File size: 9,150 Bytes
7357f85
5acf3a4
7357f85
7956c78
ebb4888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5853d12
058d10c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb4888
058d10c
 
 
 
 
 
ebb4888
058d10c
 
 
 
ebb4888
058d10c
 
 
5acf3a4
ebb4888
 
 
 
 
 
 
 
 
 
5853d12
 
058d10c
ebb4888
 
 
5acf3a4
ebb4888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058d10c
5acf3a4
ebb4888
 
 
 
 
 
 
 
 
 
058d10c
fd28154
5acf3a4
ebb4888
058d10c
ebb4888
 
 
 
 
 
 
 
 
 
 
 
 
 
058d10c
ebb4888
 
 
 
7956c78
ebb4888
 
 
 
 
7956c78
ebb4888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058d10c
ebb4888
 
 
 
 
 
058d10c
ebb4888
 
 
 
 
 
058d10c
 
ebb4888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058d10c
 
ebb4888
058d10c
 
ebb4888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058d10c
 
7956c78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import type { Model, ModelWithTokenizer } from "$lib/types.js";
import { json } from "@sveltejs/kit";
import type { RequestHandler } from "./$types.js";

enum CacheStatus {
	SUCCESS = "success",
	PARTIAL = "partial",
	ERROR = "error",
}

type Cache = {
	data: ModelWithTokenizer[] | undefined;
	timestamp: number;
	status: CacheStatus;
	// Track failed models to selectively refetch them
	failedTokenizers: string[]; // Using array instead of Set for serialization compatibility
	failedApiCalls: {
		textGeneration: boolean;
		imageTextToText: boolean;
	};
};

const cache: Cache = {
	data: undefined,
	timestamp: 0,
	status: CacheStatus.ERROR,
	failedTokenizers: [],
	failedApiCalls: {
		textGeneration: false,
		imageTextToText: false,
	},
};

// The time between cache refreshes
const FULL_CACHE_REFRESH = 1000 * 60 * 60; // 1 hour
const PARTIAL_CACHE_REFRESH = 1000 * 60 * 15; // 15 minutes (shorter for partial results)

const headers: HeadersInit = {
	"Upgrade-Insecure-Requests": "1",
	"Sec-Fetch-Dest": "document",
	"Sec-Fetch-Mode": "navigate",
	"Sec-Fetch-Site": "none",
	"Sec-Fetch-User": "?1",
	"Priority": "u=0, i",
	"Pragma": "no-cache",
	"Cache-Control": "no-cache",
};

const requestInit: RequestInit = {
	credentials: "include",
	headers,
	method: "GET",
	mode: "cors",
};

interface ApiQueryParams {
	pipeline_tag?: "text-generation" | "image-text-to-text";
	filter: string;
	inference_provider: string;
	limit: number;
	expand: string[];
}

const queryParams: ApiQueryParams = {
	filter: "conversational",
	inference_provider: "all",
	limit: 100,
	expand: ["inferenceProviderMapping", "config", "library_name", "pipeline_tag", "tags", "mask_token", "trendingScore"],
};

const baseUrl = "https://huggingface.co/api/models";

function buildApiUrl(params: ApiQueryParams): string {
	const url = new URL(baseUrl);

	// Add simple params
	Object.entries(params).forEach(([key, value]) => {
		if (!Array.isArray(value)) {
			url.searchParams.append(key, String(value));
		}
	});

	// Handle array params specially
	params.expand.forEach(item => {
		url.searchParams.append("expand[]", item);
	});

	return url.toString();
}

export const GET: RequestHandler = async ({ fetch }) => {
	const timestamp = Date.now();

	// Determine if cache is valid
	const elapsed = timestamp - cache.timestamp;
	const cacheRefreshTime = cache.status === CacheStatus.SUCCESS ? FULL_CACHE_REFRESH : PARTIAL_CACHE_REFRESH;

	// Use cache if it's still valid and has data
	if (elapsed < cacheRefreshTime && cache.data?.length) {
		console.log(`Using ${cache.status} cache (${Math.floor(elapsed / 1000 / 60)} min old)`);
		return json(cache.data);
	}

	try {
		// Determine which API calls we need to make based on cache status
		const needTextGenFetch = elapsed >= FULL_CACHE_REFRESH || cache.failedApiCalls.textGeneration;
		const needImgTextFetch = elapsed >= FULL_CACHE_REFRESH || cache.failedApiCalls.imageTextToText;

		// Track the existing models we'll keep
		const existingModels = new Map<string, ModelWithTokenizer>();
		if (cache.data) {
			cache.data.forEach(model => {
				existingModels.set(model.id, model);
			});
		}

		// Initialize new tracking for failed requests
		const newFailedTokenizers: string[] = [];
		const newFailedApiCalls = {
			textGeneration: false,
			imageTextToText: false,
		};

		// Fetch models as needed
		let textGenModels: Model[] = [];
		let imgText2TextModels: Model[] = [];

		// Make the needed API calls in parallel
		const apiPromises: Promise<Response | void>[] = [];
		if (needTextGenFetch) {
			apiPromises.push(
				fetch(buildApiUrl({ ...queryParams, pipeline_tag: "text-generation" }), requestInit).then(async response => {
					if (!response.ok) {
						console.error(`Error fetching text-generation models`, response.status, response.statusText);
						newFailedApiCalls.textGeneration = true;
					} else {
						textGenModels = await response.json();
					}
				})
			);
		}

		if (needImgTextFetch) {
			apiPromises.push(
				fetch(buildApiUrl({ ...queryParams, pipeline_tag: "image-text-to-text" }), requestInit).then(async response => {
					if (!response.ok) {
						console.error(`Error fetching image-text-to-text models`, response.status, response.statusText);
						newFailedApiCalls.imageTextToText = true;
					} else {
						imgText2TextModels = await response.json();
					}
				})
			);
		}

		await Promise.all(apiPromises);

