Spaces:
Running
Running
theo
commited on
Commit
·
8b77729
1
Parent(s):
08a65ff
dockerfile builder + metadata builder
Browse files- .gitignore +1 -0
- build_docker_image.sh +21 -0
- build_metadata_file.py +56 -0
- language_set.json +0 -1
- tagging_app.py +82 -54
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.idea
|
build_docker_image.sh
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
cleanup() {
|
| 5 |
+
rm -f Dockerfile
|
| 6 |
+
}
|
| 7 |
+
|
| 8 |
+
trap cleanup ERR EXIT
|
| 9 |
+
|
| 10 |
+
cat > Dockerfile << EOF
|
| 11 |
+
FROM python
|
| 12 |
+
COPY requirements.txt .
|
| 13 |
+
COPY tagging_app.py .
|
| 14 |
+
RUN pip install -r requirements.txt
|
| 15 |
+
CMD ["streamlit", "run", "tagging_app.py"]
|
| 16 |
+
EOF
|
| 17 |
+
|
| 18 |
+
set -eEx
|
| 19 |
+
|
| 20 |
+
./build_metadata_file.py
|
| 21 |
+
docker build -t dataset-tagger .
|
build_metadata_file.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
""" This script will clone the `datasets` repository in your current directory and parse all currently available
|
| 4 |
+
metadata, from the `README.md` yaml headers and the automatically generated json files.
|
| 5 |
+
It dumps the results in a `metadata_{current-commit-of-datasets}.json` file.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import json
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from subprocess import check_call, check_output
|
| 11 |
+
from typing import Dict
|
| 12 |
+
|
| 13 |
+
import yaml
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def metadata_from_readme(f: Path) -> Dict:
|
| 17 |
+
with f.open() as fi:
|
| 18 |
+
content = [line.strip() for line in fi]
|
| 19 |
+
|
| 20 |
+
if content[0] == "---" and "---" in content[1:]:
|
| 21 |
+
yamlblock = "\n".join(content[1 : content[1:].index("---") + 1])
|
| 22 |
+
return yaml.safe_load(yamlblock) or dict()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def load_ds_datas():
|
| 26 |
+
drepo = Path("datasets")
|
| 27 |
+
if drepo.exists() and drepo.is_dir():
|
| 28 |
+
check_call(["git", "pull"], cwd=str((Path.cwd() / "datasets").absolute()))
|
| 29 |
+
else:
|
| 30 |
+
check_call(["git", "clone", "https://github.com/huggingface/datasets.git"])
|
| 31 |
+
head_sha = check_output(["git", "rev-parse", "HEAD"])
|
| 32 |
+
|
| 33 |
+
datasets_md = dict()
|
| 34 |
+
|
| 35 |
+
for ddir in sorted((drepo / "datasets").iterdir(), key=lambda d: d.name):
|
| 36 |
+
|
| 37 |
+
try:
|
| 38 |
+
metadata = metadata_from_readme(ddir / "README.md")
|
| 39 |
+
except:
|
| 40 |
+
metadata = None
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
with (ddir / "dataset_infos.json").open() as fi:
|
| 44 |
+
infos = json.load(fi)
|
| 45 |
+
except:
|
| 46 |
+
infos = None
|
| 47 |
+
|
| 48 |
+
if metadata is not None and len(metadata) > 0:
|
| 49 |
+
datasets_md[ddir.name] = dict(metadata=metadata, infos=infos)
|
| 50 |
+
return head_sha.decode().strip(), datasets_md
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
head_sha, datas = load_ds_datas()
|
| 55 |
+
with open(f"metadata_{head_sha}.json", "w") as fi:
|
| 56 |
+
fi.write(json.dumps(datas))
|
language_set.json
CHANGED
|
@@ -345,7 +345,6 @@
|
|
| 345 |
"pro": "Old Proven\u00e7al (to 1500), Old Occitan (to 1500)",
|
| 346 |
"ps": "Pushto, Pashto",
|
| 347 |
"pt": "Portuguese",
|
| 348 |
-
"qaa..qtz": "Private use",
