Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from typing import List
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
class Space:
|
8 |
+
def __init__(self, title, id):
|
9 |
+
self.title = title
|
10 |
+
self.id = id
|
11 |
+
|
12 |
+
|
13 |
+
class News:
|
14 |
+
def __init__(self, title, link):
|
15 |
+
self.title = title
|
16 |
+
self.link = link
|
17 |
+
|
18 |
+
|
19 |
+
class Category:
|
20 |
+
def __init__(self, category_id, title, description, news: List[News] = None, spaces=None):
|
21 |
+
if news is None:
|
22 |
+
news = []
|
23 |
+
|
24 |
+
if spaces is None:
|
25 |
+
spaces = []
|
26 |
+
|
27 |
+
self.category_id = category_id
|
28 |
+
self.title = title
|
29 |
+
self.description = description
|
30 |
+
self.news = news
|
31 |
+
self.spaces = spaces
|
32 |
+
|
33 |
+
|
34 |
+
client_side = Category(
|
35 |
+
category_id="client_side",
|
36 |
+
title="Client Side Libraries 🤝",
|
37 |
+
description="""
|
38 |
+
These are client side libraries to easily interact or run training with models, datasets and Spaces on Hugging Face Hub
|
39 |
+
<br><br>
|
40 |
+
""",
|
41 |
+
news=[
|
42 |
+
News(
|
43 |
+
title="We have launched huggingface.js to let developers interact with models on Hub in an API-like manner🚀",
|
44 |
+
link="https://github.com/huggingface/huggingface.js"
|
45 |
+
),
|
46 |
+
News(
|
47 |
+
title="Xenova released transformers.js, to let you run powerful transformers easily inside browsers 🦾",
|
48 |
+
link="https://github.com/xenova/transformers.js"
|
49 |
+
),
|
50 |
+
News(
|
51 |
+
title="Elixir 🤝 Hugging Face with Bumblebee",
|
52 |
+
link="https://news.livebook.dev/announcing-bumblebee-gpt2-stable-diffusion-and-more-in-elixir-3Op73O"
|
53 |
+
)
|
54 |
+
],
|
55 |
+
)
|
56 |
+
documentation = Category(
|
57 |
+
category_id="documentation",
|
58 |
+
title="Documentation 📚",
|
59 |
+
description="""
|
60 |
+
These are our documentation efforts and blogs specifically targeted for software developers to get them started with building machine learning 🦾
|
61 |
+
<br><br>
|
62 |
+
""",
|
63 |
+
news=[
|
64 |
+
News(
|
65 |
+
title="Tasks: Wikipedia of machine learning to easily find the model you need for your use case and get started with building! 📚 ",
|
66 |
+
link="https://www.technologyreview.com/2023/03/22/1070167/these-news-tool-let-you-see-for-yourself-how-biased-ai-image-models-are/"
|
67 |
+
),
|
68 |
+
News(
|
69 |
+
title="huggingface.js Documentation",
|
70 |
+
link="https://www.wired.com/story/welfare-state-algorithms/"
|
71 |
+
),
|
72 |
+
News(
|
73 |
+
title="From GPT2 to Stable Diffusion: Hugging Face arrives to the Elixir community",
|
74 |
+
link="https://huggingface.co/blog/elixir-bumblebee"
|
75 |
+
),
|
76 |
+
News(
|
77 |
+
title="Swift 🧨Diffusers: Fast Stable Diffusion for Mac",
|
78 |
+
link="https://huggingface.co/blog/fast-mac-diffusers"
|
79 |
+
),
|
80 |
+
News(
|
81 |
+
title="Using Stable Diffusion with Core ML on Apple Silicon",
|
82 |
+
link="https://huggingface.co/blog/diffusers-coreml"
|
83 |
+
),
|
84 |
+
News(
|
85 |
+
title="Tutorial: How Hugging Face achieved a 2x performance boost for Question Answering with DistilBERT in Node.js",
|
86 |
+
link="https://blog.tensorflow.org/2020/05/how-hugging-face-achieved-2x-performance-boost-question-answering.html"
|
87 |
+
)
|
88 |
+
],
|
89 |
+
)
|
90 |
+
use_cases = Category(
|
91 |
+
category_id="use_cases",
|
92 |
+
title="Use Cases",
|
93 |
+
description="""
|
94 |
+
These are resources compiled to demonstrate various use cases across different niches in software development.
