
30
  df = pd.read_csv(dataset.name)
31
+ username = HfApi().whoami(token=token)["name"]
32
  arr = df[column].unique()
33
  arr = list(arr[arr != column])
34
  compare_report = sv.compare_intra(df, df[column] == category, arr[0])
 
44
 
45
  return f"Your dataset report will be ready at {repo_url}"
46
 
47
+ def compare_dataset_splits(dataset, dataset_name, token, splits):
48
  df = pd.read_csv(dataset.name)
49
  train = df.sample(frac=splits)
50
  test = df.loc[df.index.difference(train.index)]
51
+ username = HfApi().whoami(token=token)["name"]
52
 
53
  compare_report = sv.compare([train, "Training Data"], [test, "Test Data"])
54
  compare_report.show_html('index.html', open_browser=False)
 
78
  column = gr.Text(label = "Compare dataset against a target variable (Optional)")
79
  pairwise = gr.Radio(["off", "on"], label = "Enable pairwise analysis")
80
  token = gr.Textbox(label = "Your Hugging Face Token")
 
81
  dataset_name = gr.Textbox(label = "Dataset Name")
82
+ pushing_desc = gr.Markdown("This app needs your Hugging Face Hub token and a unique name for your dataset report.")
83
  inference_run = gr.Button("Infer")
84
  inference_progress = gr.StatusTracker(cover_container=True)
85
  outcome = gr.outputs.Textbox()
86
  inference_run.click(
87
  analyze_datasets,
88
+ inputs=[dataset, dataset_name, token, column, pairwise],
89
  outputs=outcome,
90
  status_tracker=inference_progress,
91
  )
 
96
  description = gr.Markdown("Split a dataset and compare splits. You need to give a fraction, e.g. 0.8.")
97
  dataset = gr.File(label = "Dataset")
98
  split_ratio = gr.Number(label = "Split Ratios")
99
+ pushing_desc = gr.Markdown("This app needs your Hugging Face Hub token and a unique name for your dataset report.")
100
  token = gr.Textbox(label = "Your Hugging Face Token")
 
101
  dataset_name = gr.Textbox(label = "Dataset Name")
102
  inference_run = gr.Button("Infer")
103
  inference_progress = gr.StatusTracker(cover_container=True)
 
105
  outcome = gr.outputs.Textbox()
106
  inference_run.click(
107
  compare_dataset_splits,
108
+ inputs=[dataset, dataset_name, token, split_ratio],
109
  outputs=outcome,
110
  status_tracker=inference_progress,
111
  )
 
118
  dataset = gr.File(label = "Dataset")
119
  column = gr.Text(label = "Enter column:")
120
  category = gr.Text(label = "Enter category:")
121
+ pushing_desc = gr.Markdown("This app needs your Hugging Face Hub token and a unique name for your dataset report.")
122
  token = gr.Textbox(label = "Your Hugging Face Token")
 
123
  dataset_name = gr.Textbox(label = "Dataset Name")
124
  inference_run = gr.Button("Run Analysis")
125
  inference_progress = gr.StatusTracker(cover_container=True)
 
127
  outcome = gr.outputs.Textbox()
128
  inference_run.click(
129
  compare_column_values,
130
+ inputs=[dataset, dataset_name, token, column, category ],
131
  outputs=outcome,
132
  status_tracker=inference_progress,
133
  )