Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,299 Bytes
faa4f79 3a57265 faa4f79 3a57265 faa4f79 e5ba201 3a57265 faa4f79 a8a3b71 2d73e21 faa4f79 7b92c9b b7a6a02 7b92c9b 3a57265 7b92c9b 3a57265 7b92c9b faa4f79 7b92c9b e5ba201 3a57265 e5ba201 7b92c9b e5ba201 7b92c9b e5ba201 7b92c9b 3a57265 7b92c9b 85f6d97 7b92c9b e5ba201 7b92c9b 3a57265 7b92c9b 3a57265 7b92c9b e5ba201 7b92c9b 3a57265 faa4f79 7b92c9b faa4f79 7b92c9b faa4f79 7b92c9b faa4f79 45752ed 7b92c9b faa4f79 7b92c9b faa4f79 7b92c9b faa4f79 7b92c9b faa4f79 e3b6d01 7b92c9b faa4f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
#!/usr/bin/env python
import re
import tempfile
from collections.abc import Iterator
from threading import Thread
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
model_id = "google/gemma-3-12b-it"
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = int(fps / 3)
frames = []
for i in range(0, total_frames, frame_interval):
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def process_new_user_message(message: dict) -> list[dict]:
if message["files"]:
if "<image>" in message["text"]:
content = []
logger.debug(f"{message['files']=}")
parts = re.split(r"(<image>)", message["text"])
image_index = 0
logger.debug(f"{parts=}")
for part in parts:
logger.debug(f"{part=}")
if part == "<image>":
content.append({"type": "image", "url": message["files"][image_index]})
logger.debug(f"file: {message['files'][image_index]}")
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
elif isinstance(part, str) and part != "<image>":
content.append({"type": "text", "text": part})
logger.debug(f"{content=}")
return content
if message["files"][0].endswith(".mp4"):
content = []
video = message["files"].pop(0)
frames = downsample_video(video)
for frame in frames:
pil_image, timestamp = frame
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
pil_image.save(temp_file.name)
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "url": temp_file.name})
logger.debug(f"{content=}")
return content
# non interleaved images
return [
{"type": "text", "text": message["text"]},
*[{"type": "image", "url": path} for path in message["files"]],
]
return [{"type": "text", "text": message["text"]}]
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content: list[dict] = []
for item in history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
else:
current_user_content.append({"type": "image", "url": content[0]})
return messages
@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
messages = []
if system_prompt:
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
messages.extend(process_history(history))
messages.append({"role": "user", "content": process_new_user_message(message)})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for delta in streamer:
output += delta
yield output
examples = [
[
{
"text": "I need to be in Japan for 10 days, going to Tokyo, Kyoto and Osaka. Think about number of attractions in each of them and allocate number of days to each city. Make public transport recommendations.",
"files": [],
}
],
[
{
"text": "Write the matplotlib code to generate the same bar chart.",
"files": ["assets/sample-images/barchart.png"],
}
],
[
{
"text": "What is odd about this video?",
"files": ["assets/sample-images/tmp.mp4"],
}
],
[
{
"text": "I already have this supplement <image> and I want to buy this one <image>. Any warnings I should know about?",
"files": ["assets/sample-images/pill1.png", "assets/sample-images/pill2.png"],
}
],
[
{
"text": "Write a poem inspired by the visual elements of the images.",
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
}
],
[
{
"text": "Compose a short musical piece inspired by the visual elements of the images.",
"files": [
"assets/sample-images/07-1.png",
"assets/sample-images/07-2.png",
"assets/sample-images/07-3.png",
"assets/sample-images/07-4.png",
],
}
],
[
{
"text": "Write a short story about what might have happened in this house.",
"files": ["assets/sample-images/08.png"],
}
],
[
{
"text": "Create a short story based on the sequence of images.",
"files": [
"assets/sample-images/09-1.png",
"assets/sample-images/09-2.png",
"assets/sample-images/09-3.png",
"assets/sample-images/09-4.png",
"assets/sample-images/09-5.png",
],
}
],
[
{
"text": "Describe the creatures that would live in this world.",
"files": ["assets/sample-images/10.png"],
}
],
[
{
"text": "Read text in the image.",
"files": ["assets/additional-examples/1.png"],
}
],
[
{
"text": "When is this ticket dated and how much did it cost?",
"files": ["assets/additional-examples/2.png"],
}
],
[
{
"text": "Read the text in the image into markdown.",
"files": ["assets/additional-examples/3.png"],
}
],
[
{
"text": "Evaluate this integral.",
"files": ["assets/additional-examples/4.png"],
}
],
[
{
"text": "caption this image",
"files": ["assets/sample-images/01.png"],
}
],
[
{
"text": "What's the sign says?",
"files": ["assets/sample-images/02.png"],
}
],
[
{
"text": "Compare and contrast the two images.",
"files": ["assets/sample-images/03.png"],
}
],
[
{
"text": "List all the objects in the image and their colors.",
"files": ["assets/sample-images/04.png"],
}
],
[
{
"text": "Describe the atmosphere of the scene.",
"files": ["assets/sample-images/05.png"],
}
],
]
demo = gr.ChatInterface(
fn=run,
type="messages",
textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple"),
multimodal=True,
additional_inputs=[
gr.Textbox(label="System Prompt", value="You are a helpful assistant."),
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700),
],
stop_btn=False,
title="Gemma 3 12B IT",
description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' /><br>This is a demo of Gemma 3 12B it, a vision language model with outstanding performance on a wide range of tasks. You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.",
examples=examples,
run_examples_on_click=False,
cache_examples=False,
css_paths="style.css",
delete_cache=(1800, 1800),
)
if __name__ == "__main__":
demo.launch()
|