File size: 3,443 Bytes
94a93b4
 
 
 
6f25160
94a93b4
 
ff33526
 
8835a4d
 
 
 
 
ff33526
 
 
94a93b4
 
6f25160
94a93b4
f3fece9
 
94a93b4
 
87d3c55
 
 
 
 
 
94a93b4
 
 
8cdd1fc
94a93b4
8cdd1fc
94a93b4
 
ff33526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55bb6df
94a93b4
ff33526
 
94a93b4
 
 
e1c15ee
6a27e5a
94a93b4
 
 
 
0c66d16
 
ff33526
8835a4d
fc231ba
0c66d16
94a93b4
 
 
 
f3fece9
6a27e5a
 
f3fece9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import gradio as gr
import re
import requests
import json
import os

title = "BLOOM"
description = """Gradio Demo for BLOOM. To use it, simply add your text, or click one of the examples to load them.

Tips: Do NOT talk to BLOOM as an entity, it's not a chatbot but a webpage/blog/article completion model.
For the best results: MIMIC a few sentences of a webpage similar to the content you want to generate.
Start a paragraph as if YOU were writing a blog, webpage, math post, coding article and BLOOM will generate a coherent follow-up. Longer prompts usually give more interesting results.

Options:
- sampling: imaginative completions (may be not super accurate e.g. math/history)
- greedy: accurate completions (may be more boring or have repetitions)
"""

API_URL = "https://hfbloom.ngrok.io/generate"
HF_API_TOKEN = os.getenv("HF_API_TOKEN")

hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "huggingface/bloom_internal_prompts", organization="huggingface")


examples = [
    ['A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:', 32, "Sample", 1],
    ["Pour déguster un ortolan, il faut tout d'abord", 32, "Sample", 1],
    ["Question: If I put cheese into the fridge, will it melt?\nAnswer:", 32, "Sample", 1],
    ["Math exercise - answers:\n34+10=44\n54+20=", 16, "Greedy", 1],
    ["Question: Where does the Greek Goddess Persephone spend half of the year when she is not with her mother?\nAnswer:", 24, "Greedy", 1],
    ["spelling test answers.\nWhat are the letters in « language »?\nAnswer: l-a-n-g-u-a-g-e\nWhat are the letters in « Romanian »?\nAnswer:", 24, "Greedy", 1],
]

def query(payload):
    print(payload)
    response = requests.request("POST", API_URL, json=payload)
    print(response)
    return json.loads(response.content.decode("utf-8"))
    
def inference(input_sentence, max_length, sample_or_greedy, seed=42):
    if sample_or_greedy == "Sample":
        parameters = {"max_new_tokens": max_length,
                      "top_p": 0.9,
                      "do_sample": True,
                      "seed": seed,
                      "early_stopping": False,
                      "length_penalty": 0.0,
                      "eos_token_id": None}
    else:
        parameters = {"max_new_tokens": max_length,
                      "do_sample": False,
                      "seed": seed,
                      "early_stopping": False,
                      "length_penalty": 0.0,
                      "eos_token_id": None}

    payload = {"inputs": input_sentence,
               "parameters": parameters}

    data = query(
        payload
    )
    print(data)
    return data[0]["generated_text"]


gr.Interface(
    inference, 
    [
        gr.inputs.Textbox(label="Input"),
        gr.inputs.Slider(1, 64, default=32, step=1, label="Tokens to generate"),
        gr.inputs.Radio(["Sample", "Greedy"], label="Sample or greedy"),
        gr.inputs.Radio(["Sample 1", "Sample 2", "Sample 3"], label="Sample other generations", type="index"),
    ], 
    gr.outputs.Textbox(label="Output"),
    examples=examples,
    # article=article,
    title=title,
    description=description,
    flagging_callback=hf_writer,
    allow_flagging=True,
).launch()