Thomas G. Lopes
commited on
Commit
·
b924465
1
Parent(s):
1a8c098
add snippets
Browse files- src/lib/components/InferencePlayground/InferencePlayground.svelte +2 -2
- src/lib/components/InferencePlayground/InferencePlaygroundCodeSnippets.svelte +60 -434
- src/lib/components/InferencePlayground/InferencePlaygroundConversation.svelte +1 -1
- src/lib/components/InferencePlayground/InferencePlaygroundConversationHeader.svelte +2 -2
- src/lib/components/InferencePlayground/InferencePlaygroundGenerationConfig.svelte +1 -1
- src/lib/components/InferencePlayground/InferencePlaygroundMessage.svelte +1 -1
- src/lib/components/InferencePlayground/InferencePlaygroundModelSelector.svelte +2 -2
- src/lib/components/InferencePlayground/InferencePlaygroundModelSelectorModal.svelte +1 -1
- src/lib/components/InferencePlayground/InferencePlaygroundProviderSelect.svelte +10 -17
- src/lib/components/InferencePlayground/inferencePlaygroundUtils.ts +47 -3
- src/lib/components/InferencePlayground/types.ts +0 -27
- src/lib/fetchers/providers.ts +0 -77
- src/lib/stores/models.ts +2 -2
- src/lib/stores/session.ts +11 -7
- src/lib/types.ts +158 -0
- src/lib/utils/object.ts +4 -0
- src/routes/+page.server.ts +6 -7
src/lib/components/InferencePlayground/InferencePlayground.svelte
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
<script lang="ts">
|
2 |
-
import type { Conversation, ConversationMessage,
|
3 |
|
4 |
import {
|
5 |
handleNonStreamingResponse,
|
@@ -194,7 +194,7 @@
|
|
194 |
}
|
195 |
}
|
196 |
|
197 |
-
function addCompareModel(modelId:
|
198 |
const model = $models.find(m => m.id === modelId);
|
199 |
if (!model || $session.conversations.length === 2) {
|
200 |
return;
|
|
|
1 |
<script lang="ts">
|
2 |
+
import type { Conversation, ConversationMessage, ModelWithTokenizer } from "$lib/types";
|
3 |
|
4 |
import {
|
5 |
handleNonStreamingResponse,
|
|
|
194 |
}
|
195 |
}
|
196 |
|
197 |
+
function addCompareModel(modelId: ModelWithTokenizer["id"]) {
|
198 |
const model = $models.find(m => m.id === modelId);
|
199 |
if (!model || $session.conversations.length === 2) {
|
200 |
return;
|
src/lib/components/InferencePlayground/InferencePlaygroundCodeSnippets.svelte
CHANGED
@@ -1,15 +1,20 @@
|
|
1 |
<script lang="ts">
|
2 |
-
import type { Conversation } from "
|
3 |
|
4 |
-
import { createEventDispatcher, onDestroy } from "svelte";
|
5 |
import hljs from "highlight.js/lib/core";
|
|
|
6 |
import javascript from "highlight.js/lib/languages/javascript";
|
7 |
import python from "highlight.js/lib/languages/python";
|
8 |
-
import
|
9 |
|
10 |
-
import IconCopyCode from "../Icons/IconCopyCode.svelte";
|
11 |
-
import { isSystemPromptSupported } from "./inferencePlaygroundUtils";
|
12 |
import { token } from "$lib/stores/token";
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
hljs.registerLanguage("javascript", javascript);
|
15 |
hljs.registerLanguage("python", python);
|
@@ -24,44 +29,26 @@
|
|
24 |
const labelsByLanguage: Record<Language, string> = {
|
25 |
javascript: "JavaScript",
|
26 |
python: "Python",
|
27 |
-
http: "
|
28 |
};
|
29 |
|
30 |
-
interface Snippet {
|
31 |
-
label: string;
|
32 |
-
code: string;
|
33 |
-
language?: Language;
|
34 |
-
needsToken?: boolean;
|
35 |
-
}
|
36 |
-
|
37 |
-
interface ClientSnippet {
|
38 |
-
name: string;
|
39 |
-
snippets: Snippet[];
|
40 |
-
}
|
41 |
-
|
42 |
-
interface MessagesJoiner {
|
43 |
-
sep: string;
|
44 |
-
start: string;
|
45 |
-
end: string;
|
46 |
-
}
|
47 |
-
|
48 |
let selectedLanguage: Language = "javascript";
|
49 |
let timeout: ReturnType<typeof setTimeout>;
|
50 |
let showToken = false;
|
51 |
|
52 |
$: tokenStr = getTokenStr(showToken);
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
$: clientSnippetsByLang = {
|
55 |
-
javascript:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
python: [
|
60 |
-
{ name: "huggingface_hub", snippets: getPythonSnippetsHfClient(conversation, tokenStr) },
|
61 |
-
{ name: "openai", snippets: getPythonSnippetsOAIClient(conversation, tokenStr) },
|
62 |
-
],
|
63 |
-
http: [{ name: "curl", snippets: getHttpSnippets(conversation, tokenStr) }],
|
64 |
-
} as Record<Language, ClientSnippet[]>;
|
65 |
|
66 |
const selectedClientIdxByLang: Record<Language, number> = Object.fromEntries(lanuages.map(lang => [lang, 0]));
|
67 |
|
@@ -72,370 +59,12 @@
|
|
72 |
return "YOUR_HF_TOKEN";
|
73 |
}
|
74 |
|
75 |
-
function getMessages() {
|
76 |
-
const placeholder = [{ role: "user", content: "Tell me a story" }];
|
77 |
-
|
78 |
-
let messages = [...conversation.messages];
|
79 |
-
if (messages.length === 1 && messages[0]?.role === "user" && !messages[0]?.content) {
|
80 |
-
messages = placeholder;
|
81 |
-
}
|
82 |
-
|
83 |
-
const { model, systemMessage } = conversation;
|
84 |
-
if (isSystemPromptSupported(model) && systemMessage.content?.length) {
|
85 |
-
messages.unshift(systemMessage);
|
86 |
-
}
|
87 |
-
|
88 |
-
const res = messages.map(({ role, content }) => ({
|
89 |
-
role,
|
90 |
-
content: JSON.stringify(content).slice(1, -1),
|
91 |
-
}));
|
92 |
-
messages = res;
|
93 |
-
|
94 |
-
return res;
|
95 |
-
}
|
96 |
-
|
97 |
function highlight(code: string, language: Language) {
|
98 |
-
return hljs.highlight(code, { language }).value;
|
99 |
-
}
|
100 |
-
|
101 |
-
function getJavascriptSnippetsHfClient(conversation: Conversation, tokenStr: string) {
|
102 |
-
const formattedMessages = ({ sep, start, end }: MessagesJoiner) =>
|
103 |
-
start +
|
104 |
-
getMessages()
|
105 |
-
