File size: 9,150 Bytes
7357f85 5acf3a4 7357f85 7956c78 ebb4888 5853d12 058d10c ebb4888 058d10c ebb4888 058d10c ebb4888 058d10c 5acf3a4 ebb4888 5853d12 058d10c ebb4888 5acf3a4 ebb4888 058d10c 5acf3a4 ebb4888 058d10c fd28154 5acf3a4 ebb4888 058d10c ebb4888 058d10c ebb4888 7956c78 ebb4888 7956c78 ebb4888 058d10c ebb4888 058d10c ebb4888 058d10c ebb4888 058d10c ebb4888 058d10c ebb4888 058d10c 7956c78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import type { Model, ModelWithTokenizer } from "$lib/types.js";
import { json } from "@sveltejs/kit";
import type { RequestHandler } from "./$types.js";
enum CacheStatus {
SUCCESS = "success",
PARTIAL = "partial",
ERROR = "error",
}
type Cache = {
data: ModelWithTokenizer[] | undefined;
timestamp: number;
status: CacheStatus;
// Track failed models to selectively refetch them
failedTokenizers: string[]; // Using array instead of Set for serialization compatibility
failedApiCalls: {
textGeneration: boolean;
imageTextToText: boolean;
};
};
const cache: Cache = {
data: undefined,
timestamp: 0,
status: CacheStatus.ERROR,
failedTokenizers: [],
failedApiCalls: {
textGeneration: false,
imageTextToText: false,
},
};
// The time between cache refreshes
const FULL_CACHE_REFRESH = 1000 * 60 * 60; // 1 hour
const PARTIAL_CACHE_REFRESH = 1000 * 60 * 15; // 15 minutes (shorter for partial results)
const headers: HeadersInit = {
"Upgrade-Insecure-Requests": "1",
"Sec-Fetch-Dest": "document",
"Sec-Fetch-Mode": "navigate",
"Sec-Fetch-Site": "none",
"Sec-Fetch-User": "?1",
"Priority": "u=0, i",
"Pragma": "no-cache",
"Cache-Control": "no-cache",
};
const requestInit: RequestInit = {
credentials: "include",
headers,
method: "GET",
mode: "cors",
};
interface ApiQueryParams {
pipeline_tag?: "text-generation" | "image-text-to-text";
filter: string;
inference_provider: string;
limit: number;
expand: string[];
}
const queryParams: ApiQueryParams = {
filter: "conversational",
inference_provider: "all",
limit: 100,
expand: ["inferenceProviderMapping", "config", "library_name", "pipeline_tag", "tags", "mask_token", "trendingScore"],
};
const baseUrl = "https://huggingface.co/api/models";
function buildApiUrl(params: ApiQueryParams): string {
const url = new URL(baseUrl);
// Add simple params
Object.entries(params).forEach(([key, value]) => {
if (!Array.isArray(value)) {
url.searchParams.append(key, String(value));
}
});
// Handle array params specially
params.expand.forEach(item => {
url.searchParams.append("expand[]", item);
});
return url.toString();
}
export const GET: RequestHandler = async ({ fetch }) => {
const timestamp = Date.now();
// Determine if cache is valid
const elapsed = timestamp - cache.timestamp;
const cacheRefreshTime = cache.status === CacheStatus.SUCCESS ? FULL_CACHE_REFRESH : PARTIAL_CACHE_REFRESH;
// Use cache if it's still valid and has data
if (elapsed < cacheRefreshTime && cache.data?.length) {
console.log(`Using ${cache.status} cache (${Math.floor(elapsed / 1000 / 60)} min old)`);
return json(cache.data);
}
try {
// Determine which API calls we need to make based on cache status
const needTextGenFetch = elapsed >= FULL_CACHE_REFRESH || cache.failedApiCalls.textGeneration;
const needImgTextFetch = elapsed >= FULL_CACHE_REFRESH || cache.failedApiCalls.imageTextToText;
// Track the existing models we'll keep
const existingModels = new Map<string, ModelWithTokenizer>();
if (cache.data) {
cache.data.forEach(model => {
existingModels.set(model.id, model);
});
}
// Initialize new tracking for failed requests
const newFailedTokenizers: string[] = [];
const newFailedApiCalls = {
textGeneration: false,
imageTextToText: false,
};
// Fetch models as needed
let textGenModels: Model[] = [];
let imgText2TextModels: Model[] = [];
// Make the needed API calls in parallel
const apiPromises: Promise<Response | void>[] = [];
if (needTextGenFetch) {
apiPromises.push(
fetch(buildApiUrl({ ...queryParams, pipeline_tag: "text-generation" }), requestInit).then(async response => {
if (!response.ok) {
console.error(`Error fetching text-generation models`, response.status, response.statusText);
newFailedApiCalls.textGeneration = true;
} else {
textGenModels = await response.json();
}
})
);
}
if (needImgTextFetch) {
apiPromises.push(
fetch(buildApiUrl({ ...queryParams, pipeline_tag: "image-text-to-text" }), requestInit).then(async response => {
if (!response.ok) {
console.error(`Error fetching image-text-to-text models`, response.status, response.statusText);
newFailedApiCalls.imageTextToText = true;