|
95 |
+
<br><br>
|
96 |
+
""",
|
97 |
+
news=[
|
98 |
+
News(
|
99 |
+
title="AI for Game Development: Creating a Farming Game in 5 Days. Part 1",
|
100 |
+
link="https://huggingface.co/blog/ml-for-games-1"
|
101 |
+
),
|
102 |
+
News(
|
103 |
+
title="AI for Game Development: Creating a Farming Game in 5 Days. Part 2",
|
104 |
+
link="https://huggingface.co/blog/ml-for-games-2"
|
105 |
+
),
|
106 |
+
News(
|
107 |
+
title="3D Asset Generation: AI for Game Development #3",
|
108 |
+
link="https://huggingface.co/blog/ml-for-games-3"
|
109 |
+
),
|
110 |
+
News(
|
111 |
+
title="Supercharged Customer Service with Machine Learning",
|
112 |
+
link="https://huggingface.co/blog/supercharge-customer-service-with-machine-learning"
|
113 |
+
)
|
114 |
+
],
|
115 |
+
)
|
116 |
+
cloud = Category(
|
117 |
+
category_id="cloud",
|
118 |
+
title="☁️ Cloud Deployment",
|
119 |
+
description="""
|
120 |
+
This category includes resources on how to deploy machine learning models to cloud using various providers ☁️
|
121 |
+
<br><br>
|
122 |
+
""",
|
123 |
+
news=[
|
124 |
+
News(
|
125 |
+
title="Deploying 🤗 ViT on Kubernetes with TF Serving",
|
126 |
+
link="https://huggingface.co/blog/deploy-tfserving-kubernetes"
|
127 |
+
),
|
128 |
+
News(
|
129 |
+
title="An Overview of Inference Solutions on Hugging Face",
|
130 |
+
link="https://huggingface.co/blog/inference-update"
|
131 |
+
),
|
132 |
+
News(
|
133 |
+
title="Hugging Face Collaborates with Microsoft to Launch Hugging Face Endpoints on Azure",
|
134 |
+
link="https://huggingface.co/blog/hugging-face-endpoints-on-azure"
|
135 |
+
),
|
136 |
+
News(
|
137 |
+
title="Workshop: Getting started with Amazon Sagemaker Train a Hugging Face Transformers and deploy it",
|
138 |
+
link="https://www.youtube.com/watch?v=80ix-IyNnQI&ab_channel=AmazonWebServices"
|
139 |
+
),
|
140 |
+
News(
|
141 |
+
title="Getting Started with Hugging Face on AWS: Series of video tutorials",
|
142 |
+
link="https://www.youtube.com/watch?v=80ix-IyNnQI&ab_channel=AmazonWebServices"
|
143 |
+
),
|
144 |
+
],
|
145 |
+
)
|
146 |
+
|
147 |
+
|
148 |
+
categories = [client_side, documentation, cloud, use_cases]
|
149 |
+
|
150 |
+
|
151 |
+
def news_card(news):
|
152 |
+
with gr.Box():
|
153 |
+
with gr.Row(elem_id="news-row"):
|
154 |
+
gr.Markdown(f"{news.title}")
|
155 |
+
button = gr.Button(elem_id="article-button", value="Read more 🔗")
|
156 |
+
button.click(fn=None, _js=f"() => window.open('{news.link}')")
|
157 |
+
|
158 |
+
|
159 |
+
def space_card(space):
|
160 |
+
with gr.Box(elem_id="space-card"):
|
161 |
+
with gr.Row(elem_id="news-row"):
|
162 |
+
gr.Markdown(f"{space.title}")
|
163 |
+
button = gr.Button(elem_id="article-button", value="View 🔭")
|
164 |
+
button.click(fn=None, _js=f"() => window.open('https://hf.space/{space.id}')")
|
165 |
+
|
166 |
+
|
167 |
+
def category_tab(category):
|
168 |
+
with gr.Tab(label=category.title, elem_id="news-tab"):
|
169 |
+
with gr.Row():
|
170 |
+
with gr.Column():
|
171 |
+
gr.Markdown(category.description, elem_id="margin-top")
|
172 |
+
with gr.Column():
|
173 |
+
gr.Markdown("### Hugging Face News 📰")
|
174 |
+
[news_card(x) for x in category.news]