.map(({ role, content }) => `{ role: "${role}", content: "${content}" }`)
|
106 |
-
.join(sep) +
|
107 |
-
end;
|
108 |
-
|
109 |
-
const formattedConfig = ({ sep, start, end }: MessagesJoiner) =>
|
110 |
-
start +
|
111 |
-
Object.entries(conversation.config)
|
112 |
-
.map(([key, val]) => `${key}: ${val}`)
|
113 |
-
.join(sep) +
|
114 |
-
end;
|
115 |
-
|
116 |
-
const snippets: Snippet[] = [];
|
117 |
-
snippets.push({
|
118 |
-
label: "Install @huggingface/inference",
|
119 |
-
language: "http",
|
120 |
-
code: `npm install --save @huggingface/inference`,
|
121 |
-
});
|
122 |
-
if (conversation.streaming) {
|
123 |
-
snippets.push({
|
124 |
-
label: "Streaming API",
|
125 |
-
needsToken: true,
|
126 |
-
code: `import { HfInference } from "@huggingface/inference"
|
127 |
-
|
128 |
-
const client = new HfInference("${tokenStr}")
|
129 |
-
|
130 |
-
let out = "";
|
131 |
-
|
132 |
-
const stream = client.chatCompletionStream({
|
133 |
-
model: "${conversation.model.id}",
|
134 |
-
messages: ${formattedMessages({ sep: ",\n\t\t", start: "[\n\t\t", end: "\n\t]" })},
|
135 |
-
${formattedConfig({ sep: ",\n\t", start: "", end: "" })}
|
136 |
-
});
|
137 |
-
|
138 |
-
for await (const chunk of stream) {
|
139 |
-
if (chunk.choices && chunk.choices.length > 0) {
|
140 |
-
const newContent = chunk.choices[0].delta.content;
|
141 |
-
out += newContent;
|
142 |
-
console.log(newContent);
|
143 |
-
}
|
144 |
-
}`,
|
145 |
-
});
|
146 |
-
} else {
|
147 |
-
// non-streaming
|
148 |
-
snippets.push({
|
149 |
-
label: "Non-Streaming API",
|
150 |
-
needsToken: true,
|
151 |
-
code: `import { HfInference } from '@huggingface/inference'
|
152 |
-
|
153 |
-
const client = new HfInference("${tokenStr}")
|
154 |
-
|
155 |
-
const chatCompletion = await client.chatCompletion({
|
156 |
-
model: "${conversation.model.id}",
|
157 |
-
messages: ${formattedMessages({ sep: ",\n\t\t", start: "[\n\t\t", end: "\n\t]" })},
|
158 |
-
${formattedConfig({ sep: ",\n\t", start: "", end: "" })}
|
159 |
-
});
|
160 |
-
|
161 |
-
console.log(chatCompletion.choices[0].message);`,
|
162 |
-
});
|
163 |
-
}
|
164 |
-
|
165 |
-
return snippets;
|
166 |
-
}
|
167 |
-
|
168 |
-
function getJavascriptSnippetsOAIClient(conversation: Conversation, tokenStr: string) {
|
169 |
-
const formattedMessages = ({ sep, start, end }: MessagesJoiner) =>
|
170 |
-
start +
|
171 |
-
getMessages()
|
172 |
-
.map(({ role, content }) => `{ role: "${role}", content: "${content}" }`)
|
173 |
-
.join(sep) +
|
174 |
-
end;
|
175 |
-
|
176 |
-
const formattedConfig = ({ sep, start, end }: MessagesJoiner) =>
|
177 |
-
start +
|
178 |
-
Object.entries(conversation.config)
|
179 |
-
.map(([key, val]) => `${key}: ${val}`)
|
180 |
-
.join(sep) +
|
181 |
-
end;
|
182 |
-
|
183 |
-
const snippets: Snippet[] = [];
|
184 |
-
snippets.push({
|
185 |
-
label: "Install openai",
|
186 |
-
language: "http",
|
187 |
-
code: `npm install --save openai`,
|
188 |
-
});
|
189 |
-
if (conversation.streaming) {
|
190 |
-
snippets.push({
|
191 |
-
label: "Streaming API",
|
192 |
-
needsToken: true,
|
193 |
-
code: `import { OpenAI } from "openai"
|
194 |
-
|
195 |
-
const client = new OpenAI({
|
196 |
-
baseURL: "https://api-inference.huggingface.co/v1/",
|
197 |
-
apiKey: "${tokenStr}"
|
198 |
-
})
|
199 |
-
|
200 |
-
let out = "";
|
201 |
-
|
202 |
-
const stream = await client.chat.completions.create({
|
203 |
-
model: "${conversation.model.id}",
|
204 |
-
messages: ${formattedMessages({ sep: ",\n\t\t", start: "[\n\t\t", end: "\n\t]" })},
|
205 |
-
${formattedConfig({ sep: ",\n\t", start: "", end: "" })},
|
206 |
-
stream: true,
|
207 |
-
});
|
208 |
-
|
209 |
-
for await (const chunk of stream) {
|
210 |
-
if (chunk.choices && chunk.choices.length > 0) {
|
211 |
-
const newContent = chunk.choices[0].delta.content;
|
212 |
-
out += newContent;
|
213 |
-
console.log(newContent);
|
214 |
-
}
|
215 |
-
}`,
|
216 |
-
});
|
217 |
-
} else {
|
218 |
-
// non-streaming
|
219 |
-
snippets.push({
|
220 |
-
label: "Non-Streaming API",
|
221 |
-
needsToken: true,
|
222 |
-
code: `import { OpenAI } from "openai"
|
223 |
-
|
224 |
-
const client = new OpenAI({
|
225 |
-
baseURL: "https://api-inference.huggingface.co/v1/",
|
226 |
-
apiKey: "${tokenStr}"
|
227 |
-
})
|
228 |
-
|
229 |
-
const chatCompletion = await client.chat.completions.create({
|
230 |
-
model: "${conversation.model.id}",
|
231 |
-
messages: ${formattedMessages({ sep: ",\n\t\t", start: "[\n\t\t", end: "\n\t]" })},
|
232 |
-
${formattedConfig({ sep: ",\n\t", start: "", end: "" })}
|
233 |
-
});
|
234 |
-
|
235 |
-
console.log(chatCompletion.choices[0].message);`,
|
236 |
-
});
|
237 |
-
}
|
238 |
-
|
239 |
-
return snippets;
|
240 |
-
}
|
241 |
-
|
242 |
-
function getPythonSnippetsHfClient(conversation: Conversation, tokenStr: string) {
|
243 |
-
const formattedMessages = ({ sep, start, end }: MessagesJoiner) =>
|
244 |
-
start +
|
245 |
-
getMessages()
|
246 |
-
.map(({ role, content }) => `{ "role": "${role}", "content": "${content}" }`)
|
247 |
-
.join(sep) +
|
248 |
-
end;
|
249 |
-
|
250 |
-
const formattedConfig = ({ sep, start, end, connector }: MessagesJoiner & { connector: string }) =>
|
251 |
-
start +
|
252 |
-
Object.entries(conversation.config)
|
253 |
-
.map(([key, val]) => `${key}${connector}${val}`)
|
254 |
-
.join(sep) +
|
255 |
-
end;
|
256 |
-
|
257 |
-
const snippets: Snippet[] = [];
|
258 |
-
snippets.push({
|
259 |
-
label: "Install the latest huggingface_hub",
|
260 |
-
language: "http",
|
261 |
-
