Spaces:
Running
Running
File size: 6,465 Bytes
3932541 83435d7 3932541 09564a6 3932541 83435d7 3932541 83435d7 3932541 c12f7f2 3932541 a0d87da 3932541 a0d87da 3932541 a046b93 3932541 a0d87da 3932541 743f616 83435d7 cbdec74 743f616 83435d7 743f616 83435d7 3932541 dadac84 83435d7 743f616 dadac84 83435d7 3932541 743f616 3932541 a046b93 743f616 3932541 743f616 83435d7 743f616 3932541 743f616 3932541 743f616 3932541 743f616 dadac84 743f616 83435d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import requests
import json
import pandas as pd
from tqdm.auto import tqdm
import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
cer_langs = ["ja", "zh-CN", "zh-HK", "zh-TW"]
with open("languages.json") as f:
lang2name = json.load(f)
suggested_datasets = [
"librispeech_asr",
"mozilla-foundation/common_voice_8_0",
"mozilla-foundation/common_voice_7_0",
"speech-recognition-community-v2/eval_data",
]
def make_clickable(model_name):
link = "https://huggingface.co/" + model_name
return f'<a target="_blank" href="{link}">{model_name}</a>'
def get_model_ids():
api = HfApi()
models = api.list_models(filter="hf-asr-leaderboard")
model_ids = [x.modelId for x in models]
return model_ids
def get_metadata(model_id):
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
def parse_metric_value(value):
if isinstance(value, str):
"".join(value.split("%"))
try:
value = float(value)
except: # noqa: E722
value = None
elif isinstance(value, float) and value < 1.1:
# assuming that WER is given in 0.xx format
value = 100 * value
elif isinstance(value, list):
if len(value) > 0:
value = value[0]
else:
value = None
value = round(value, 2) if value is not None else None
return value
def parse_metrics_rows(meta):
if "model-index" not in meta or "language" not in meta:
return None
lang = meta["language"]
lang = lang[0] if isinstance(lang, list) else lang
for result in meta["model-index"][0]["results"]:
if "dataset" not in result or "metrics" not in result:
continue
dataset = result["dataset"]["type"]
if "args" not in result["dataset"]:
continue
dataset_config = result["dataset"]["args"]
row = {"dataset": dataset, "lang": lang}
for metric in result["metrics"]:
type = metric["type"].lower().strip()
if type not in ["wer", "cer"]:
continue
value = parse_metric_value(metric["value"])
if value is None:
continue
if type not in row or value < row[type]:
# overwrite the metric if the new value is lower (e.g. with LM)
row[type] = value
if "wer" in row or "cer" in row:
yield row
@st.cache(ttl=600)
def get_data():
data = []
model_ids = get_model_ids()
for model_id in tqdm(model_ids[:10]):
meta = get_metadata(model_id)
if meta is None:
continue
for row in parse_metrics_rows(meta):
if row is None:
continue
row["model_id"] = model_id
data.append(row)
return pd.DataFrame.from_records(data)
def sort_datasets(datasets):
# 1. sort by name
datasets = sorted(datasets)
# 2. bring the suggested datasets to the top and append the rest
datasets = sorted(
datasets,
key=lambda dataset_id: suggested_datasets.index(dataset_id)
if dataset_id in suggested_datasets
else len(suggested_datasets),
)
return datasets
@st.cache(ttl=600)
def generate_dataset_info(datasets):
msg = f"""
The models have been trained and/or evaluated on the following datasets:
"""
for dataset_id in datasets:
if dataset_id in suggested_datasets:
msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id}) *(recommended)*\n"
else:
msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id})\n"
msg += """
Choose the dataset that is most relevant to your task and select it from the dropdown below.
"""
msg = "\n".join([line.strip() for line in msg.split("\n")])
return msg
dataframe = get_data()
dataframe = dataframe.fillna("")
st.sidebar.image("logo.png", width=200)
st.markdown("# Speech Recognition Models Leaderboard")
st.markdown(
"This is a leaderboard over all speech recognition models and datasets.\n\n"
"β¬
Please select the language you want to find a model for from the dropdown on the left."
)
lang = st.sidebar.selectbox(
"Language",
sorted(dataframe["lang"].unique(), key=lambda key: lang2name.get(key, key)),
format_func=lambda key: lang2name.get(key, key),
index=0,
)
lang_df = dataframe[dataframe.lang == lang]
sorted_datasets = sort_datasets(lang_df["dataset"].unique())
text = generate_dataset_info(sorted_datasets)
st.sidebar.markdown(text)
lang_name = lang2name[lang] if lang in lang2name else ""
num_models = len(lang_df["model_id"].unique())
num_datasets = len(lang_df["dataset"].unique())
text = f"""
For the `{lang}` ({lang_name}) language, there are currently `{num_models}` model(s)
trained on `{num_datasets}` dataset(s) available for `automatic-speech-recognition`.
"""
st.markdown(text)
dataset = st.sidebar.selectbox(
"Dataset",
sorted_datasets,
index=0,
)
dataset_df = lang_df[lang_df.dataset == dataset]
# sort by WER or CER depending on the language
if lang in cer_langs:
dataset_df = dataset_df[["model_id", "cer"]]
dataset_df.sort_values("cer", inplace=True)
else:
dataset_df = dataset_df[["model_id", "wer"]]
dataset_df.sort_values("wer", inplace=True)
dataset_df.rename(
columns={
"model_id": "Model",
"wer": "WER (lower is better)",
"cer": "CER (lower is better)",
},
inplace=True,
)
st.markdown(
"Please click on the model's name to be redirected to its model card which includes documentation and examples on how to use it."
)
# display the model ranks
dataset_df = dataset_df.reset_index(drop=True)
dataset_df.index += 1
# turn the model ids into clickable links
dataset_df["Model"] = dataset_df["Model"].apply(make_clickable)
table_html = dataset_df.to_html(escape=False)
table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
st.write(table_html, unsafe_allow_html=True)
if lang in cer_langs:
st.markdown(
"---\n\* **CER** is [Char Error Rate](https://huggingface.co/metrics/cer)"
)
else:
st.markdown(
"---\n\* **WER** is [Word Error Rate](https://huggingface.co/metrics/wer)"
)
|