from diffusers import ( StableDiffusionPipeline, DPMSolverMultistepScheduler, DiffusionPipeline, ) import gradio as gr import torch from PIL import Image import time import psutil import random from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker start_time = time.time() current_steps = 25 SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16) UPSCALER = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16) UPSCALER.to("cuda") UPSCALER.enable_xformers_memory_efficient_attention() class Model: def __init__(self, name, path=""): self.name = name self.path = path if path != "": self.pipe_t2i = StableDiffusionPipeline.from_pretrained( path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER ) self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config( self.pipe_t2i.scheduler.config ) else: self.pipe_t2i = None models = [ Model("Stable Diffusion v1-4", "CompVis/stable-diffusion-v1-4"), ] MODELS = {m.name: m for m in models} device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" def error_str(error, title="Error"): return ( f"""#### {title} {error}""" if error else "" ) def inference( model_name, prompt, guidance, steps, width=512, height=512, seed=0, neg_prompt="", ): print(psutil.virtual_memory()) # print memory usage if seed == 0: seed = random.randint(0, 2147483647) generator = torch.Generator("cuda").manual_seed(seed) try: low_res_image, up_res_image = txt_to_img( model_name, prompt, neg_prompt, guidance, steps, width, height, generator, ) return low_res_image, up_res_image, f"Done. Seed: {seed}", except Exception as e: return None, None, error_str(e) def txt_to_img( model_name, prompt, neg_prompt, guidance, steps, generator, ): pipe = MODELS[model_name].pipe_t2i if torch.cuda.is_available(): pipe = pipe.to("cuda") pipe.enable_xformers_memory_efficient_attention() low_res_latents = pipe( prompt, negative_prompt=neg_prompt, num_inference_steps=int(steps), guidance_scale=guidance, generator=generator, output_type="latent", ).images with torch.no_grad(): low_res_image = pipe.decode_latents(low_res_latents) low_res_image = pipe.numpy_to_pil(low_res_image) up_res_image = UPSCALER( prompt=prompt, negative_prompt=neg_prompt, image=low_res_latents, num_inference_steps=20, guidance_scale=0, generator=generator, ).images pipe.to("cpu") torch.cuda.empty_cache() return low_res_image, up_res_image def replace_nsfw_images(results): for i in range(len(results.images)): if results.nsfw_content_detected[i]: results.images[i] = Image.open("nsfw.png") return results.images with gr.Blocks(css="style.css") as demo: gr.HTML( f"""

Protogen Diffusion

Demo for multiple fine-tuned Protogen Stable Diffusion models.

Running on {device}

You can also duplicate this space and upgrade to gpu by going to settings:
Duplicate Space

""" ) with gr.Row(): with gr.Column(scale=55): with gr.Group(): model_name = gr.Dropdown( label="Model", choices=[m.name for m in models], value=models[0].name, ) with gr.Box(visible=False) as custom_model_group: custom_model_path = gr.Textbox( label="Custom model path", placeholder="Path to model, e.g. darkstorm2150/Protogen_x3.4_Official_Release", interactive=True, ) gr.HTML( "
Custom models have to be downloaded first, so give it some time.
" ) with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=2, placeholder="Enter prompt.", ).style(container=False) generate = gr.Button(value="Generate").style( rounded=(False, True, True, False) ) # image_out = gr.Image(height=512) low_res_image = gr.Gallery( label="512-pix image", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") up_res_image = gr.Gallery( label="1024-pix image", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style( container=False ) error_output = gr.Markdown() with gr.Column(scale=45): with gr.Tab("Options"): with gr.Group(): neg_prompt = gr.Textbox( label="Negative prompt", placeholder="What to exclude from the image", ) with gr.Row(): guidance = gr.Slider( label="Guidance scale", value=7.5, maximum=15 ) steps = gr.Slider( label="Steps", value=current_steps, minimum=2, maximum=75, step=1, ) seed = gr.Slider( 0, 2147483647, label="Seed (0 = random)", value=0, step=1 ) inputs = [ model_name, prompt, guidance, steps, seed, neg_prompt, ] outputs = [low_res_image, up_res_image, error_output] prompt.submit(inference, inputs=inputs, outputs=outputs) generate.click(inference, inputs=inputs, outputs=outputs) # ex = gr.Examples( # [ # [models[0].name, "portrait of a beautiful alyx vance half life", 10, 50, "canvas frame, ((disfigured)), ((bad art)), ((deformed)),((extra limbs)),((close up)),((b&w)), weird colors, blurry, (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), Photoshop, video game, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy"], # ], # inputs=[model_name, prompt, guidance, steps, neg_prompt], # outputs=outputs, # fn=inference, # cache_examples=False, # ) gr.HTML( """

Models by @darkstorm2150 and others. ❤️

This space uses the DPM-Solver++ sampler by Cheng Lu, et al..

Space by: Darkstorm (Victor Espinoza)
Instagram

""" ) print(f"Space built in {time.time() - start_time:.2f} seconds") demo.queue(concurrency_count=1) demo.launch()