import copy import datasets import json import os import streamlit as st import yaml from dataclasses import asdict from glob import glob from os.path import join as pjoin st.set_page_config( page_title="HF Dataset Tagging App", page_icon="https://huggingface.co/front/assets/huggingface_logo.svg", layout="wide", initial_sidebar_state="auto", ) task_set = json.load(open("task_set.json")) license_set = json.load(open("license_set.json")) language_set_restricted = json.load(open("language_set.json")) language_set = json.load(open("language_set_full.json")) multilinguality_set = { "monolingual": "contains a single language", "multilingual": "contains multiple languages", "translation": "contains translated or aligned text", "other": "other type of language distribution", } creator_set = { "language": [ "found", "crowdsourced", "expert-generated", "machine-generated", "other", ], "annotations": [ "found", "crowdsourced", "expert-generated", "machine-generated", "no-annotation", "other", ], } ######################## ## Helper functions ######################## @st.cache def filter_features(feature_dict): if feature_dict.get("_type", None) == 'Value': return { "feature_type": feature_dict["_type"], "dtype": feature_dict["dtype"], } elif feature_dict.get("_type", None) == 'Sequence': if "dtype" in feature_dict["feature"]: return { "feature_type": feature_dict["_type"], "feature": filter_features(feature_dict["feature"]), } elif "_type" in feature_dict["feature"] and feature_dict["feature"]["_type"] == "ClassLabel": return { "feature_type": feature_dict["_type"], "dtype": "int32", "feature": filter_features(feature_dict["feature"]), } else: return dict( [("feature_type", feature_dict["_type"])] + \ [(k, filter_features(v)) for k, v in feature_dict["feature"].items()] ) elif feature_dict.get("_type", None) == 'ClassLabel': return { "feature_type": feature_dict["_type"], "dtype": "int32", "class_names": feature_dict["names"], } elif feature_dict.get("_type", None) in ['Translation', 'TranslationVariableLanguages']: return { "feature_type": feature_dict["_type"], "dtype": "string", "languages": feature_dict["languages"], } else: return dict([(k, filter_features(v)) for k, v in feature_dict.items()]) @st.cache def find_languages(feature_dict): if type(feature_dict) in [dict, datasets.features.Features]: languages = [l for l in feature_dict.get('languages', [])] for k, v in feature_dict.items(): languages += [l for l in find_languages(v)] return languages else: return [] keep_keys = ['description', 'features', 'homepage', 'license', 'splits'] @st.cache(show_spinner=False) def get_info_dicts(dataset_id): module_path = datasets.load.prepare_module(dataset_id, dataset=True) builder_cls = datasets.load.import_main_class(module_path[0], dataset=True) build_confs = builder_cls.BUILDER_CONFIGS confs = [conf.name for conf in build_confs] if len(build_confs) > 0 else ['default'] all_info_dicts = {} for conf in confs: builder = builder_cls(name=conf) conf_info_dict = dict([(k, v) for k, v in asdict(builder.info).items() if k in keep_keys]) all_info_dicts[conf] = conf_info_dict return all_info_dicts @st.cache def get_dataset_list(): return datasets.list_datasets() @st.cache(show_spinner=False) def load_all_dataset_infos(dataset_list): dataset_infos = {} for did in dataset_list: try: dataset_infos[did] = get_info_dicts(did) except: print("+++++++++++ MISSED", did) return dataset_infos def load_existing_tags(): has_tags = {} for fname in glob("saved_tags/*/*/tags.json"): _, did, cid, _ = fname.split('/') has_tags[did] = has_tags.get(did, {}) has_tags[did][cid] = fname return has_tags ######################## ## Dataset selection ######################## st.sidebar.markdown( """