code: `pip install huggingface_hub --upgrade`,
|
262 |
-
});
|
263 |
-
if (conversation.streaming) {
|
264 |
-
snippets.push({
|
265 |
-
label: "Streaming API",
|
266 |
-
needsToken: true,
|
267 |
-
code: `from huggingface_hub import InferenceClient
|
268 |
-
|
269 |
-
client = InferenceClient(api_key="${tokenStr}")
|
270 |
-
|
271 |
-
messages = ${formattedMessages({ sep: ",\n\t", start: `[\n\t`, end: `\n]` })}
|
272 |
-
|
273 |
-
stream = client.chat.completions.create(
|
274 |
-
model="${conversation.model.id}",
|
275 |
-
messages=messages,
|
276 |
-
${formattedConfig({ sep: ",\n\t", start: "", end: "", connector: "=" })},
|
277 |
-
stream=True
|
278 |
-
)
|
279 |
-
|
280 |
-
for chunk in stream:
|
281 |
-
print(chunk.choices[0].delta.content)`,
|
282 |
-
});
|
283 |
-
} else {
|
284 |
-
// non-streaming
|
285 |
-
snippets.push({
|
286 |
-
label: "Non-Streaming API",
|
287 |
-
needsToken: true,
|
288 |
-
code: `from huggingface_hub import InferenceClient
|
289 |
-
|
290 |
-
client = InferenceClient(api_key="${tokenStr}")
|
291 |
-
|
292 |
-
messages = ${formattedMessages({ sep: ",\n\t", start: `[\n\t`, end: `\n]` })}
|
293 |
-
|
294 |
-
completion = client.chat.completions.create(
|
295 |
-
model="${conversation.model.id}",
|
296 |
-
messages=messages,
|
297 |
-
${formattedConfig({ sep: ",\n\t", start: "", end: "", connector: "=" })}
|
298 |
-
)
|
299 |
-
|
300 |
-
print(completion.choices[0].message)`,
|
301 |
-
});
|
302 |
-
}
|
303 |
-
|
304 |
-
return snippets;
|
305 |
-
}
|
306 |
-
|
307 |
-
function getPythonSnippetsOAIClient(conversation: Conversation, tokenStr: string) {
|
308 |
-
const formattedMessages = ({ sep, start, end }: MessagesJoiner) =>
|
309 |
-
start +
|
310 |
-
getMessages()
|
311 |
-
.map(({ role, content }) => `{ "role": "${role}", "content": "${content}" }`)
|
312 |
-
.join(sep) +
|
313 |
-
end;
|
314 |
-
|
315 |
-
const formattedConfig = ({ sep, start, end, connector }: MessagesJoiner & { connector: string }) =>
|
316 |
-
start +
|
317 |
-
Object.entries(conversation.config)
|
318 |
-
.map(([key, val]) => `${key}${connector}${val}`)
|
319 |
-
.join(sep) +
|
320 |
-
end;
|
321 |
-
|
322 |
-
const snippets: Snippet[] = [];
|
323 |
-
snippets.push({
|
324 |
-
label: "Install the latest openai",
|
325 |
-
language: "http",
|
326 |
-
code: `pip install openai --upgrade`,
|
327 |
-
});
|
328 |
-
if (conversation.streaming) {
|
329 |
-
snippets.push({
|
330 |
-
label: "Streaming API",
|
331 |
-
needsToken: true,
|
332 |
-
code: `from openai import OpenAI
|
333 |
-
|
334 |
-
client = OpenAI(
|
335 |
-
base_url="https://api-inference.huggingface.co/v1/",
|
336 |
-
api_key="${tokenStr}"
|
337 |
-
)
|
338 |
-
|
339 |
-
messages = ${formattedMessages({ sep: ",\n\t", start: `[\n\t`, end: `\n]` })}
|
340 |
-
|
341 |
-
stream = client.chat.completions.create(
|
342 |
-
model="${conversation.model.id}",
|
343 |
-
messages=messages,
|
344 |
-
${formattedConfig({ sep: ",\n\t", start: "", end: "", connector: "=" })},
|
345 |
-
stream=True
|
346 |
-
)
|
347 |
-
|
348 |
-
for chunk in stream:
|
349 |
-
print(chunk.choices[0].delta.content)`,
|
350 |
-
});
|
351 |
-
} else {
|
352 |
-
// non-streaming
|
353 |
-
snippets.push({
|
354 |
-
label: "Non-Streaming API",
|
355 |
-
needsToken: true,
|
356 |
-
code: `from openai import OpenAI
|
357 |
-
|
358 |
-
client = OpenAI(
|
359 |
-
base_url="https://api-inference.huggingface.co/v1/",
|
360 |
-
api_key="${tokenStr}"
|
361 |
-
)
|
362 |
-
|
363 |
-
messages = ${formattedMessages({ sep: ",\n\t", start: `[\n\t`, end: `\n]` })}
|
364 |
-
|
365 |
-
completion = client.chat.completions.create(
|
366 |
-
model="${conversation.model.id}",
|
367 |
-
messages=messages,
|
368 |
-
${formattedConfig({ sep: ",\n\t", start: "", end: "", connector: "=" })}
|
369 |
-
)
|
370 |
-
|
371 |
-
print(completion.choices[0].message)`,
|
372 |
-
});
|
373 |
-
}
|
374 |
-
|
375 |
-
return snippets;
|
376 |
-
}
|
377 |
-
|
378 |
-
function getHttpSnippets(conversation: Conversation, tokenStr: string) {
|
379 |
-
if (tokenStr === "YOUR_HF_TOKEN") {
|
380 |
-
tokenStr = "{YOUR_HF_TOKEN}";
|
381 |
-
}
|
382 |
-
const formattedMessages = ({ sep, start, end }: MessagesJoiner) =>
|
383 |
-
start +
|
384 |
-
getMessages()
|
385 |
-
.map(({ role, content }) => {
|
386 |
-
// escape single quotes since single quotes is used to define http post body inside curl requests
|
387 |
-
content = content?.replace(/'/g, "'\\''");
|
388 |
-
return `{ "role": "${role}", "content": "${content}" }`;
|
389 |
-
})
|
390 |
-
.join(sep) +
|
391 |
-
end;
|
392 |
-
|
393 |
-
const formattedConfig = ({ sep, start, end }: MessagesJoiner) =>
|
394 |
-
start +
|
395 |
-
Object.entries(conversation.config)
|
396 |
-
.map(([key, val]) => `"${key}": ${val}`)
|
397 |
-
.join(sep) +
|
398 |
-
end;
|
399 |
-
|
400 |
-
const snippets: Snippet[] = [];
|
401 |
-
|
402 |
-
if (conversation.streaming) {
|
403 |
-
snippets.push({
|
404 |
-
label: "Streaming API",
|
405 |
-
needsToken: true,
|
406 |
-
code: `curl 'https://api-inference.huggingface.co/models/${conversation.model.id}/v1/chat/completions' \\
|
407 |
-
--header "Authorization: Bearer ${tokenStr}" \\
|
408 |
-
--header 'Content-Type: application/json' \\
|
409 |
-
--data '{
|
410 |
-
"model": "${conversation.model.id}",
|
411 |
-
"messages": ${formattedMessages({ sep: ",\n ", start: `[\n `, end: `\n]` })},
|
412 |
-
${formattedConfig({ sep: ",\n ", start: "", end: "" })},
|
413 |
-
"stream": true
|
414 |
-
}'`,
|
415 |
-
});
|
416 |
-
} else {
|
417 |
