Spaces:
Running
on
Zero
Running
on
Zero
from diffusers import ( | |
StableDiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
DiffusionPipeline, | |
) | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import time | |
import psutil | |
import random | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
start_time = time.time() | |
current_steps = 25 | |
SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16) | |
UPSCALER = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16) | |
UPSCALER.to("cuda") | |
UPSCALER.enable_xformers_memory_efficient_attention() | |
class Model: | |
def __init__(self, name, path=""): | |
self.name = name | |
self.path = path | |
if path != "": | |
self.pipe_t2i = StableDiffusionPipeline.from_pretrained( | |
path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER | |
) | |
self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config( | |
self.pipe_t2i.scheduler.config | |
) | |
else: | |
self.pipe_t2i = None | |
models = [ | |
Model("Stable Diffusion v1-4", "CompVis/stable-diffusion-v1-4"), | |
# Model("Stable Diffusion v1-5", "runwayml/stable-diffusion-v1-5"), | |
# Model("anything-v4.0", "andite/anything-v4.0"), | |
] | |
MODELS = {m.name: m for m in models} | |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" | |
def error_str(error, title="Error"): | |
return ( | |
f"""#### {title} | |
{error}""" | |
if error | |
else "" | |
) | |
def inference( | |
model_name, | |
prompt, | |
guidance, | |
steps, | |
seed=0, | |
neg_prompt="", | |
): | |
print(psutil.virtual_memory()) # print memory usage | |
if seed == 0: | |
seed = random.randint(0, 2147483647) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
try: | |
low_res_image, up_res_image = txt_to_img( | |
model_name, | |
prompt, | |
neg_prompt, | |
guidance, | |
steps, | |
generator, | |
) | |
return low_res_image, up_res_image, f"Done. Seed: {seed}", | |
except Exception as e: | |
return None, None, error_str(e) | |
def txt_to_img( | |
model_name, | |
prompt, | |
neg_prompt, | |
guidance, | |
steps, | |
generator, | |
): | |
pipe = MODELS[model_name].pipe_t2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
pipe.enable_xformers_memory_efficient_attention() | |
low_res_latents = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
num_inference_steps=int(steps), | |
guidance_scale=guidance, | |
generator=generator, | |
output_type="latent", | |
).images | |
with torch.no_grad(): | |
low_res_image = pipe.decode_latents(low_res_latents) | |
low_res_image = pipe.numpy_to_pil(low_res_image) | |
up_res_image = UPSCALER( | |
prompt=prompt, | |
negative_prompt=neg_prompt, | |
image=low_res_latents, | |
num_inference_steps=20, | |
guidance_scale=0, | |
generator=generator, | |
).images | |
pipe.to("cpu") | |
torch.cuda.empty_cache() | |
return low_res_image[0], up_res_image[0] | |
def replace_nsfw_images(results): | |
for i in range(len(results.images)): | |
if results.nsfw_content_detected[i]: | |
results.images[i] = Image.open("nsfw.png") | |
return results.images | |
with gr.Blocks(css="style.css") as demo: | |
gr.HTML( | |
f""" | |
<div class="finetuned-diffusion-div"> | |
<div> | |
<h1>Stable Diffusion Latent Upscaler</h1> | |
</div> | |
<p> | |
Demo for Latent Diffusion Upscaling | |
</p> | |
<p> | |
Running on <b>{device}</b> | |
</p> | |
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br> | |
<a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=55): | |
with gr.Group(): | |
model_name = gr.Dropdown( | |
label="Model", | |
choices=[m.name for m in models], | |
value=models[0].name, | |
) | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
show_label=False, | |
max_lines=2, | |
placeholder="Enter prompt.", | |
).style(container=False) | |
generate = gr.Button(value="Generate").style( | |
rounded=(False, True, True, False) | |
) | |
low_res_image = gr.Image(label="512px Image", shape=(512, 512)) | |
up_res_image = gr.Image(label="1024px Image", shape=(1024, 1024)) | |
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style( | |
container=False | |
) | |
error_output = gr.Markdown() | |
with gr.Column(scale=45): | |
with gr.Tab("Options"): | |
with gr.Group(): | |
neg_prompt = gr.Textbox( | |
label="Negative prompt", | |
placeholder="What to exclude from the image", | |
) | |
with gr.Row(): | |
guidance = gr.Slider( | |
label="Guidance scale", value=7.5, maximum=15 | |
) | |
steps = gr.Slider( | |
label="Steps", | |
value=current_steps, | |
minimum=2, | |
maximum=75, | |
step=1, | |
) | |
seed = gr.Slider( | |
0, 2147483647, label="Seed (0 = random)", value=0, step=1 | |
) | |
inputs = [ | |
model_name, | |
prompt, | |
guidance, | |
steps, | |
seed, | |
neg_prompt, | |
] | |
outputs = [low_res_image, up_res_image, error_output] | |
prompt.submit(inference, inputs=inputs, outputs=outputs) | |
generate.click(inference, inputs=inputs, outputs=outputs) | |
# ex = gr.Examples( | |
# [ | |
# [models[0].name, "a photo of an astronaut high resolution, unreal engine, ultra realistic", 7.5, 50, 33, ""] | |
# ], | |
# inputs=[model_name, prompt, guidance, steps, seed, neg_prompt], | |
# outputs=outputs, | |
# fn=inference, | |
# cache_examples=False, | |
# ) | |
gr.HTML( | |
""" | |
<div style="border-top: 1px solid #303030;"> | |
<br> | |
<p>Models by 🤗 Hugging Face and others. ❤️</p> | |
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p> | |
<p>This is a Demo Space For:<br> | |
<a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Stability AI's Latent Upscaler</a> | |
</div> | |
""" | |
) | |
print(f"Space built in {time.time() - start_time:.2f} seconds") | |
demo.queue(concurrency_count=1) | |
demo.launch() | |