""", unsafe_allow_html=True, ) app_desc = """ ### Dataset Tagger This app aims to make it easier to add structured tags to the datasets present in the library. Each configuration requires its own tasks, as these often correspond to distinct sub-tasks. However, we provide the opportunity to pre-load the tag sets from another dataset or configuration to avoid too much redundancy. The tag sets are saved in JSON format, but you can print a YAML version in the right-most column to copy-paste to the config README.md """ all_dataset_ids = copy.deepcopy(get_dataset_list()) existing_tag_sets = load_existing_tags() all_dataset_infos = load_all_dataset_infos(all_dataset_ids) st.sidebar.markdown(app_desc) # option to only select from datasets that still need to be annotated only_missing = st.sidebar.checkbox("Show only un-annotated configs") if only_missing: dataset_choose_list = ["local dataset"] + [did for did, c_dict in all_dataset_infos.items() if not all([cid in existing_tag_sets.get(did, {}) for cid in c_dict])] else: dataset_choose_list = ["local dataset"] + list(all_dataset_infos.keys()) dataset_id = st.sidebar.selectbox( label="Choose dataset to tag", options=dataset_choose_list, index=0, ) if dataset_id == "local dataset": path_to_info = st.sidebar.text_input("Please enter the path to the folder where the dataset_infos.json file was generated", "/path/to/dataset/") if path_to_info not in ["/path/to/dataset/", ""]: dataset_infos = json.load(open(pjoin(path_to_info, "dataset_infos.json"))) confs = dataset_infos.keys() all_info_dicts = {} for conf, info in dataset_infos.items(): conf_info_dict = dict([(k, info[k]) for k in keep_keys]) all_info_dicts[conf] = conf_info_dict dataset_id = list(dataset_infos.values())[0]["builder_name"] else: dataset_id = "tmp_dir" all_info_dicts = { "default":{ 'description': "", 'features': {}, 'homepage': "", 'license': "", 'splits': {}, } } else: all_info_dicts = all_dataset_infos[dataset_id] if only_missing: config_choose_list = [cid for cid in all_info_dicts if not cid in existing_tag_sets.get(dataset_id, {})] else: config_choose_list = list(all_info_dicts.keys()) config_id = st.sidebar.selectbox( label="Choose configuration", options=config_choose_list, ) config_infos = all_info_dicts[config_id] c1, _, c2, _, c3 = st.beta_columns([8, 1, 14, 1, 10]) ######################## ## Dataset description ######################## data_desc = f"### Dataset: {dataset_id} | Configuration: {config_id}" + "\n" data_desc += f"[Homepage]({config_infos['homepage']})" + " | " data_desc += f"[Data script](https://github.com/huggingface/datasets/blob/master/datasets/{dataset_id}/{dataset_id}.py)" + " | " data_desc += f"[View examples](https://huggingface.co/nlp/viewer/?dataset={dataset_id}&config={config_id})" c1.markdown(data_desc) with c1.beta_expander("Dataset description:", expanded=True): st.markdown(config_infos['description']) # "pretty-fy" the features to be a little easier to read features = filter_features(config_infos['features']) with c1.beta_expander(f"Dataset features for config: {config_id}", expanded=True): st.write(features) ######################## ## Dataset tagging ######################## c2.markdown(f"### Writing tags for: {dataset_id} / {config_id}") ########## # Pre-load information to speed things up ########## c2.markdown("#### Pre-loading an existing tag set") existing_tag_sets = load_existing_tags() pre_loaded = { "task_categories": [], "task_ids": [], "multilinguality": [], "languages": [], "language_creators": [], "annotations_creators": [], "source_datasets": [], "size_categories": [], "licenses": [], } if existing_tag_sets.get(dataset_id, {}).get(config_id, None) is not None: existing_tags_fname = existing_tag_sets[dataset_id][config_id] c2.markdown(f"#### Attention: this config already has a tagset saved in {existing_tags_fname}\n--- \n") if c2.checkbox("pre-load existing tag set"): pre_loaded = json.load(open(existing_tags_fname)) c2.markdown("> *You may choose to pre-load the tag set of another dataset or configuration:*") with c2.beta_expander("- Choose tag set to pre-load"): did_choice_list = list(existing_tag_sets.keys()) if len(existing_tag_sets) > 0: did = st.selectbox( label="Choose dataset to load tag set from", options=did_choice_list, index=did_choice_list.index(dataset_id) if dataset_id in did_choice_list else 0, ) cid = st.selectbox( label="Choose config to load tag set from", options=list(existing_tag_sets[did].keys()), index=0, ) if st.checkbox("pre-load this tag set"): pre_loaded = json.load(open(existing_tag_sets[did][cid])) else: st.write("There are currently no other saved tag sets.") pre_loaded["languages"] = list(set(pre_loaded["languages"] + find_languages(features))) if config_infos["license"] in license_set: pre_loaded["licenses"] = list(set(pre_loaded["licenses"] + [config_infos["license"]])) ########## # Modify or add new tags ########## c2.markdown("#### Editing the tag set") c2.markdown("> *Expand the following boxes to edit the tag set. For each of the questions, choose all that apply, at least one option:*") with c2.beta_expander("- Supported tasks"): task_categories = st.multiselect( "What categories of task does the dataset support?", options=list(task_set.keys()), default=pre_loaded["task_categories"], format_func=lambda tg: f"{tg} : {task_set[tg]['description']}", ) task_specifics = [] for tg in task_categories: task_specs = st.multiselect( f"What specific *{tg}* tasks does the dataset support?", options=task_set[tg]["options"], default=[ts for ts in pre_loaded["task_ids"] if ts in task_set[tg]["options"]], ) if "other" in task_specs: other_task = st.text_input( "You selected 'other' task. Please enter a short hyphen-separated description for the task:", value='my-task-description', ) st.write(f"Registering {tg}-other-{other_task} task") task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}" task_specifics += task_specs with c2.beta_expander("- Languages"): multilinguality = st.multiselect( "Does the dataset contain more than one language?", options=list(multilinguality_set.keys()), default=pre_loaded["multilinguality"], format_func= lambda m: f"{m} : {multilinguality_set[m]}", ) if "other" in multilinguality: other_multilinguality = st.text_input( "You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:", value='my-multilinguality', ) st.write(f"Registering other-{other_multilinguality} multilinguality") multilinguality[multilinguality.index("other")] = f"other-{other_multilinguality}" languages = st.multiselect( "What languages are represented in the dataset?", options=list(language_set.keys()), default=pre_loaded["languages"], format_func= lambda m: f"{m} : {language_set[m]}", ) with c2.beta_expander("- Dataset creators"): language_creators = st.multiselect( "Where does the text in the dataset come from?", options=creator_set["language"], default=pre_loaded["language_creators"], ) annotations_creators = st.multiselect( "Where do the annotations in the dataset come from?", options=creator_set["annotations"], default=pre_loaded["annotations_creators"], ) licenses = st.multiselect( "What licenses is the dataset under?", options=list(license_set.keys()), default=pre_loaded["licenses"], format_func= lambda l: f"{l} : {license_set[l]}", ) if "other" in licenses: other_license = st.text_input( "You selected 'other' type of license. Please enter a short hyphen-separated description:", value='my-license', ) st.write(f"Registering other-{other_license} license") licenses[licenses.index("other")] = f"other-{other_license}" # link ro supported datasets pre_select_ext_a = [] if "original" in pre_loaded["source_datasets"]: pre_select_ext_a += ["original"] if any([p.startswith("extended") for p in pre_loaded["source_datasets"]]): pre_select_ext_a += ["extended"] extended = st.multiselect( "Does the dataset contain original data and/or was it extended from other datasets?", options=["original", "extended"], default=pre_select_ext_a, ) source_datasets = ["original"] if "original" in extended else [] if "extended" in extended: pre_select_ext_b = [p.split('|')[1] for p in pre_loaded["source_datasets"] if p.startswith("extended")] extended_sources = st.multiselect( "Which other datasets does this one use data from?", options=all_dataset_ids, default=pre_select_ext_b, ) if "other" in extended_sources: other_extended_sources = st.text_input( "You selected 'other' dataset. Please enter a short hyphen-separated description:", value='my-dataset', ) st.write(f"Registering other-{other_extended_sources} dataset") extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}" source_datasets += [f"extended|{src}" for src in extended_sources] num_examples = ( sum([dct.get('num_examples', 0) for spl, dct in config_infos['splits'].items()]) if config_infos.get('splits', None) is not None else -1 ) if num_examples < 0: size_cat = "unknown" elif num_examples < 1000: size_cat = "n<1K" elif num_examples < 10000: size_cat = "1K show full task set <----", expanded=True): st.write(task_set)