-
// non-streaming
|
418 |
-
snippets.push({
|
419 |
-
label: "Non-Streaming API",
|
420 |
-
needsToken: true,
|
421 |
-
code: `curl 'https://api-inference.huggingface.co/models/${conversation.model.id}/v1/chat/completions' \\
|
422 |
-
--header "Authorization: Bearer ${tokenStr}" \\
|
423 |
-
--header 'Content-Type: application/json' \\
|
424 |
-
--data '{
|
425 |
-
"model": "${conversation.model.id}",
|
426 |
-
"messages": ${formattedMessages({ sep: ",\n ", start: `[\n `, end: `\n]` })},
|
427 |
-
${formattedConfig({ sep: ",\n ", start: "", end: "" })}
|
428 |
-
}'`,
|
429 |
-
});
|
430 |
-
}
|
431 |
-
|
432 |
-
return snippets;
|
433 |
}
|
434 |
|
435 |
onDestroy(() => {
|
436 |
-
|
437 |
-
clearTimeout(timeout);
|
438 |
-
}
|
439 |
});
|
440 |
</script>
|
441 |
|
@@ -468,55 +97,52 @@ print(completion.choices[0].message)`,
|
|
468 |
</ul>
|
469 |
</div>
|
470 |
|
471 |
-
{#if clientSnippetsByLang[selectedLanguage]?.length ?? 0 > 1}
|
472 |
<div class="flex gap-x-2 px-2 pt-6">
|
473 |
-
{#each clientSnippetsByLang[selectedLanguage] ?? [] as {
|
|
|
474 |
<button
|
475 |
-
class="rounded-
|
476 |
-
|
477 |
-
|
478 |
-
|
|
|
479 |
>
|
480 |
{/each}
|
481 |
</div>
|
482 |
{/if}
|
483 |
|
484 |
-
{#each clientSnippetsByLang[selectedLanguage] ?? [] as {
|
485 |
{#if idx === selectedClientIdxByLang[selectedLanguage]}
|
486 |
-
|
487 |
-
<div class="flex items-center
|
488 |
-
<
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
}}
|
509 |
-
>
|
510 |
-
<IconCopyCode classNames="text-xs" /> Copy code
|
511 |
-
</button>
|
512 |
-
</div>
|
513 |
</div>
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
{/if}
|
521 |
{/each}
|
522 |
</div>
|
|
|
1 |
<script lang="ts">
|
2 |
+
import type { Conversation } from "$lib/types";
|
3 |
|
|
|
4 |
import hljs from "highlight.js/lib/core";
|
5 |
+
import http from "highlight.js/lib/languages/http";
|
6 |
import javascript from "highlight.js/lib/languages/javascript";
|
7 |
import python from "highlight.js/lib/languages/python";
|
8 |
+
import { createEventDispatcher, onDestroy } from "svelte";
|
9 |
|
|
|
|
|
10 |
import { token } from "$lib/stores/token";
|
11 |
+
import type { InferenceProvider } from "@huggingface/inference";
|
12 |
+
import IconCopyCode from "../Icons/IconCopyCode.svelte";
|
13 |
+
import {
|
14 |
+
getInferenceSnippet,
|
15 |
+
type GetInferenceSnippetReturn,
|
16 |
+
type InferenceSnippetLanguage,
|
17 |
+
} from "./inferencePlaygroundUtils";
|
18 |
|
19 |
hljs.registerLanguage("javascript", javascript);
|
20 |
hljs.registerLanguage("python", python);
|
|
|
29 |
const labelsByLanguage: Record<Language, string> = {
|
30 |
javascript: "JavaScript",
|
31 |
python: "Python",
|
32 |
+
http: "cURL",
|
33 |
};
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
let selectedLanguage: Language = "javascript";
|
36 |
let timeout: ReturnType<typeof setTimeout>;
|
37 |
let showToken = false;
|
38 |
|
39 |
$: tokenStr = getTokenStr(showToken);
|
40 |
|
41 |
+
function getSnippet(lang: InferenceSnippetLanguage, tokenStr: string) {
|
42 |
+
return getInferenceSnippet(conversation.model, conversation.provider as InferenceProvider, lang, tokenStr, {
|
43 |
+
messages: conversation.messages,
|
44 |
+
});
|
45 |
+
}
|
46 |
+
|
47 |
$: clientSnippetsByLang = {
|
48 |
+
javascript: getSnippet("js", tokenStr),
|
49 |
+
python: getSnippet("python", tokenStr),
|
50 |
+
http: getSnippet("curl", tokenStr),
|
51 |
+
} as Record<Language, GetInferenceSnippetReturn>;
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
const selectedClientIdxByLang: Record<Language, number> = Object.fromEntries(lanuages.map(lang => [lang, 0]));
|
54 |
|
|
|
59 |
return "YOUR_HF_TOKEN";
|
60 |
}
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
function highlight(code: string, language: Language) {
|
63 |
+
return hljs.highlight(code, { language: language === "curl" ? "http" : language }).value;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
}
|
65 |
|
66 |
onDestroy(() => {
|
67 |
+
clearTimeout(timeout);
|
|
|
|
|
68 |
});
|
69 |
</script>
|
70 |
|
|
|
97 |
</ul>
|
98 |
</div>
|
99 |
|
100 |
+
{#if (clientSnippetsByLang[selectedLanguage]?.length ?? 0) > 1}
|
101 |
<div class="flex gap-x-2 px-2 pt-6">
|
102 |
+
{#each clientSnippetsByLang[selectedLanguage] ?? [] as { client }, idx}
|
103 |
+
{@const isActive = idx === selectedClientIdxByLang[selectedLanguage]}
|
104 |
<button
|
105 |
+
class="rounded-lg border px-1.5 py-0.5 text-sm leading-tight
|
106 |
+
{isActive
|
107 |
+
? 'bg-black text-gray-100 dark:border-gray-500 dark:bg-gray-700 dark:text-white'
|
108 |
+
: 'text-gray-500 hover:text-gray-600 dark:border-gray-600 dark:hover:text-gray-400'}"
|
109 |
+
on:click={() => (selectedClientIdxByLang[selectedLanguage] = idx)}>{client}</button
|
110 |
>
|
111 |
{/each}
|
112 |
</div>
|
113 |
{/if}
|
114 |
|
115 |
+
{#each clientSnippetsByLang[selectedLanguage] ?? [] as { language, content }, idx}
|
116 |
{#if idx === selectedClientIdxByLang[selectedLanguage]}
|
117 |
+
<div class="flex items-center justify-end px-2 pt-6 pb-4">
|
118 |
+
<div class="flex items-center gap-x-4">
|
119 |
+
<label class="flex items-center gap-x-1.5 text-sm select-none">
|
120 |
+
<input type="checkbox" bind:checked={showToken} />
|
121 |
+
<p class="leading-none">With token</p>
|
122 |
+
</label>
|
123 |
+
<button
|
124 |
+
class="flex items-center gap-x-2 rounded-md border bg-white px-1.5 py-0.5 text-sm shadow-xs transition dark:border-gray-800 dark:bg-gray-800"
|
125 |
+
