File size: 4,280 Bytes
45e60de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import time
from typing import List
import pandas as pd

from gluonts.dataset.common import Dataset
from gluonts.model.forecast import Forecast, QuantileForecast

from .abstract import AbstractPredictor


class StatsForecastPredictor(AbstractPredictor):
    def __init__(self, prediction_length: int, freq: str, seasonality: int, **kwargs):
        super().__init__(prediction_length, freq, seasonality)

    def fit_predict(self, dataset: Dataset) -> List[Forecast]:
        from statsforecast import StatsForecast
        from statsforecast.models import SeasonalNaive

        df = self._to_statsforecast_df(dataset)
        models = self._get_models()
        predictor = StatsForecast(
            df=df,
            freq=self.freq,
            models=models,
            fallback_model=SeasonalNaive(season_length=self.seasonality),
            n_jobs=-1,
        )
        start_time = time.time()
        predictions_df = predictor.forecast(
            h=self.prediction_length, level=[0, 20, 40, 60, 80]
        )
        self.save_runtime(time.time() - start_time)
        return self._predictions_df_to_gluonts_forecast(
            predictions_df, dataset, model_names=[str(m) for m in models]
        )

    def _predictions_df_to_gluonts_forecast(
        self,
        predictions_df: pd.DataFrame,
        dataset: Dataset,
        model_names: List[str],
    ) -> List[Forecast]:
        def quantile_to_suffix(q: float) -> str:
            if q < 0.5:
                prefix = "-lo-"
                level = 100 - 200 * q
            else:
                prefix = "-hi-"
                level = 200 * q - 100
            return prefix + str(int(level))

        # Convert StatsForecast output -> DataFrame with quantile_levels as outputs
        columns = {}
        for q in self.quantile_levels:
            suffix = quantile_to_suffix(q)
            columns[str(q)] = predictions_df[[m + suffix for m in model_names]].median(
                axis=1
            )

        # Convert quantiles DataFrame -> list of QuantileForecasts
        forecast_df = pd.DataFrame(columns)
        forecast_list = []
        for ts in dataset:
            item_id = ts["item_id"]
            f = forecast_df.loc[item_id]
            forecast_list.append(
                QuantileForecast(
                    forecast_arrays=f.values.T,
                    forecast_keys=f.columns,
                    start_date=pd.Period(
                        predictions_df["ds"].loc[item_id].iloc[0], freq=self.freq
                    ),
                    item_id=item_id,
                )
            )
        return forecast_list

    def _to_statsforecast_df(self, dataset: Dataset) -> pd.DataFrame:
        """Convert GluonTS Dataset to StatsForecast compatible DataFrame."""
        dfs = []
        for item in dataset:
            target = item["target"]
            timestamps = pd.date_range(
                start=item["start"].to_timestamp(how="S"),
                periods=len(target),
                freq=self.freq,
            )
            df = pd.DataFrame(
                {
                    "unique_id": [item["item_id"]] * len(target),
                    "ds": timestamps,
                    "y": target,
                }
            )
            dfs.append(df)
        return pd.concat(dfs)


class AutoARIMAPredictor(StatsForecastPredictor):
    def _get_models(self):
        from statsforecast.models import AutoARIMA

        return [AutoARIMA(season_length=self.seasonality)]


class AutoETSPredictor(StatsForecastPredictor):
    def _get_models(self):
        from statsforecast.models import AutoETS

        return [AutoETS(season_length=self.seasonality)]


class AutoThetaPredictor(StatsForecastPredictor):
    def _get_models(self):
        from statsforecast.models import AutoTheta

        return [AutoTheta(season_length=self.seasonality)]


class StatsEnsemblePredictor(StatsForecastPredictor):
    def _get_models(self):
        from statsforecast.models import (
            AutoETS,
            AutoARIMA,
            AutoTheta,
        )

        return [
            AutoETS(season_length=self.seasonality),
            AutoTheta(season_length=self.seasonality),
            AutoARIMA(season_length=self.seasonality),
        ]