File size: 9,299 Bytes
faa4f79
 
3a57265
 
faa4f79
 
 
3a57265
faa4f79
 
 
e5ba201
3a57265
faa4f79
 
a8a3b71
2d73e21
faa4f79
 
 
 
7b92c9b
b7a6a02
7b92c9b
 
 
3a57265
 
7b92c9b
 
 
 
 
 
 
 
3a57265
7b92c9b
 
 
 
 
faa4f79
 
7b92c9b
 
 
e5ba201
3a57265
 
e5ba201
7b92c9b
e5ba201
7b92c9b
 
e5ba201
7b92c9b
3a57265
7b92c9b
85f6d97
7b92c9b
e5ba201
7b92c9b
3a57265
7b92c9b
 
 
 
 
3a57265
7b92c9b
 
 
e5ba201
7b92c9b
3a57265
 
 
 
 
 
faa4f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b92c9b
 
faa4f79
 
 
 
7b92c9b
 
faa4f79
 
 
 
7b92c9b
 
faa4f79
 
 
 
45752ed
7b92c9b
faa4f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b92c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faa4f79
 
 
 
 
7b92c9b
faa4f79
 
 
7b92c9b
faa4f79
 
e3b6d01
7b92c9b
faa4f79
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/usr/bin/env python

import re
import tempfile
from collections.abc import Iterator
from threading import Thread

import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer

model_id = "google/gemma-3-12b-it"
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)


def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))

    frame_interval = int(fps / 3)
    frames = []

    for i in range(0, total_frames, frame_interval):
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))

    vidcap.release()
    return frames


def process_new_user_message(message: dict) -> list[dict]:
    if message["files"]:
        if "<image>" in message["text"]:
            content = []
            logger.debug(f"{message['files']=}")
            parts = re.split(r"(<image>)", message["text"])
            image_index = 0
            logger.debug(f"{parts=}")
            for part in parts:
                logger.debug(f"{part=}")
                if part == "<image>":
                    content.append({"type": "image", "url": message["files"][image_index]})
                    logger.debug(f"file: {message['files'][image_index]}")
                    image_index += 1
                elif part.strip():
                    content.append({"type": "text", "text": part.strip()})
                elif isinstance(part, str) and part != "<image>":
                    content.append({"type": "text", "text": part})
            logger.debug(f"{content=}")
            return content
        if message["files"][0].endswith(".mp4"):
            content = []
            video = message["files"].pop(0)
            frames = downsample_video(video)
            for frame in frames:
                pil_image, timestamp = frame
                with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
                    pil_image.save(temp_file.name)
                    content.append({"type": "text", "text": f"Frame {timestamp}:"})
                    content.append({"type": "image", "url": temp_file.name})
            logger.debug(f"{content=}")
            return content
        # non interleaved images
        return [
            {"type": "text", "text": message["text"]},
            *[{"type": "image", "url": path} for path in message["files"]],
        ]
    return [{"type": "text", "text": message["text"]}]


def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            else:
                current_user_content.append({"type": "image", "url": content[0]})
    return messages


@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
    messages = []
    if system_prompt:
        messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
    messages.extend(process_history(history))
    messages.append({"role": "user", "content": process_new_user_message(message)})

    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    ).to(device=model.device, dtype=torch.bfloat16)

    streamer = TextIteratorStreamer(processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    output = ""
    for delta in streamer:
        output += delta
        yield output


examples = [
    [
        {
            "text": "I need to be in Japan for 10 days, going to Tokyo, Kyoto and Osaka. Think about number of attractions in each of them and allocate number of days to each city. Make public transport recommendations.",
            "files": [],
        }
    ],
    [
        {
            "text": "Write the matplotlib code to generate the same bar chart.",
            "files": ["assets/sample-images/barchart.png"],
        }
    ],
    [
        {
            "text": "What is odd about this video?",
            "files": ["assets/sample-images/tmp.mp4"],
        }
    ],
    [
        {
            "text": "I already have this supplement <image> and I want to buy this one <image>. Any warnings I should know about?",
            "files": ["assets/sample-images/pill1.png", "assets/sample-images/pill2.png"],
        }
    ],
    [
        {
            "text": "Write a poem inspired by the visual elements of the images.",
            "files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
        }
    ],
    [
        {
            "text": "Compose a short musical piece inspired by the visual elements of the images.",
            "files": [
                "assets/sample-images/07-1.png",
                "assets/sample-images/07-2.png",
                "assets/sample-images/07-3.png",
                "assets/sample-images/07-4.png",
            ],
        }
    ],
    [
        {
            "text": "Write a short story about what might have happened in this house.",
            "files": ["assets/sample-images/08.png"],
        }
    ],
    [
        {
            "text": "Create a short story based on the sequence of images.",
            "files": [
                "assets/sample-images/09-1.png",
                "assets/sample-images/09-2.png",
                "assets/sample-images/09-3.png",
                "assets/sample-images/09-4.png",
                "assets/sample-images/09-5.png",
            ],
        }
    ],
    [
        {
            "text": "Describe the creatures that would live in this world.",
            "files": ["assets/sample-images/10.png"],
        }
    ],
    [
        {
            "text": "Read text in the image.",
            "files": ["assets/additional-examples/1.png"],
        }
    ],
    [
        {
            "text": "When is this ticket dated and how much did it cost?",
            "files": ["assets/additional-examples/2.png"],
        }
    ],
    [
        {
            "text": "Read the text in the image into markdown.",
            "files": ["assets/additional-examples/3.png"],
        }
    ],
    [
        {
            "text": "Evaluate this integral.",
            "files": ["assets/additional-examples/4.png"],
        }
    ],
    [
        {
            "text": "caption this image",
            "files": ["assets/sample-images/01.png"],
        }
    ],
    [
        {
            "text": "What's the sign says?",
            "files": ["assets/sample-images/02.png"],
        }
    ],
    [
        {
            "text": "Compare and contrast the two images.",
            "files": ["assets/sample-images/03.png"],
        }
    ],
    [
        {
            "text": "List all the objects in the image and their colors.",
            "files": ["assets/sample-images/04.png"],
        }
    ],
    [
        {
            "text": "Describe the atmosphere of the scene.",
            "files": ["assets/sample-images/05.png"],
        }
    ],
]

demo = gr.ChatInterface(
    fn=run,
    type="messages",
    textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple"),
    multimodal=True,
    additional_inputs=[
        gr.Textbox(label="System Prompt", value="You are a helpful assistant."),
        gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700),
    ],
    stop_btn=False,
    title="Gemma 3 12B IT",
    description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' /><br>This is a demo of Gemma 3 12B it, a vision language model with outstanding performance on a wide range of tasks. You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.",
    examples=examples,
    run_examples_on_click=False,
    cache_examples=False,
    css_paths="style.css",
    delete_cache=(1800, 1800),
)

if __name__ == "__main__":
    demo.launch()