on:click={e => {
|
126 |
+
const el = e.currentTarget;
|
127 |
+
el.classList.add("text-green-500");
|
128 |
+
navigator.clipboard.writeText(content);
|
129 |
+
if (timeout) {
|
130 |
+
clearTimeout(timeout);
|
131 |
+
}
|
132 |
+
timeout = setTimeout(() => {
|
133 |
+
el.classList.remove("text-green-500");
|
134 |
+
}, 400);
|
135 |
+
}}
|
136 |
+
>
|
137 |
+
<IconCopyCode classNames="text-xs" /> Copy code
|
138 |
+
</button>
|
|
|
|
|
|
|
|
|
|
|
139 |
</div>
|
140 |
+
</div>
|
141 |
+
<pre
|
142 |
+
class="overflow-x-auto rounded-lg border border-gray-200/80 bg-white px-4 py-6 text-sm shadow-xs dark:border-gray-800 dark:bg-gray-800/50">{@html highlight(
|
143 |
+
content,
|
144 |
+
language ?? selectedLanguage
|
145 |
+
)}</pre>
|
146 |
{/if}
|
147 |
{/each}
|
148 |
</div>
|
src/lib/components/InferencePlayground/InferencePlaygroundConversation.svelte
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
<script lang="ts">
|
2 |
-
import type { Conversation } from "$lib/
|
3 |
|
4 |
import { createEventDispatcher, tick } from "svelte";
|
5 |
|
|
|
1 |
<script lang="ts">
|
2 |
+
import type { Conversation } from "$lib/types";
|
3 |
|
4 |
import { createEventDispatcher, tick } from "svelte";
|
5 |
|
src/lib/components/InferencePlayground/InferencePlaygroundConversationHeader.svelte
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
<script lang="ts">
|
2 |
-
import type { Conversation,
|
3 |
|
4 |
import { createEventDispatcher } from "svelte";
|
5 |
|
@@ -17,7 +17,7 @@
|
|
17 |
|
18 |
let modelSelectorOpen = false;
|
19 |
|
20 |
-
function changeModel(newModelId:
|
21 |
const model = $models.find(m => m.id === newModelId);
|
22 |
if (!model) {
|
23 |
return;
|
|
|
1 |
<script lang="ts">
|
2 |
+
import type { Conversation, ModelWithTokenizer } from "$lib/types";
|
3 |
|
4 |
import { createEventDispatcher } from "svelte";
|
5 |
|
|
|
17 |
|
18 |
let modelSelectorOpen = false;
|
19 |
|
20 |
+
function changeModel(newModelId: ModelWithTokenizer["id"]) {
|
21 |
const model = $models.find(m => m.id === newModelId);
|
22 |
if (!model) {
|
23 |
return;
|
src/lib/components/InferencePlayground/InferencePlaygroundGenerationConfig.svelte
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
<script lang="ts">
|
2 |
-
import type { Conversation } from "$lib/
|
3 |
|
4 |
import { GENERATION_CONFIG_KEYS, GENERATION_CONFIG_SETTINGS } from "./generationConfigSettings";
|
5 |
import { customMaxTokens } from "./inferencePlaygroundUtils";
|
|
|
1 |
<script lang="ts">
|
2 |
+
import type { Conversation } from "$lib/types";
|
3 |
|
4 |
import { GENERATION_CONFIG_KEYS, GENERATION_CONFIG_SETTINGS } from "./generationConfigSettings";
|
5 |
import { customMaxTokens } from "./inferencePlaygroundUtils";
|
src/lib/components/InferencePlayground/InferencePlaygroundMessage.svelte
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
<script lang="ts">
|
2 |
import { createEventDispatcher } from "svelte";
|
3 |
-
import type { ConversationMessage } from "
|
4 |
|
5 |
export let message: ConversationMessage;
|
6 |
export let loading: boolean = false;
|
|
|
1 |
<script lang="ts">
|
2 |
import { createEventDispatcher } from "svelte";
|
3 |
+
import type { ConversationMessage } from "$lib/types";
|
4 |
|
5 |
export let message: ConversationMessage;
|
6 |
export let loading: boolean = false;
|
src/lib/components/InferencePlayground/InferencePlaygroundModelSelector.svelte
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
<script lang="ts">
|
2 |
-
import type { Conversation,
|
3 |
|
4 |
import { models } from "$lib/stores/models";
|
5 |
import Avatar from "../Avatar.svelte";
|
@@ -13,7 +13,7 @@
|
|
13 |
let showModelPickerModal = false;
|
14 |
|
15 |
// Model
|
16 |
-
function changeModel(modelId:
|
17 |
const model = $models.find(m => m.id === modelId);
|
18 |
if (!model) {
|
19 |
return;
|
|
|
1 |
<script lang="ts">
|
2 |
+
import type { Conversation, ModelWithTokenizer } from "$lib/types";
|
3 |
|
4 |
import { models } from "$lib/stores/models";
|
5 |
import Avatar from "../Avatar.svelte";
|
|
|
13 |
let showModelPickerModal = false;
|
14 |
|
15 |
// Model
|
16 |
+
function changeModel(modelId: ModelWithTokenizer["id"]) {
|
17 |
const model = $models.find(m => m.id === modelId);
|
18 |
if (!model) {
|
19 |
return;
|
src/lib/components/InferencePlayground/InferencePlaygroundModelSelectorModal.svelte
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
<script lang="ts">
|
2 |
-
import type { Conversation } from "
|
3 |
|
4 |
import { createEventDispatcher, tick } from "svelte";
|
5 |
|
|
|
1 |
<script lang="ts">
|
2 |
+
import type { Conversation } from "$lib/types";
|
3 |
|
4 |
import { createEventDispatcher, tick } from "svelte";
|
5 |
|
src/lib/components/InferencePlayground/InferencePlaygroundProviderSelect.svelte
CHANGED
@@ -1,32 +1,25 @@
|
|
1 |
<script lang="ts">
|
2 |
-
import type { Conversation } from "
|
3 |
|
4 |
-
import { browser } from "$app/environment";
|
5 |
-
import { fetchHuggingFaceModel, type InferenceProviderMapping } from "$lib/fetchers/providers";
|
6 |
-
import { token } from "$lib/stores/token";
|
7 |
import { randomPick } from "$lib/utils/array";
|
|
|
8 |
import { createSelect, createSync } from "@melt-ui/svelte";
|
|
|
9 |
import IconCaret from "../Icons/IconCaret.svelte";
|
10 |
import IconProvider from "../Icons/IconProvider.svelte";
|
11 |
-
import { cn } from "$lib/utils/cn";
|
12 |
|
13 |
export let conversation: Conversation;
|
14 |
let classes: string | undefined = undefined;
|
15 |