|
| 349 |
"qu": "Quechua",
|
| 350 |
"raj": "Rajasthani",
|
| 351 |
"rap": "Rapanui",
|
|
|
|
| 345 |
"pro": "Old Proven\u00e7al (to 1500), Old Occitan (to 1500)",
|
| 346 |
"ps": "Pushto, Pashto",
|
| 347 |
"pt": "Portuguese",
|
|
|
|
| 348 |
"qu": "Quechua",
|
| 349 |
"raj": "Rajasthani",
|
| 350 |
"rap": "Rapanui",
|
tagging_app.py
CHANGED
|
@@ -1,9 +1,7 @@
|
|
| 1 |
import json
|
| 2 |
-
import
|
| 3 |
-
from
|
| 4 |
-
from glob import glob
|
| 5 |
|
| 6 |
-
import datasets
|
| 7 |
import streamlit as st
|
| 8 |
import yaml
|
| 9 |
|
|
@@ -17,7 +15,6 @@ st.set_page_config(
|
|
| 17 |
task_set = json.load(open("task_set.json"))
|
| 18 |
license_set = json.load(open("license_set.json"))
|
| 19 |
language_set_restricted = json.load(open("language_set.json"))
|
| 20 |
-
language_set = json.load(open("language_set_full.json"))
|
| 21 |
|
| 22 |
multilinguality_set = {
|
| 23 |
"monolingual": "contains a single language",
|
|
@@ -49,13 +46,21 @@ creator_set = {
|
|
| 49 |
########################
|
| 50 |
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
def new_pre_loaded():
|
|
@@ -73,8 +78,8 @@ def new_pre_loaded():
|
|
| 73 |
|
| 74 |
|
| 75 |
pre_loaded = new_pre_loaded()
|
| 76 |
-
|
| 77 |
-
existing_tag_sets =
|
| 78 |
all_dataset_ids = list(existing_tag_sets.keys())
|
| 79 |
|
| 80 |
|
|
@@ -104,34 +109,29 @@ Beware that clicking pre-load will overwrite the current state!
|
|
| 104 |
|
| 105 |
qp = st.experimental_get_query_params()
|
| 106 |
preload = qp.get("preload_dataset", list())
|
| 107 |
-
|
|
|
|
| 108 |
if len(preload) == 1 and preload[0] in all_dataset_ids:
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
did_index = all_dataset_ids.index(did_qp)
|
| 113 |
|
| 114 |
did = st.sidebar.selectbox(label="Choose dataset to load tag set from", options=all_dataset_ids, index=did_index)
|
| 115 |
-
if len(existing_tag_sets[did]) > 1:
|
| 116 |
-
cid = st.sidebar.selectbox(
|
| 117 |
-
label="Choose config to load tag set from",
|
| 118 |
-
options=list(existing_tag_sets[did].keys()),
|
| 119 |
-
index=0,
|
| 120 |
-
)
|
| 121 |
-
else:
|
| 122 |
-
cid = next(iter(existing_tag_sets[did].keys()))
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
|
|
|
| 126 |
st.experimental_set_query_params(preload_dataset=did)
|
| 127 |
-
if
|
| 128 |
pre_loaded = new_pre_loaded()
|
| 129 |
st.experimental_set_query_params()
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
| 132 |
|
|
|
|
| 133 |
|
| 134 |
-
pre_loaded["languages"] = list(set(pre_loaded["languages"]))
|
| 135 |
|
| 136 |
leftcol.markdown("### Supported tasks")
|
| 137 |
task_categories = leftcol.multiselect(
|
|
@@ -156,13 +156,18 @@ for tg in task_categories:
|
|
| 156 |
task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}"
|
| 157 |
task_specifics += task_specs
|
| 158 |
|
|
|
|
| 159 |
leftcol.markdown("### Languages")
|
|
|
|
|
|
|
|
|
|
| 160 |
multilinguality = leftcol.multiselect(
|
| 161 |
"Does the dataset contain more than one language?",
|
| 162 |
options=list(multilinguality_set.keys()),
|
| 163 |
default=pre_loaded["multilinguality"],
|
| 164 |
format_func=lambda m: f"{m} : {multilinguality_set[m]}",
|
| 165 |
)
|
|
|
|
| 166 |
if "other" in multilinguality:
|
| 167 |
other_multilinguality = st.text_input(
|
| 168 |
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
|
|
