File size: 9,080 Bytes
ba05f1b
 
 
886c072
ba05f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
886c072
 
 
 
ba05f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af85adf
fa6b193
2ab7eb4
ba05f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af85adf
ba05f1b
 
af85adf
 
ba05f1b
 
 
 
 
 
 
 
 
 
886c072
 
 
 
 
 
 
 
 
ba05f1b
886c072
ba05f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
886c072
ba05f1b
 
 
 
 
886c072
 
ba05f1b
886c072
 
ef9dee0
ba05f1b
886c072
 
ba05f1b
886c072
 
 
ba05f1b
ef9dee0
ba05f1b
 
 
 
f64d68f
ba05f1b
 
 
 
 
 
 
 
 
 
 
 
 
af85adf
 
 
 
 
ba05f1b
af85adf
 
ba05f1b
af85adf
ba05f1b
 
 
 
af85adf
 
ba05f1b
 
 
 
af85adf
ba05f1b
 
af85adf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba05f1b
af85adf
 
ba05f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af85adf
ba05f1b
af85adf
 
 
 
 
 
 
0a4be24
ba05f1b
 
af85adf
ba05f1b
 
 
af85adf
ba05f1b
886c072
ba05f1b
 
 
af85adf
 
 
 
 
 
 
 
 
 
 
 
ba05f1b
 
 
 
af85adf
ba05f1b
fa6b193
 
ba05f1b
 
 
 
 
 
 
c489da2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from diffusers import (
    StableDiffusionPipeline,
    DPMSolverMultistepScheduler,
    DiffusionPipeline,
)
import gradio as gr
import torch
from PIL import Image
import time
import psutil
import random
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker


start_time = time.time()
current_steps = 25

SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16)

UPSCALER = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16)
UPSCALER.to("cuda")
UPSCALER.enable_xformers_memory_efficient_attention()


class Model:
    def __init__(self, name, path=""):
        self.name = name
        self.path = path

        if path != "":
            self.pipe_t2i = StableDiffusionPipeline.from_pretrained(
                path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER
            )
            self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config(
                self.pipe_t2i.scheduler.config
            )
        else:
            self.pipe_t2i = None


models = [
    #Model("Stable Diffusion v1-4", "CompVis/stable-diffusion-v1-4"),
    # Model("Stable Diffusion v1-5", "runwayml/stable-diffusion-v1-5"),
    Model("anything-v4.0", "xyn-ai/anything-v4.0"),
]

MODELS = {m.name: m for m in models}

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"


def error_str(error, title="Error"):
    return (
        f"""#### {title}
            {error}"""
        if error
        else ""
    )


def inference(
    prompt,
    neg_prompt,
    guidance,
    steps,
    seed,
    model_name,
):

    print(psutil.virtual_memory())  # print memory usage

    if seed == 0:
        seed = random.randint(0, 2147483647)

    generator = torch.Generator("cuda").manual_seed(seed)

    try:
        low_res_image, up_res_image = txt_to_img(
            model_name,
            prompt,
            neg_prompt,
            guidance,
            steps,
            generator,
        )
        return low_res_image, up_res_image, f"Done. Seed: {seed}",
    except Exception as e:
        return None, None, error_str(e)


def txt_to_img(
    model_name,
    prompt,
    neg_prompt,
    guidance,
    steps,
    generator,
):
    pipe = MODELS[model_name].pipe_t2i

    if torch.cuda.is_available():
        pipe = pipe.to("cuda")
        pipe.enable_xformers_memory_efficient_attention()

    low_res_latents = pipe(
        prompt,
        negative_prompt=neg_prompt,
        num_inference_steps=int(steps),
        guidance_scale=guidance,
        generator=generator,
        output_type="latent",
    ).images

    with torch.no_grad():
        low_res_image = pipe.decode_latents(low_res_latents)
        low_res_image = pipe.numpy_to_pil(low_res_image)

    up_res_image = UPSCALER(
        prompt=prompt,
        negative_prompt=neg_prompt,
        image=low_res_latents,
        num_inference_steps=20,
        guidance_scale=0,
        generator=generator,
    ).images