export { classes as class };
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
providerMap = res.inferenceProviderMapping;
|
22 |
-
// Commented out. I'm not sure we want to maintain, or always random pick
|
23 |
-
if ((conversation.provider ?? "") in providerMap) return;
|
24 |
-
conversation.provider = randomPick(Object.keys(providerMap));
|
25 |
}
|
26 |
|
27 |
-
|
28 |
-
$:
|
29 |
-
$: loadProviders(modelId);
|
30 |
|
31 |
const {
|
32 |
elements: { trigger, menu, option },
|
@@ -96,7 +89,7 @@
|
|
96 |
</button>
|
97 |
|
98 |
<div {...$menu} use:menu class="rounded-lg border bg-gray-100/80 dark:border-gray-700 dark:bg-gray-800">
|
99 |
-
{#each
|
100 |
<div {...$option({ value: provider })} use:option class="group p-1 text-sm dark:text-white">
|
101 |
<div
|
102 |
class="flex items-center gap-2 rounded-md px-2 py-1.5 group-data-[highlighted]:bg-gray-200 dark:group-data-[highlighted]:bg-gray-700"
|
|
|
1 |
<script lang="ts">
|
2 |
+
import type { Conversation } from "$lib/types";
|
3 |
|
|
|
|
|
|
|
4 |
import { randomPick } from "$lib/utils/array";
|
5 |
+
import { cn } from "$lib/utils/cn";
|
6 |
import { createSelect, createSync } from "@melt-ui/svelte";
|
7 |
+
import { onMount } from "svelte";
|
8 |
import IconCaret from "../Icons/IconCaret.svelte";
|
9 |
import IconProvider from "../Icons/IconProvider.svelte";
|
|
|
10 |
|
11 |
export let conversation: Conversation;
|
12 |
let classes: string | undefined = undefined;
|
13 |
export { classes as class };
|
14 |
|
15 |
+
function reset(providers: typeof conversation.model.inferenceProviderMapping) {
|
16 |
+
const validProvider = providers.find(p => p.provider === conversation.provider);
|
17 |
+
if (validProvider) return;
|
18 |
+
conversation.provider = randomPick(providers)?.provider;
|
|
|
|
|
|
|
|
|
19 |
}
|
20 |
|
21 |
+
$: providers = conversation.model.inferenceProviderMapping;
|
22 |
+
$: reset(providers);
|
|
|
23 |
|
24 |
const {
|
25 |
elements: { trigger, menu, option },
|
|
|
89 |
</button>
|
90 |
|
91 |
<div {...$menu} use:menu class="rounded-lg border bg-gray-100/80 dark:border-gray-700 dark:bg-gray-800">
|
92 |
+
{#each conversation.model.inferenceProviderMapping as { provider }}
|
93 |
<div {...$option({ value: provider })} use:option class="group p-1 text-sm dark:text-white">
|
94 |
<div
|
95 |
class="flex items-center gap-2 rounded-md px-2 py-1.5 group-data-[highlighted]:bg-gray-200 dark:group-data-[highlighted]:bg-gray-700"
|
src/lib/components/InferencePlayground/inferencePlaygroundUtils.ts
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import { type ChatCompletionOutputMessage } from "@huggingface/tasks";
|
2 |
-
import type {
|
|
|
3 |
|
4 |
-
import { HfInference } from "@huggingface/inference";
|
|
|
5 |
|
6 |
export async function handleStreamingResponse(
|
7 |
hf: HfInference,
|
@@ -57,7 +59,7 @@ export async function handleNonStreamingResponse(
|
|
57 |
throw new Error("No response from the model");
|
58 |
}
|
59 |
|
60 |
-
export function isSystemPromptSupported(model:
|
61 |
return model?.tokenizerConfig?.chat_template?.includes("system");
|
62 |
}
|
63 |
|
@@ -125,3 +127,45 @@ export const customMaxTokens: { [key: string]: number } = {
|
|
125 |
"meta-llama/Llama-3.1-70B-Instruct": 32768,
|
126 |
"meta-llama/Llama-3.1-8B-Instruct": 8192,
|
127 |
} as const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import { type ChatCompletionOutputMessage } from "@huggingface/tasks";
|
2 |
+
import type { InferenceSnippet, ModelDataMinimal } from "@huggingface/tasks";
|
3 |
+
import type { Conversation, ModelWithTokenizer } from "$lib/types";
|
4 |
|
5 |
+
import { HfInference, snippets, type InferenceProvider } from "@huggingface/inference";
|
6 |
+
import { keys } from "$lib/utils/object";
|
7 |
|
8 |
export async function handleStreamingResponse(
|
9 |
hf: HfInference,
|
|
|
59 |
throw new Error("No response from the model");
|
60 |
}
|
61 |
|
62 |
+
export function isSystemPromptSupported(model: ModelWithTokenizer) {
|
63 |
return model?.tokenizerConfig?.chat_template?.includes("system");
|
64 |
}
|
65 |
|
|
|
127 |
"meta-llama/Llama-3.1-70B-Instruct": 32768,
|
128 |
"meta-llama/Llama-3.1-8B-Instruct": 8192,
|
129 |
} as const;
|
130 |
+
|
131 |
+
// Order of the elements in InferenceModal.svelte is determined by this const
|
132 |
+
export const inferenceSnippetLanguages = ["python", "js", "curl"] as const;
|
133 |
+
|
134 |
+
export type InferenceSnippetLanguage = (typeof inferenceSnippetLanguages)[number];
|
135 |
+
|
136 |
+
const GET_SNIPPET_FN = {
|
137 |
+
curl: snippets.curl.getCurlInferenceSnippet,
|
138 |
+
js: snippets.js.getJsInferenceSnippet,
|
139 |
+
python: snippets.python.getPythonInferenceSnippet,
|
140 |
+
} as const;
|
141 |
+
|
142 |
+
export type GetInferenceSnippetReturn = (InferenceSnippet & { language: InferenceSnippetLanguage })[];
|
143 |
+
|
144 |
+
export function getInferenceSnippet(
|
145 |
+
model: ModelWithTokenizer,
|
146 |
+
provider: InferenceProvider,
|
147 |
+
language: InferenceSnippetLanguage,
|
148 |
+
accessToken: string,
|
149 |
+
opts?: Record<string, unknown>
|
150 |
+
): GetInferenceSnippetReturn {
|
151 |
+
const providerId = model.inferenceProviderMapping.find(p => p.provider === provider)?.providerId;
|
152 |
+
const snippetsByClient = GET_SNIPPET_FN[language](
|
153 |
+
{ ...model, inference: "" },
|
154 |
+
accessToken,
|
155 |
+
provider,
|
156 |
+
providerId,
|
157 |
+
opts
|
158 |
+
);
|
159 |
+