@@ -170,28 +175,42 @@ if "other" in multilinguality:
|
|
| 170 |
)
|
| 171 |
st.write(f"Registering other-{other_multilinguality} multilinguality")
|
| 172 |
multilinguality[multilinguality.index("other")] = f"other-{other_multilinguality}"
|
|
|
|
|
|
|
|
|
|
| 173 |
languages = leftcol.multiselect(
|
| 174 |
"What languages are represented in the dataset?",
|
| 175 |
-
options=list(
|
| 176 |
default=pre_loaded["languages"],
|
| 177 |
-
format_func=lambda m: f"{m} : {
|
| 178 |
)
|
| 179 |
|
|
|
|
| 180 |
leftcol.markdown("### Dataset creators")
|
|
|
|
|
|
|
|
|
|
| 181 |
language_creators = leftcol.multiselect(
|
| 182 |
"Where does the text in the dataset come from?",
|
| 183 |
options=creator_set["language"],
|
| 184 |
-
default=
|
| 185 |
)
|
|
|
|
|
|
|
|
|
|
| 186 |
annotations_creators = leftcol.multiselect(
|
| 187 |
"Where do the annotations in the dataset come from?",
|
| 188 |
options=creator_set["annotations"],
|
| 189 |
-
default=
|
| 190 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
licenses = leftcol.multiselect(
|
| 192 |
"What licenses is the dataset under?",
|
| 193 |
options=list(license_set.keys()),
|
| 194 |
-
default=
|
| 195 |
format_func=lambda l: f"{l} : {license_set[l]}",
|
| 196 |
)
|
| 197 |
if "other" in licenses:
|
|
@@ -228,33 +247,42 @@ if "extended" in extended:
|
|
| 228 |
st.write(f"Registering other-{other_extended_sources} dataset")
|
| 229 |
extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}"
|
| 230 |
source_datasets += [f"extended|{src}" for src in extended_sources]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
size_category = leftcol.selectbox(
|
| 232 |
"What is the size category of the dataset?",
|
| 233 |
-
options=
|
| 234 |
-
index=[
|
| 235 |
-
(pre_loaded.get("size_categories") or ["unknown"])[0]
|
| 236 |
-
),
|
| 237 |
)
|
| 238 |
|
| 239 |
|
| 240 |
########################
|
| 241 |
## Show results
|
| 242 |
########################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
rightcol.markdown(
|
| 244 |
f"""
|
| 245 |
### Finalized tag set
|
|
|
|
|
|
|
|
|
|
| 246 |
```yaml
|
| 247 |
-
{
|
| 248 |
-
|
| 249 |
-
"task_ids": task_specifics,
|
| 250 |
-
"multilinguality": multilinguality,
|
| 251 |
-
"languages": languages,
|
| 252 |
-
"language_creators": language_creators,
|
| 253 |
-
"annotations_creators": annotations_creators,
|
| 254 |
-
"source_datasets": source_datasets,
|
| 255 |
-
"size_categories": size_category,
|
| 256 |
-
"licenses": licenses,
|
| 257 |
-
})}
|
| 258 |
-
```
|
| 259 |
-
"""
|
| 260 |
)
|
|
|
|
| 1 |
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import List, Tuple
|
|
|
|
| 4 |
|
|
|
|
| 5 |
import streamlit as st
|
| 6 |
import yaml
|
| 7 |
|
|
|
|
| 15 |
task_set = json.load(open("task_set.json"))
|
| 16 |
license_set = json.load(open("license_set.json"))
|
| 17 |
language_set_restricted = json.load(open("language_set.json"))
|
|
|
|
| 18 |
|
| 19 |
multilinguality_set = {
|
| 20 |
"monolingual": "contains a single language",
|
|
|
|
| 46 |
########################
|
| 47 |
|
| 48 |
|
| 49 |
+
@st.cache(allow_output_mutation=True)
|
| 50 |
+
def load_ds_datas():
|
| 51 |
+
metada_exports = sorted(
|
| 52 |
+
[f for f in Path.cwd().iterdir() if f.name.startswith("metadata_")],
|
| 53 |
+
key=lambda f: f.lstat().st_mtime,
|
| 54 |
+
reverse=True,
|
| 55 |
+