    pipe.to("cpu")
    torch.cuda.empty_cache()

    return low_res_image[0], up_res_image[0]


def replace_nsfw_images(results):
    for i in range(len(results.images)):
        if results.nsfw_content_detected[i]:
            results.images[i] = Image.open("nsfw.png")
    return results.images


with gr.Blocks(css="style.css") as demo:
    gr.HTML(
        f"""
            <div class="finetuned-diffusion-div">
              <div style="text-align: center">
                <h1>Anything v4 model + <a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Stable Diffusion Latent Upscaler</a></h1>
                <p>
                   Demo for the <a href="https://huggingface.co/andite/anything-v4.0">Anything v4</a> model hooked with the ultra-fast <a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Latent Upscaler</a>
                  </p>
              </div>
              <!-- 
              <p>To skip the queue, you can duplicate this Space<br>
              <a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
              -->
            </div>
        """
    )

    with gr.Column(scale=100):
        with gr.Group(visible=False):
                model_name = gr.Dropdown(
                    label="Model",
                    choices=[m.name for m in models],
                    value=models[0].name,
                    visible=False
                )

        with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                    with gr.Column():
                        prompt = gr.Textbox(
                            label="Enter your prompt",
                            show_label=False,
                            max_lines=1,
                            placeholder="Enter your prompt",
                            elem_id="prompt-text-input",
                        ).style(
                            border=(True, False, True, True),
                            rounded=(True, False, False, True),
                            container=False,
                        )
                        neg_prompt = gr.Textbox(
                            label="Enter your negative prompt",
                            show_label=False,
                            max_lines=1,
                            placeholder="Enter a negative prompt",
                            elem_id="negative-prompt-text-input",
                        ).style(
                            border=(True, False, True, True),
                            rounded=(True, False, False, True),
                            container=False,
                        )
                    generate = gr.Button("Generate image").style(
                        margin=False,
                        rounded=(False, True, True, False),
                        full_width=False,
                    )
            
        with gr.Accordion("Advanced Options", open=False):
                with gr.Group():
                    with gr.Row():
                        guidance = gr.Slider(
                            label="Guidance scale", value=7.5, maximum=15
                        )
                        steps = gr.Slider(
                            label="Steps",
                            value=current_steps,
                            minimum=2,
                            maximum=75,
                            step=1,
                        )

                    seed = gr.Slider(
                        0, 2147483647, label="Seed (0 = random)", value=0, step=1
                    )
            

    with gr.Column(scale=100):
        with gr.Row():
            with gr.Column(scale=75):
                up_res_image = gr.Image(label="Upscaled 1024px Image", shape=(1024, 1024))
            with gr.Column(scale=25):
                low_res_image = gr.Image(label="Original 512px Image", shape=(512, 512))
        error_output = gr.Markdown()

    inputs = [
        prompt,
        neg_prompt,
        guidance,
        steps,
        seed,
        model_name,
    ]
    outputs = [low_res_image, up_res_image, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)

    ex = gr.Examples(
        [
            ["a mecha robot in a favela", "low quality", 7.5, 25, 33, models[0].name],
            ["the spirit of a tamagotchi wandering in the city of Paris", "low quality, bad render", 7.5, 50, 85, models[0].name],
        ],
        inputs=[prompt, neg_prompt, guidance, steps, seed, model_name],
        outputs=outputs,
        fn=inference,
        cache_examples=True,
    )
    ex.dataset.headers = [""]
    
    gr.HTML(
        """
    <div style="border-top: 1px solid #303030;">
      <br>
      <p>Space by 🤗 Hugging Face, models by Stability AI, andite, linaqruf and others ❤️</p>
      <p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
      <p>This is a Demo Space For:<br>
      <a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Stability AI's Latent Upscaler</a>
    </div>
    """
    )

print(f"Space built in {time.time() - start_time:.2f} seconds")

demo.queue(concurrency_count=1)
demo.launch(show_api=False)