return snippetsByClient.map(snippetByClient => ({ ...snippetByClient, language }));
|
160 |
+
}
|
161 |
+
|
162 |
+
/**
|
163 |
+
* - If language is defined, the function checks if in an inference snippet is available for that specific language
|
164 |
+
*/
|
165 |
+
export function hasInferenceSnippet(
|
166 |
+
model: ModelWithTokenizer,
|
167 |
+
provider: InferenceProvider,
|
168 |
+
language: InferenceSnippetLanguage
|
169 |
+
): boolean {
|
170 |
+
return getInferenceSnippet(model, provider, language, "").length > 0;
|
171 |
+
}
|
src/lib/components/InferencePlayground/types.ts
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
import type { GenerationConfig } from "$lib/components/InferencePlayground/generationConfigSettings";
|
2 |
-
import type { ModelEntry } from "@huggingface/hub";
|
3 |
-
import type { ChatCompletionInputMessage } from "@huggingface/tasks";
|
4 |
-
|
5 |
-
export type ConversationMessage = Omit<ChatCompletionInputMessage, "content"> & { content?: string };
|
6 |
-
|
7 |
-
export type Conversation = {
|
8 |
-
model: ModelEntryWithTokenizer;
|
9 |
-
config: GenerationConfig;
|
10 |
-
messages: ConversationMessage[];
|
11 |
-
systemMessage: ConversationMessage;
|
12 |
-
streaming: boolean;
|
13 |
-
provider?: string;
|
14 |
-
};
|
15 |
-
|
16 |
-
export type Session = {
|
17 |
-
conversations: [Conversation] | [Conversation, Conversation];
|
18 |
-
};
|
19 |
-
|
20 |
-
interface TokenizerConfig {
|
21 |
-
chat_template?: string;
|
22 |
-
model_max_length?: number;
|
23 |
-
}
|
24 |
-
|
25 |
-
export interface ModelEntryWithTokenizer extends ModelEntry {
|
26 |
-
tokenizerConfig: TokenizerConfig;
|
27 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/lib/fetchers/providers.ts
DELETED
@@ -1,77 +0,0 @@
|
|
1 |
-
export interface HuggingFaceModelResponse {
|
2 |
-
_id: string;
|
3 |
-
id: string;
|
4 |
-
inferenceProviderMapping: InferenceProviderMapping;
|
5 |
-
}
|
6 |
-
|
7 |
-
export type InferenceProviderMapping = {
|
8 |
-
[k: string]: Provider;
|
9 |
-
};
|
10 |
-
|
11 |
-
export interface Provider {
|
12 |
-
status: string;
|
13 |
-
providerId: string;
|
14 |
-
task: string;
|
15 |
-
}
|
16 |
-
|
17 |
-
/**
|
18 |
-
* Error thrown when the Hugging Face API request fails
|
19 |
-
*/
|
20 |
-
export class HuggingFaceApiError extends Error {
|
21 |
-
status: number;
|
22 |
-
details: string;
|
23 |
-
|
24 |
-
constructor(message: string, status: number, details: string) {
|
25 |
-
super(message);
|
26 |
-
this.name = "HuggingFaceApiError";
|
27 |
-
this.status = status;
|
28 |
-
this.details = details;
|
29 |
-
}
|
30 |
-
}
|
31 |
-
|
32 |
-
/**
|
33 |
-
* Fetches model data from the Hugging Face API
|
34 |
-
*
|
35 |
-
* @param modelId - The Hugging Face model ID (can include namespace like "username/model-name")
|
36 |
-
* @param token - Optional Hugging Face API token for authentication
|
37 |
-
* @returns Promise resolving to the model data
|
38 |
-
* @throws {HuggingFaceApiError} When the API request fails
|
39 |
-
*/
|
40 |
-
export async function fetchHuggingFaceModel(modelId: string, token?: string): Promise<HuggingFaceModelResponse> {
|
41 |
-
if (!modelId) {
|
42 |
-
throw new Error("Model ID is required");
|
43 |
-
}
|
44 |
-
|
45 |
-
// Construct the API URL
|
46 |
-
const apiUrl = `https://huggingface.co/api/models/${modelId}?expand%5B%5D=inferenceProviderMapping`;
|
47 |
-
|
48 |
-
// Prepare headers for the request
|
49 |
-
const headers: HeadersInit = {};
|
50 |
-
if (token) {
|
51 |
-
headers["Authorization"] = `Bearer ${token}`;
|
52 |
-
}
|
53 |
-
|
54 |
-
try {
|
55 |
-
// Make the request to Hugging Face API
|
56 |
-
const response = await fetch(apiUrl, {
|
57 |
-
method: "GET",
|
58 |
-
headers,
|
59 |
-
});
|
60 |
-
|
61 |
-
if (!response.ok) {
|
62 |
-
const errorText = await response.text();
|
63 |
-
throw new HuggingFaceApiError("Failed to fetch data from Hugging Face API", response.status, errorText);
|
64 |
-
}
|
65 |
-
|
66 |
-
return (await response.json()) as HuggingFaceModelResponse;
|
67 |
-
} catch (error) {
|
68 |
-
if (error instanceof HuggingFaceApiError) {
|
69 |
-
throw error;
|
70 |
-
}
|
71 |
-
|
72 |
-
// Handle other errors (network, etc.)
|
73 |
-
throw new Error(
|
74 |
-
`Error fetching Hugging Face model data: ${error instanceof Error ? error.message : "Unknown error"}`
|
75 |
-
);
|
76 |
-
}
|
77 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/lib/stores/models.ts
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import { page } from "$app/stores";
|
2 |
-
import type {
|
3 |
import { readable } from "svelte/store";
|
4 |
|
5 |
-
export const models = readable<
|
6 |
const unsub = page.subscribe($p => set($p.data.models));
|
7 |
return unsub;
|
8 |
});
|
|
|
1 |
import { page } from "$app/stores";
|
2 |
+
import type { ModelWithTokenizer } from "$lib/types";
|
3 |
import { readable } from "svelte/store";
|
4 |
|
5 |
+
export const models = readable<ModelWithTokenizer[]>(undefined, set => {
|
6 |
const unsub = page.subscribe($p => set($p.data.models));
|
7 |
return unsub;
|
8 |
});
|
src/lib/stores/session.ts
CHANGED
@@ -5,7 +5,7 @@ import {
|
|
5 |
defaultSystemMessage,
|
6 |
FEATURED_MODELS_IDS,
|
7 |
} from "$lib/components/InferencePlayground/inferencePlaygroundUtils";
|
8 |
-
import type
|
9 |
|
10 |
import { models } from "$lib/stores/models";
|
11 |
import { get, writable } from "svelte/store";
|
@@ -30,14 +30,18 @@ function createSessionStore() {
|
|
30 |
{
|
31 |
model: get(models).find(m => FEATURED_MODELS_IDS.includes(m.id)) ??