)
|
| 56 |
+
if len(metada_exports) == 0:
|
| 57 |
+
raise ValueError("need to run ./build_metada_file.py at least once")
|
| 58 |
+
with metada_exports[0].open() as fi:
|
| 59 |
+
return json.load(fi)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def split_known(vals: List[str], okset: List[str]) -> Tuple[List[str], List[str]]:
|
| 63 |
+
return [v for v in vals if v in okset], [v for v in vals if v not in okset]
|
| 64 |
|
| 65 |
|
| 66 |
def new_pre_loaded():
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
pre_loaded = new_pre_loaded()
|
| 81 |
+
datasets_md = load_ds_datas()
|
| 82 |
+
existing_tag_sets = {name: mds["metadata"] for name, mds in datasets_md.items()}
|
| 83 |
all_dataset_ids = list(existing_tag_sets.keys())
|
| 84 |
|
| 85 |
|
|
|
|
| 109 |
|
| 110 |
qp = st.experimental_get_query_params()
|
| 111 |
preload = qp.get("preload_dataset", list())
|
| 112 |
+
preloaded_id = None
|
| 113 |
+
did_index = 0
|
| 114 |
if len(preload) == 1 and preload[0] in all_dataset_ids:
|
| 115 |
+
preloaded_id, *_ = preload
|
| 116 |
+
pre_loaded = existing_tag_sets[preloaded_id] or new_pre_loaded()
|
| 117 |
+
did_index = all_dataset_ids.index(preloaded_id)
|
|
|
|
| 118 |
|
| 119 |
did = st.sidebar.selectbox(label="Choose dataset to load tag set from", options=all_dataset_ids, index=did_index)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
leftbtn, rightbtn = st.sidebar.beta_columns(2)
|
| 122 |
+
if leftbtn.button("pre-load tagset"):
|
| 123 |
+
pre_loaded = existing_tag_sets[did] or new_pre_loaded()
|
| 124 |
st.experimental_set_query_params(preload_dataset=did)
|
| 125 |
+
if rightbtn.button("flush state"):
|
| 126 |
pre_loaded = new_pre_loaded()
|
| 127 |
st.experimental_set_query_params()
|
| 128 |
|
| 129 |
+
if preloaded_id is not None:
|
| 130 |
+
st.sidebar.markdown(f"Took [{preloaded_id}](https://huggingface.co/datasets/{preloaded_id}) as base tagset.")
|
| 131 |
+
|
| 132 |
|
| 133 |
+
leftcol, _, rightcol = st.beta_columns([12, 1, 12])
|
| 134 |
|
|
|
|
| 135 |
|
| 136 |
leftcol.markdown("### Supported tasks")
|
| 137 |
task_categories = leftcol.multiselect(
|
|
|
|
| 156 |
task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}"
|
| 157 |
task_specifics += task_specs
|
| 158 |
|
| 159 |
+
|
| 160 |
leftcol.markdown("### Languages")
|
| 161 |
+
filtered_existing_languages = [lgc for lgc in set(pre_loaded["languages"]) if lgc not in language_set_restricted]
|
| 162 |
+
pre_loaded["languages"] = [lgc for lgc in set(pre_loaded["languages"]) if lgc in language_set_restricted]
|
| 163 |
+
|
| 164 |
multilinguality = leftcol.multiselect(
|
| 165 |
"Does the dataset contain more than one language?",
|
| 166 |
options=list(multilinguality_set.keys()),
|
| 167 |
default=pre_loaded["multilinguality"],
|
| 168 |
format_func=lambda m: f"{m} : {multilinguality_set[m]}",
|
| 169 |
)
|
| 170 |
+
|
| 171 |
if "other" in multilinguality:
|
| 172 |
other_multilinguality = st.text_input(
|
| 173 |
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
|
|
|
|
| 175 |
)
|
| 176 |
st.write(f"Registering other-{other_multilinguality} multilinguality")
|
| 177 |
multilinguality[multilinguality.index("other")] = f"other-{other_multilinguality}"
|
| 178 |
+
|
| 179 |
+
if len(filtered_existing_languages) > 0:
|
| 180 |
+
