File size: 5,813 Bytes
faa4f79
 
 
 
 
 
 
 
 
 
a8a3b71
2d73e21
faa4f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python

from collections.abc import Iterator
from threading import Thread

import gradio as gr
import spaces
import torch
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer

model_id = "google/gemma-3-12b-it"
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)


def process_new_user_message(message: dict) -> list[dict]:
    return [{"type": "text", "text": message["text"]}, *[{"type": "image", "url": path} for path in message["files"]]]


def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            else:
                current_user_content.append({"type": "image", "url": content[0]})
    return messages


@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
    messages = []
    if system_prompt:
        messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
    messages.extend(process_history(history))
    messages.append({"role": "user", "content": process_new_user_message(message)})

    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    ).to(device=model.device, dtype=torch.bfloat16)

    streamer = TextIteratorStreamer(processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    output = ""
    for delta in streamer:
        output += delta
        yield output


examples = [
    [
        {
            "text": "caption this image",
            "files": ["assets/sample-images/01.png"],
        }
    ],
    [
        {
            "text": "What's the sign says?",
            "files": ["assets/sample-images/02.png"],
        }
    ],
    [
        {
            "text": "Compare and contrast the two images.",
            "files": ["assets/sample-images/03.png"],
        }
    ],
    [
        {
            "text": "List all the objects in the image and their colors.",
            "files": ["assets/sample-images/04.png"],
        }
    ],
    [
        {
            "text": "Describe the atmosphere of the scene.",
            "files": ["assets/sample-images/05.png"],
        }
    ],
    [
        {
            "text": "Write a poem inspired by the visual elements of the images.",
            "files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
        }
    ],
    [
        {
            "text": "Compose a short musical piece inspired by the visual elements of the images.",
            "files": [
                "assets/sample-images/07-1.png",
                "assets/sample-images/07-2.png",
                "assets/sample-images/07-3.png",
                "assets/sample-images/07-4.png",
            ],
        }
    ],
    [
        {
            "text": "Write a short story about what might have happened in this house.",
            "files": ["assets/sample-images/08.png"],
        }
    ],
    [
        {
            "text": "Create a short story based on the sequence of images.",
            "files": [
                "assets/sample-images/09-1.png",
                "assets/sample-images/09-2.png",
                "assets/sample-images/09-3.png",
                "assets/sample-images/09-4.png",
                "assets/sample-images/09-5.png",
            ],
        }
    ],
    [
        {
            "text": "Describe the creatures that would live in this world.",
            "files": ["assets/sample-images/10.png"],
        }
    ],
    [
        {
            "text": "Read text in the image.",
            "files": ["assets/additional-examples/1.png"],
        }
    ],
    [
        {
            "text": "When is this ticket dated and how much did it cost?",
            "files": ["assets/additional-examples/2.png"],
        }
    ],
    [
        {
            "text": "Read the text in the image into markdown.",
            "files": ["assets/additional-examples/3.png"],
        }
    ],
    [
        {
            "text": "Evaluate this integral.",
            "files": ["assets/additional-examples/4.png"],
        }
    ],
]

demo = gr.ChatInterface(
    fn=run,
    type="messages",
    textbox=gr.MultimodalTextbox(file_types=["image"], file_count="multiple"),
    multimodal=True,
    additional_inputs=[
        gr.Textbox(label="System Prompt", value="You are a helpful assistant."),
        gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=500),
    ],
    stop_btn=False,
    title="Gemma 3 12B it",
    description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' />",
    examples=examples,
    run_examples_on_click=False,
    cache_examples=False,
    css_paths="style.css",
    delete_cache=(1800, 1800),
)

if __name__ == "__main__":
    demo.launch()