} else {
imgText2TextModels = await response.json();
}
})
);
}
await Promise.all(apiPromises);
// If both needed API calls failed and we have cached data, use it
if (
needTextGenFetch &&
newFailedApiCalls.textGeneration &&
needImgTextFetch &&
newFailedApiCalls.imageTextToText &&
cache.data?.length
) {
console.log("All API requests failed. Using existing cache as fallback.");
cache.status = CacheStatus.ERROR;
cache.timestamp = timestamp; // Update timestamp to avoid rapid retry loops
cache.failedApiCalls = newFailedApiCalls;
return json(cache.data);
}
// For API calls we didn't need to make, use cached models
if (!needTextGenFetch && cache.data) {
textGenModels = cache.data.filter(model => model.pipeline_tag === "text-generation").map(model => model as Model);
}
if (!needImgTextFetch && cache.data) {
imgText2TextModels = cache.data
.filter(model => model.pipeline_tag === "image-text-to-text")
.map(model => model as Model);
}
const allModels: Model[] = [...textGenModels, ...imgText2TextModels];
const modelsNeedingTokenizer: Model[] = [];
// First, use existing model data when possible
allModels.forEach(model => {
const existingModel = existingModels.get(model.id);
// Only fetch tokenizer if:
// 1. We don't have this model yet, OR
// 2. It's in our failed tokenizers list AND we're doing a refresh, OR
// 3. We're doing a full refresh
if (
!existingModel ||
(cache.failedTokenizers.includes(model.id) && elapsed >= PARTIAL_CACHE_REFRESH) ||
elapsed >= FULL_CACHE_REFRESH
) {
modelsNeedingTokenizer.push(model);
}
});
console.log(`Total models: ${allModels.length}, Models needing tokenizer fetch: ${modelsNeedingTokenizer.length}`);
// Prepare result - start with existing models we want to keep
const models: ModelWithTokenizer[] = [];
// Add models we're not re-fetching tokenizers for
allModels.forEach(model => {
const existingModel = existingModels.get(model.id);
if (existingModel && !modelsNeedingTokenizer.some(m => m.id === model.id)) {
models.push(existingModel);
}
});
// Fetch tokenizer configs only for models that need it, with concurrency limit
const batchSize = 10; // Limit concurrent requests
for (let i = 0; i < modelsNeedingTokenizer.length; i += batchSize) {
const batch = modelsNeedingTokenizer.slice(i, i + batchSize);
const batchPromises = batch.map(async model => {
try {
const configUrl = `https://huggingface.co/${model.id}/raw/main/tokenizer_config.json`;
const res = await fetch(configUrl, {
credentials: "include",
headers,
method: "GET",
mode: "cors",
});
if (!res.ok) {
if (!newFailedTokenizers.includes(model.id)) {
newFailedTokenizers.push(model.id);
}
return null;
}
const tokenizerConfig = await res.json();
return { ...model, tokenizerConfig } satisfies ModelWithTokenizer;
} catch (error) {
console.error(`Error processing tokenizer for ${model.id}:`, error);
if (!newFailedTokenizers.includes(model.id)) {
newFailedTokenizers.push(model.id);
}
return null;
}
});
const batchResults = await Promise.all(batchPromises);
models.push(...batchResults.filter((model): model is ModelWithTokenizer => model !== null));
}
models.sort((a, b) => a.id.toLowerCase().localeCompare(b.id.toLowerCase()));
// Determine cache status based on failures
const hasApiFailures = newFailedApiCalls.textGeneration || newFailedApiCalls.imageTextToText;
const hasSignificantTokenizerFailures = newFailedTokenizers.length > modelsNeedingTokenizer.length * 0.2;
const cacheStatus = hasApiFailures || hasSignificantTokenizerFailures ? CacheStatus.PARTIAL : CacheStatus.SUCCESS;
cache.data = models;
cache.timestamp = timestamp;
cache.status = cacheStatus;
cache.failedTokenizers = newFailedTokenizers;
cache.failedApiCalls = newFailedApiCalls;
console.log(
`Cache updated: ${models.length} models, status: ${cacheStatus}, ` +
`failed tokenizers: ${newFailedTokenizers.length}, ` +
`API failures: text=${newFailedApiCalls.textGeneration}, img=${newFailedApiCalls.imageTextToText}`
);
return json(models);
} catch (error) {
console.error("Error fetching models:", error);
// If we have cached data, use it as fallback
if (cache.data?.length) {
cache.status = CacheStatus.ERROR;
// Mark all API calls as failed so we retry them next time
cache.failedApiCalls = {
textGeneration: true,
imageTextToText: true,
};
return json(cache.data);
}
// No cache available, return empty array
cache.status = CacheStatus.ERROR;
cache.timestamp = timestamp;
cache.failedApiCalls = {
textGeneration: true,
imageTextToText: true,
};
return json([]);
}
};
|