|
import streamlit as st |
|
from persist import persist, load_widget_state |
|
from pathlib import Path |
|
|
|
from middleMan import apply_view,writingPrompt |
|
|
|
global variable_output |
|
|
|
def main(): |
|
|
|
cs_body() |
|
|
|
|
|
def cs_body(): |
|
|
|
stateVariable = 'Model_carbon' |
|
help_text ='Provide an estimate for the carbon emissions: e.g hardware used, horus spent training, cloud provider ' |
|
|
|
st.markdown('# Environmental Impact') |
|
st.markdown('###### Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).') |
|
st.text_area("", help="Provide an estimate for the carbon emissions: e.g hardware used, horus spent training, cloud provider") |
|
|
|
left, right = st.columns([2,4]) |
|
with left: |
|
st.write("\n") |
|
st.write("\n") |
|
st.markdown('### Hardware Type:') |
|
st.write("\n") |
|
st.write("\n") |
|
|
|
st.markdown('### Hours used:') |
|
st.write("\n") |
|
st.write("\n") |
|
st.markdown('### Cloud Provider:') |
|
st.write("\n") |
|
st.write("\n") |
|
st.markdown('### Compute Region:') |
|
st.write("\n") |
|
st.write("\n") |
|
st.markdown('### Carbon Emitted:') |
|
with right: |
|
|
|
st.text_input("",key=persist("Model_hardware")) |
|
|
|
st.text_input("",help="sw",key=persist("hours_used")) |
|
st.text_input("",key=persist("Model_cloud_provider")) |
|
st.text_input("",key=persist("Model_cloud_region")) |
|
st.text_input("",help= 'in grams of CO2eq', key=persist("Model_c02_emitted")) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
load_widget_state() |
|
main() |