leftcol.markdown(f"**Found bad language codes in existing tagset**:\n{filtered_existing_languages}")
|
| 181 |
languages = leftcol.multiselect(
|
| 182 |
"What languages are represented in the dataset?",
|
| 183 |
+
options=list(language_set_restricted.keys()),
|
| 184 |
default=pre_loaded["languages"],
|
| 185 |
+
format_func=lambda m: f"{m} : {language_set_restricted[m]}",
|
| 186 |
)
|
| 187 |
|
| 188 |
+
|
| 189 |
leftcol.markdown("### Dataset creators")
|
| 190 |
+
ok, nonok = split_known(pre_loaded["language_creators"], creator_set["language"])
|
| 191 |
+
if len(nonok) > 0:
|
| 192 |
+
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
|
| 193 |
language_creators = leftcol.multiselect(
|
| 194 |
"Where does the text in the dataset come from?",
|
| 195 |
options=creator_set["language"],
|
| 196 |
+
default=ok,
|
| 197 |
)
|
| 198 |
+
ok, nonok = split_known(pre_loaded["annotations_creators"], creator_set["annotations"])
|
| 199 |
+
if len(nonok) > 0:
|
| 200 |
+
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
|
| 201 |
annotations_creators = leftcol.multiselect(
|
| 202 |
"Where do the annotations in the dataset come from?",
|
| 203 |
options=creator_set["annotations"],
|
| 204 |
+
default=ok,
|
| 205 |
)
|
| 206 |
+
|
| 207 |
+
ok, nonok = split_known(pre_loaded["licenses"], list(license_set.keys()))
|
| 208 |
+
if len(nonok) > 0:
|
| 209 |
+
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
|
| 210 |
licenses = leftcol.multiselect(
|
| 211 |
"What licenses is the dataset under?",
|
| 212 |
options=list(license_set.keys()),
|
| 213 |
+
default=ok,
|
| 214 |
format_func=lambda l: f"{l} : {license_set[l]}",
|
| 215 |
)
|
| 216 |
if "other" in licenses:
|
|
|
|
| 247 |
st.write(f"Registering other-{other_extended_sources} dataset")
|
| 248 |
extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}"
|
| 249 |
source_datasets += [f"extended|{src}" for src in extended_sources]
|
| 250 |
+
|
| 251 |
+
size_cats = ["unknown", "n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "n>1M"]
|
| 252 |
+
current_size_cats = pre_loaded.get("size_categories") or ["unknown"]
|
| 253 |
+
ok, nonok = split_known(current_size_cats, size_cats)
|
| 254 |
+
if len(nonok) > 0:
|
| 255 |
+
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
|
| 256 |
size_category = leftcol.selectbox(
|
| 257 |
"What is the size category of the dataset?",
|
| 258 |
+
options=size_cats,
|
| 259 |
+
index=size_cats.index(ok[0]) if len(ok) > 0 else 0,
|
|
|
|
|
|
|
| 260 |
)
|
| 261 |
|
| 262 |
|
| 263 |
########################
|
| 264 |
## Show results
|
| 265 |
########################
|
| 266 |
+
yamlblock = yaml.dump(
|
| 267 |
+
{
|
| 268 |
+
"task_categories": task_categories,
|
| 269 |
+
"task_ids": task_specifics,
|
| 270 |
+
"multilinguality": multilinguality,
|
| 271 |
+
"languages": languages,
|
| 272 |
+
"language_creators": language_creators,
|
| 273 |
+
"annotations_creators": annotations_creators,
|
| 274 |
+
"source_datasets": source_datasets,
|
| 275 |
+
"size_categories": size_category,
|
| 276 |
+
"licenses": licenses,
|
| 277 |
+
}
|
| 278 |
+
)
|
| 279 |
rightcol.markdown(
|
| 280 |
f"""
|
| 281 |
### Finalized tag set
|
| 282 |
+
|
| 283 |
+
Copy it into your dataset's `README.md` header! 🤗
|
| 284 |
+
|
| 285 |
```yaml
|
| 286 |
+
{yamlblock}
|
| 287 |
+
```""",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
)
|