		// If both needed API calls failed and we have cached data, use it
		if (
			needTextGenFetch &&
			newFailedApiCalls.textGeneration &&
			needImgTextFetch &&
			newFailedApiCalls.imageTextToText &&
			cache.data?.length
		) {
			console.log("All API requests failed. Using existing cache as fallback.");
			cache.status = CacheStatus.ERROR;
			cache.timestamp = timestamp; // Update timestamp to avoid rapid retry loops
			cache.failedApiCalls = newFailedApiCalls;
			return json(cache.data);
		}

		// For API calls we didn't need to make, use cached models
		if (!needTextGenFetch && cache.data) {
			textGenModels = cache.data.filter(model => model.pipeline_tag === "text-generation").map(model => model as Model);
		}

		if (!needImgTextFetch && cache.data) {
			imgText2TextModels = cache.data
				.filter(model => model.pipeline_tag === "image-text-to-text")
				.map(model => model as Model);
		}

		const allModels: Model[] = [...textGenModels, ...imgText2TextModels];

		const modelsNeedingTokenizer: Model[] = [];

		// First, use existing model data when possible
		allModels.forEach(model => {
			const existingModel = existingModels.get(model.id);

			// Only fetch tokenizer if:
			// 1. We don't have this model yet, OR
			// 2. It's in our failed tokenizers list AND we're doing a refresh, OR
			// 3. We're doing a full refresh
			if (
				!existingModel ||
				(cache.failedTokenizers.includes(model.id) && elapsed >= PARTIAL_CACHE_REFRESH) ||
				elapsed >= FULL_CACHE_REFRESH
			) {
				modelsNeedingTokenizer.push(model);
			}
		});

		console.log(`Total models: ${allModels.length}, Models needing tokenizer fetch: ${modelsNeedingTokenizer.length}`);

		// Prepare result - start with existing models we want to keep
		const models: ModelWithTokenizer[] = [];

		// Add models we're not re-fetching tokenizers for
		allModels.forEach(model => {
			const existingModel = existingModels.get(model.id);
			if (existingModel && !modelsNeedingTokenizer.some(m => m.id === model.id)) {
				models.push(existingModel);
			}
		});

		// Fetch tokenizer configs only for models that need it, with concurrency limit
		const batchSize = 10; // Limit concurrent requests

		for (let i = 0; i < modelsNeedingTokenizer.length; i += batchSize) {
			const batch = modelsNeedingTokenizer.slice(i, i + batchSize);
			const batchPromises = batch.map(async model => {
				try {
					const configUrl = `https://huggingface.co/${model.id}/raw/main/tokenizer_config.json`;
					const res = await fetch(configUrl, {
						credentials: "include",
						headers,
						method: "GET",
						mode: "cors",
					});

					if (!res.ok) {
						if (!newFailedTokenizers.includes(model.id)) {
							newFailedTokenizers.push(model.id);
						}
						return null;
					}

					const tokenizerConfig = await res.json();
					return { ...model, tokenizerConfig } satisfies ModelWithTokenizer;
				} catch (error) {
					console.error(`Error processing tokenizer for ${model.id}:`, error);
					if (!newFailedTokenizers.includes(model.id)) {
						newFailedTokenizers.push(model.id);
					}
					return null;
				}
			});

			const batchResults = await Promise.all(batchPromises);
			models.push(...batchResults.filter((model): model is ModelWithTokenizer => model !== null));
		}

		models.sort((a, b) => a.id.toLowerCase().localeCompare(b.id.toLowerCase()));

		// Determine cache status based on failures
		const hasApiFailures = newFailedApiCalls.textGeneration || newFailedApiCalls.imageTextToText;
		const hasSignificantTokenizerFailures = newFailedTokenizers.length > modelsNeedingTokenizer.length * 0.2;

		const cacheStatus = hasApiFailures || hasSignificantTokenizerFailures ? CacheStatus.PARTIAL : CacheStatus.SUCCESS;

		cache.data = models;
		cache.timestamp = timestamp;
		cache.status = cacheStatus;
		cache.failedTokenizers = newFailedTokenizers;
		cache.failedApiCalls = newFailedApiCalls;

		console.log(
			`Cache updated: ${models.length} models, status: ${cacheStatus}, ` +
				`failed tokenizers: ${newFailedTokenizers.length}, ` +
				`API failures: text=${newFailedApiCalls.textGeneration}, img=${newFailedApiCalls.imageTextToText}`
		);

		return json(models);
	} catch (error) {
		console.error("Error fetching models:", error);

		// If we have cached data, use it as fallback
		if (cache.data?.length) {
			cache.status = CacheStatus.ERROR;
			// Mark all API calls as failed so we retry them next time
			cache.failedApiCalls = {
				textGeneration: true,
				imageTextToText: true,
			};
			return json(cache.data);
		}

		// No cache available, return empty array
		cache.status = CacheStatus.ERROR;
		cache.timestamp = timestamp;
		cache.failedApiCalls = {
			textGeneration: true,
			imageTextToText: true,
		};
		return json([]);
	}
};