import json import logging from pathlib import Path from typing import Callable, Dict, List, Tuple import langcodes as lc import streamlit as st import yaml from datasets.utils.metadata import ( DatasetMetadata, known_creators, known_licenses, known_multilingualities, known_size_categories, known_task_ids, ) from apputils import new_state st.set_page_config( page_title="HF Dataset Tagging App", page_icon="https://huggingface.co/front/assets/huggingface_logo.svg", layout="wide", initial_sidebar_state="auto", ) # XXX: restyling errors as streamlit does not respect whitespaces on `st.error` and doesn't scroll horizontally, which # generally makes things easier when reading error reports st.markdown( """ """, unsafe_allow_html=True, ) ######################## ## Helper functions ######################## def load_ds_datas() -> Dict[str, Dict[str, Dict]]: metada_exports = sorted( [f for f in Path.cwd().iterdir() if f.name.startswith("metadata_")], key=lambda f: f.lstat().st_mtime, reverse=True, ) if len(metada_exports) == 0: raise ValueError("need to run ./build_metada_file.py at least once") with metada_exports[0].open() as fi: logging.info(f"loaded {metada_exports[0]}") return json.load(fi) def split_known(vals: List[str], okset: List[str]) -> Tuple[List[str], List[str]]: if vals is None: return [], [] return [v for v in vals if v in okset], [v for v in vals if v not in okset] def multiselect( w: st.delta_generator.DeltaGenerator, title: str, markdown: str, values: List[str], valid_set: List[str], format_func: Callable = str, ): valid_values, invalid_values = split_known(values, valid_set) w.markdown(f"#### {title}") if len(invalid_values) > 0: w.markdown("Found the following invalid values:") w.error(invalid_values) return w.multiselect(markdown, valid_set, default=valid_values, format_func=format_func, key=title) def validate_dict(w: st.delta_generator.DeltaGenerator, state_dict: Dict): try: DatasetMetadata(**state_dict) if not state_dict.get("pretty_name"): raise ValueError("Please specify a non-empty Dataset name.") w.markdown("✅ This is a valid tagset! 🤗") except Exception as e: w.markdown("❌ This is an invalid tagset, here are the errors in it:") w.error(e) def map_num_examples_to_size_category(n: int) -> str: if n < 0: size_cat = "unknown" elif n < 1000: size_cat = "n<1K" elif n < 10000: size_cat = "1K bool: return sum(len(v) if v is not None else 0 for v in state.values()) == 0 state = new_state() datasets_md = load_ds_datas() dataset_ids = list(datasets_md.keys()) dataset_id_to_metadata = {name: mds["metadata"] for name, mds in datasets_md.items()} dataset_id_to_infos = {name: mds["infos"] for name, mds in datasets_md.items()} ######################## ## Dataset selection ######################## st.sidebar.markdown( """ # HuggingFace Dataset Tagger This app aims to make it easier to add structured tags to the datasets present in the library. """ ) queryparams = st.experimental_get_query_params() preload = queryparams.get("preload_dataset", list()) preloaded_id = None initial_state = None initial_infos, initial_info_cfg = None, None dataset_selector_index = 0 if len(preload) == 1 and preload[0] in dataset_ids: preloaded_id, *_ = preload initial_state = dataset_id_to_metadata.get(preloaded_id) initial_infos = dataset_id_to_infos.get(preloaded_id) initial_info_cfg = next(iter(initial_infos)) if initial_infos is not None else None # pick first available config state = initial_state or new_state() dataset_selector_index = dataset_ids.index(preloaded_id) preloaded_id = st.sidebar.selectbox( label="Choose dataset to load tag set from", options=dataset_ids, index=dataset_selector_index ) leftbtn, rightbtn = st.sidebar.columns(2) if leftbtn.button("pre-load"): initial_state = dataset_id_to_metadata[preloaded_id] initial_infos = dataset_id_to_infos[preloaded_id] initial_info_cfg = next(iter(initial_infos)) # pick first available config state = initial_state or new_state() st.experimental_set_query_params(preload_dataset=preloaded_id) if not is_state_empty(state): if rightbtn.button("flush state"): state = new_state() initial_state = None preloaded_id = None st.experimental_set_query_params() if preloaded_id is not None and initial_state is not None: st.sidebar.markdown( f""" --- The current base tagset is [`{preloaded_id}`](https://huggingface.co/datasets/{preloaded_id}) """ ) validate_dict(st.sidebar, initial_state) st.sidebar.markdown( f""" Here is the matching yaml block: ```yaml {yaml.dump(initial_state)} ``` """ ) leftcol, _, rightcol = st.columns([12, 1, 12]) # # DATASET NAME # leftcol.markdown("### Dataset name") state["pretty_name"] = leftcol.text_area( "Pick a nice descriptive name for the dataset", ) # # TASKS # leftcol.markdown("### Supported tasks") state["task_categories"] = multiselect( leftcol, "Task category", "What categories of task does the dataset support?", values=state["task_categories"], valid_set=sorted(list(known_task_ids.keys())), ) task_specifics = [] for task_category in state["task_categories"]: specs = multiselect( leftcol, f"Specific _{task_category}_ tasks", f"What specific tasks does the dataset support?", values=[ts for ts in (state["task_ids"] or []) if ts in known_task_ids[task_category].get("subtasks", [])], valid_set=known_task_ids[task_category].get("subtasks", []), ) if "other" in specs: other_task = leftcol.text_input( "You selected 'other' task. Please enter a short hyphen-separated description for the task:", value="my-task-description", ) leftcol.write(f"Registering {task_category}-other-{other_task} task") specs[specs.index("other")] = f"{task_category}-other-{other_task}" task_specifics += specs state["task_ids"] = task_specifics # # LANGUAGES # leftcol.markdown("### Languages") state["multilinguality"] = multiselect( leftcol, "Monolingual?", "Does the dataset contain more than one language?", values=state["multilinguality"], valid_set=list(known_multilingualities.keys()), format_func=lambda m: f"{m} : {known_multilingualities[m]}", ) if "other" in state["multilinguality"]: other_multilinguality = leftcol.text_input( "You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:", value="my-multilinguality", ) leftcol.write(f"Registering other-{other_multilinguality} multilinguality") state["multilinguality"][state["multilinguality"].index("other")] = f"other-{other_multilinguality}" valid_values, invalid_values = list(), list() for langtag in state["languages"]: try: lc.get(langtag) valid_values.append(langtag) except: invalid_values.append(langtag) leftcol.markdown("#### Languages") if len(invalid_values) > 0: leftcol.markdown("Found the following invalid values:") leftcol.error(invalid_values) langtags = leftcol.text_area( "What languages are represented in the dataset? expected format is BCP47 tags separated for ';' e.g. 'en-US;fr-FR'", value=";".join(valid_values), ) state["languages"] = langtags.strip().split(";") if langtags.strip() != "" else [] # # DATASET CREATORS & ORIGINS # leftcol.markdown("### Dataset creators") state["language_creators"] = multiselect( leftcol, "Data origin", "Where does the text in the dataset come from?", values=state["language_creators"], valid_set=known_creators["language"], ) state["annotations_creators"] = multiselect( leftcol, "Annotations origin", "Where do the annotations in the dataset come from?", values=state["annotations_creators"], valid_set=known_creators["annotations"], ) # # LICENSES # state["licenses"] = multiselect( leftcol, "Licenses", "What licenses is the dataset under?", valid_set=list(known_licenses.keys()), values=state["licenses"], format_func=lambda l: f"{l} : {known_licenses[l]}", ) if "other" in state["licenses"]: other_license = st.text_input( "You selected 'other' type of license. Please enter a short hyphen-separated description:", value="my-license", ) st.write(f"Registering other-{other_license} license") state["licenses"][state["licenses"].index("other")] = f"other-{other_license}" # # LINK TO SUPPORTED DATASETS # pre_select_ext_a = [] if "original" in state["source_datasets"]: pre_select_ext_a += ["original"] if any([p.startswith("extended") for p in state["source_datasets"]]): pre_select_ext_a += ["extended"] state["source_datasets"] = multiselect( leftcol, "Relations to existing work", "Does the dataset contain original data and/or was it extended from other datasets?", values=pre_select_ext_a, valid_set=["original", "extended"], ) if "extended" in state["source_datasets"]: pre_select_ext_b = [p.split("|")[1] for p in state["source_datasets"] if p.startswith("extended|")] extended_sources = multiselect( leftcol, "Linked datasets", "Which other datasets does this one use data from?", values=pre_select_ext_b, valid_set=dataset_ids + ["other"], ) # flush placeholder state["source_datasets"].remove("extended") state["source_datasets"] += [f"extended|{src}" for src in extended_sources] # # SIZE CATEGORY # leftcol.markdown("### Size category") logging.info(initial_infos[initial_info_cfg]["splits"] if initial_infos is not None else 0) initial_num_examples = ( sum([dct.get("num_examples", 0) for _split, dct in initial_infos[initial_info_cfg].get("splits", dict()).items()]) if initial_infos is not None else -1 ) if initial_num_examples >= 0: initial_size_categories = [map_num_examples_to_size_category(initial_num_examples)] else: initial_size_categories = [] current_size_cats = multiselect( leftcol, f"Size category", f"How many samples are there in the dataset?", values=initial_size_categories, valid_set=known_size_categories, ) if initial_size_categories: leftcol.markdown(f"Computed size category from automatically generated dataset info to: `{initial_size_categories}`") prev_size_cats = state.get("size_categories") or [] ok, nonok = split_known(prev_size_cats, known_size_categories) if len(nonok) > 0: leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}") state["size_categories"] = current_size_cats ######################## ## Show results ######################## rightcol.markdown( f""" ### Finalized tag set """ ) if is_state_empty(state): rightcol.markdown("❌ This is an invalid tagset: it's empty!") else: validate_dict(rightcol, state) rightcol.markdown( f""" ```yaml {yaml.dump(state)} ``` --- #### Arbitrary yaml validator This is a standalone tool, it is useful to check for errors on an existing tagset or modifying directly the text rather than the UI on the left. """, ) yamlblock = rightcol.text_area("Input your yaml here") if yamlblock.strip() != "": inputdict = yaml.safe_load(yamlblock) validate_dict(rightcol, inputdict)