patrickvonplaten's picture
up
fa6b193
raw
history blame
7.97 kB
from diffusers import (
StableDiffusionPipeline,
DPMSolverMultistepScheduler,
DiffusionPipeline,
)
import gradio as gr
import torch
from PIL import Image
import time
import psutil
import random
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
start_time = time.time()
current_steps = 25
SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16)
UPSCALER = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16)
UPSCALER.to("cuda")
UPSCALER.enable_xformers_memory_efficient_attention()
class Model:
def __init__(self, name, path=""):
self.name = name
self.path = path
if path != "":
self.pipe_t2i = StableDiffusionPipeline.from_pretrained(
path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER
)
self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe_t2i.scheduler.config
)
else:
self.pipe_t2i = None
models = [
Model("Stable Diffusion v1-4", "CompVis/stable-diffusion-v1-4"),
# Model("Stable Diffusion v1-5", "runwayml/stable-diffusion-v1-5"),
Model("anything-v4.0", "andite/anything-v4.0"),
]
MODELS = {m.name: m for m in models}
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def error_str(error, title="Error"):
return (
f"""#### {title}
{error}"""
if error
else ""
)
def inference(
model_name,
prompt,
guidance,
steps,
seed=0,
neg_prompt="",
):
print(psutil.virtual_memory()) # print memory usage
if seed == 0:
seed = random.randint(0, 2147483647)
generator = torch.Generator("cuda").manual_seed(seed)
try:
low_res_image, up_res_image = txt_to_img(
model_name,
prompt,
neg_prompt,
guidance,
steps,
generator,
)
return low_res_image, up_res_image, f"Done. Seed: {seed}",
except Exception as e:
return None, None, error_str(e)
def txt_to_img(
model_name,
prompt,
neg_prompt,
guidance,
steps,
generator,
):
pipe = MODELS[model_name].pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
low_res_latents = pipe(
prompt,
negative_prompt=neg_prompt,
num_inference_steps=int(steps),
guidance_scale=guidance,
generator=generator,
output_type="latent",
).images
with torch.no_grad():
low_res_image = pipe.decode_latents(low_res_latents)
low_res_image = pipe.numpy_to_pil(low_res_image)
up_res_image = UPSCALER(
prompt=prompt,
negative_prompt=neg_prompt,
image=low_res_latents,
num_inference_steps=20,
guidance_scale=0,
generator=generator,
).images
pipe.to("cpu")
torch.cuda.empty_cache()
return low_res_image, up_res_image
def replace_nsfw_images(results):
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images
with gr.Blocks(css="style.css") as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Stable Diffusion Latent Upscaler</h1>
</div>
<p>
Demo for Latent Diffusion Upscaling
</p>
<p>
Running on <b>{device}</b>
</p>
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
<a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
model_name = gr.Dropdown(
label="Model",
choices=[m.name for m in models],
value=models[0].name,
)
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter prompt.",
).style(container=False)
generate = gr.Button(value="Generate").style(
rounded=(False, True, True, False)
)
low_res_image = gr.Gallery(
label="512-pix image", show_label=False, elem_id="gallery"
).style(grid=[2], height=512)
up_res_image = gr.Gallery(
label="1024-pix image", show_label=False, elem_id="gallery"
).style(grid=[2], height=1024)
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(
container=False
)
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(
label="Negative prompt",
placeholder="What to exclude from the image",
)
with gr.Row():
guidance = gr.Slider(
label="Guidance scale", value=7.5, maximum=15
)
steps = gr.Slider(
label="Steps",
value=current_steps,
minimum=2,
maximum=75,
step=1,
)
seed = gr.Slider(
0, 2147483647, label="Seed (0 = random)", value=0, step=1
)
inputs = [
model_name,
prompt,
guidance,
steps,
seed,
neg_prompt,
]
outputs = [low_res_image, up_res_image, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
# ex = gr.Examples(
# [
# [models[0].name, "a photo of an astronaut high resolution, unreal engine, ultra realistic", 7.5, 50, 33, ""]
# ],
# inputs=[model_name, prompt, guidance, steps, seed, neg_prompt],
# outputs=outputs,
# fn=inference,
# cache_examples=False,
# )
gr.HTML(
"""
<div style="border-top: 1px solid #303030;">
<br>
<p>Models by 🤗 Hugging Face and others. ❤️</p>
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
<p>This is a Demo Space For:<br>
<a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler">Stability AI's Latent Upscaler</a>
</div>
"""
)
print(f"Space built in {time.time() - start_time:.2f} seconds")
demo.queue(concurrency_count=1)
demo.launch()