|
175 |
+
# with gr.Tab(label="Hugging Face Projects"):
|
176 |
+
# gr.Markdown("....")
|
177 |
+
with gr.Tab(label="Spaces"):
|
178 |
+
with gr.Row(elem_id="spaces-flex"):
|
179 |
+
[space_card(x) for x in category.spaces]
|
180 |
+
with gr.Tab(label="🤗 Hugging Face Papers"):
|
181 |
+
with gr.Row(elem_id="spaces-flex"):
|
182 |
+
[paper_tile(p) for p in papers.filter(lambda p: category.category_id in p["tags"])]
|
183 |
+
with gr.Tab(label="Models - Coming Soon!"):
|
184 |
+
gr.Markdown(elem_id="margin-top", value="#### Check back soon for featured models 🤗")
|
185 |
+
with gr.Tab(label="Datasets - Coming Soon!"):
|
186 |
+
gr.Markdown(elem_id="margin-top", value="#### Check back soon for featured datasets 🤗")
|
187 |
+
|
188 |
+
|
189 |
+
with gr.Blocks(css="#margin-top {margin-top: 15px} #center {text-align: center;} #news-tab {padding: 15px;} #news-tab h3 {margin: 0px; text-align: center;} #news-tab p {margin: 0px;} #article-button {flex-grow: initial;} #news-row {align-items: center;} #spaces-flex {flex-wrap: wrap; justify-content: space-around;} #space-card { display: flex; min-width: calc(90% / 3); max-width:calc(100% / 3); box-sizing: border-box;} #event-tabs {margin-top: 0px;} #spaces-flex > #paper-tile {min-width: 30%; max-width: 30%;}") as demo:
|
190 |
+
with gr.Row(elem_id="center"):
|
191 |
+
gr.Markdown("# Hugging Face for Software Developers")
|
192 |
+
|
193 |
+
gr.Markdown("""
|
194 |
+
At Hugging Face, we are committed to democratize the cutting-edge of machine learning for everyone. This page is dedicated to highlighting tools, documentation and projects – inside and outside Hugging Face – tailored to get software developers build with machine learning.
|
195 |
+
""")
|
196 |
+
|
197 |
+
with gr.Accordion(label="Events", open=False):
|
198 |
+
with gr.Tab(label="Upcoming Events"):
|
199 |
+
with gr.Row(elem_id="margin-top"):
|
200 |
+
gr.Markdown("We'll be announcing more events soon!")
|
201 |
+
|
202 |
+
with gr.Tab(label="Past Events"):
|
203 |
+
with gr.Row(elem_id="margin-top"):
|
204 |
+
with gr.Column(scale=1):
|
205 |
+
gr.Image(value="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/making-intelligence-banner.png", show_label=False)
|
206 |
+
with gr.Column(scale=2):
|
207 |
+
with gr.Tabs(elem_id="event-tabs"):
|
208 |
+
with gr.Tab("About the Event"):
|
209 |
+
gr.Markdown("""
|
210 |
+
We have done a series of workshops for building, deploying and scaling models using AWS SageMaker.
|
211 |
+
You can rewatch them [here](https://www.youtube.com/watch?v=pYqjCzoyWyo&ab_channel=HuggingFace).
|
212 |
+
**Date:** October 26 2021 **Location:** YouTube
|
213 |
+
""")
|
214 |
+
|
215 |
+
with gr.Accordion(label="Visit us over on the Hugging Face Discord!", open=False):
|
216 |
+
gr.Markdown("""
|
217 |
+
Follow these steps to join the discussion:
|
218 |
+
|
219 |
+
1. Go to [hf.co/join/discord](https://hf.co/join/discord) to join the Discord server.
|
220 |
+
2. Once you've registered, go to the `#role-assignment` channel.
|
221 |
+
3. Select the categories of your interest. Open Source ML is one that has different areas of machine learning.
|
222 |
+
""", elem_id="margin-top")
|
223 |
+
|
224 |
+
gr.Markdown("""
|
225 |
+
### What can you achieve as a developer using Machine Learning?
|
226 |
+
|
227 |
+
Following are different categories of interests that include tools and documentation for software developers.
|
228 |
+
""")
|
229 |
+
|
230 |
+
with gr.Column():
|
231 |
+
[category_tab(x) for x in categories]
|
232 |
+
|
233 |
+
demo.launch()
|