|
32 |
get(models)[0] ?? {
|
|
|
|
|
|
|
|
|
|
|
33 |
id: "",
|
34 |
-
downloads: 0,
|
35 |
-
gated: false,
|
36 |
-
likes: 0,
|
37 |
-
name: "",
|
38 |
-
private: false,
|
39 |
tokenizerConfig: {},
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
},
|
42 |
config: { ...defaultGenerationConfig },
|
43 |
messages: [{ ...startMessageUser }],
|
|
|
5 |
defaultSystemMessage,
|
6 |
FEATURED_MODELS_IDS,
|
7 |
} from "$lib/components/InferencePlayground/inferencePlaygroundUtils";
|
8 |
+
import { PipelineTag, type Conversation, type ConversationMessage, type Session } from "$lib/types";
|
9 |
|
10 |
import { models } from "$lib/stores/models";
|
11 |
import { get, writable } from "svelte/store";
|
|
|
30 |
{
|
31 |
model: get(models).find(m => FEATURED_MODELS_IDS.includes(m.id)) ??
|
32 |
get(models)[0] ?? {
|
33 |
+
_id: "",
|
34 |
+
inferenceProviderMapping: [],
|
35 |
+
pipeline_tag: PipelineTag.TextGeneration,
|
36 |
+
trendingScore: 0,
|
37 |
+
tags: ["text-generation"],
|
38 |
id: "",
|
|
|
|
|
|
|
|
|
|
|
39 |
tokenizerConfig: {},
|
40 |
+
config: {
|
41 |
+
architectures: [] as string[],
|
42 |
+
model_type: "",
|
43 |
+
tokenizer_config: {},
|
44 |
+
},
|
45 |
},
|
46 |
config: { ...defaultGenerationConfig },
|
47 |
messages: [{ ...startMessageUser }],
|
src/lib/types.ts
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import type { GenerationConfig } from "$lib/components/InferencePlayground/generationConfigSettings";
|
2 |
+
import type { ChatCompletionInputMessage } from "@huggingface/tasks";
|
3 |
+
|
4 |
+
export type ConversationMessage = Omit<ChatCompletionInputMessage, "content"> & { content?: string };
|
5 |
+
|
6 |
+
export type Conversation = {
|
7 |
+
model: ModelWithTokenizer;
|
8 |
+
config: GenerationConfig;
|
9 |
+
messages: ConversationMessage[];
|
10 |
+
systemMessage: ConversationMessage;
|
11 |
+
streaming: boolean;
|
12 |
+
provider?: string;
|
13 |
+
};
|
14 |
+
|
15 |
+
export type Session = {
|
16 |
+
conversations: [Conversation] | [Conversation, Conversation];
|
17 |
+
};
|
18 |
+
|
19 |
+
interface TokenizerConfig {
|
20 |
+
chat_template?: string;
|
21 |
+
model_max_length?: number;
|
22 |
+
}
|
23 |
+
|
24 |
+
export type ModelWithTokenizer = Model & {
|
25 |
+
tokenizerConfig: TokenizerConfig;
|
26 |
+
};
|
27 |
+
|
28 |
+
export type Model = {
|
29 |
+
_id: string;
|
30 |
+
id: string;
|
31 |
+
inferenceProviderMapping: InferenceProviderMapping[];
|
32 |
+
trendingScore: number;
|
33 |
+
config: Config;
|
34 |
+
tags: string[];
|
35 |
+
pipeline_tag: PipelineTag;
|
36 |
+
library_name?: LibraryName;
|
37 |
+
};
|
38 |
+
|
39 |
+
export type Config = {
|
40 |
+
architectures: string[];
|
41 |
+
model_type: string;
|
42 |
+
tokenizer_config: TokenizerConfig;
|
43 |
+
auto_map?: AutoMap;
|
44 |
+
quantization_config?: QuantizationConfig;
|
45 |
+
};
|
46 |
+
|
47 |
+
export type AutoMap = {
|
48 |
+
AutoConfig: string;
|
49 |
+
AutoModel?: string;
|
50 |
+
AutoModelForCausalLM: string;
|
51 |
+
AutoModelForSequenceClassification?: string;
|
52 |
+
AutoModelForTokenClassification?: string;
|
53 |
+
AutoModelForQuestionAnswering?: string;
|
54 |
+
};
|
55 |
+
|
56 |
+
export type QuantizationConfig = {
|
57 |
+
quant_method: string;
|
58 |
+
bits?: number;
|
59 |
+
};
|
60 |
+
|
61 |
+
// export type TokenizerConfig = {
|
62 |
+
// bos_token?: Token | BosTokenEnum | null;
|
63 |
+
// chat_template: ChatTemplateElement[] | string;
|
64 |
+
// eos_token: Token | EOSTokenEnum;
|
65 |
+
// pad_token?: Token | null | string;
|
66 |
+
// unk_token?: Token | UnkTokenEnum | null;
|
67 |
+
// use_default_system_prompt?: boolean;
|
68 |
+
// };
|
69 |
+
|
70 |
+
export type Token = {
|
71 |
+
__type: Type;
|
72 |
+
content: Content;
|
73 |
+
lstrip: boolean;
|
74 |
+
normalized: boolean;
|
75 |
+
rstrip: boolean;
|
76 |
+
single_word: boolean;
|
77 |
+
};
|
78 |
+
|
79 |
+
export enum Type {
|
80 |
+
AddedToken = "AddedToken",
|
81 |
+
}
|
82 |
+
|
83 |
+
export enum Content {
|
84 |
+
BeginOfSentence = "<|begin▁of▁sentence|>",
|
85 |
+
ContentS = "</s>",
|
86 |
+
EndOfSentence = "<|end▁of▁sentence|>",
|
87 |
+
S = "<s>",
|
88 |
+
Unk = "<unk>",
|
89 |
+
}
|
90 |
+
|
91 |
+
export enum BosTokenEnum {
|
92 |
+
BeginOfText = "<|begin_of_text|>",
|
93 |
+
Bos = "<bos>",
|
94 |
+
BosToken = "<BOS_TOKEN>",
|
95 |
+
Endoftext = "<|endoftext|>",
|
96 |
+
IMStart = "<|im_start|>",
|
97 |
+
S = "<s>",
|
98 |
+
Startoftext = "<|startoftext|>",
|
99 |
+
}
|
100 |
+
|
101 |
+
export type ChatTemplateElement = {
|
102 |
+
name: string;
|
103 |
+
template: string;
|
104 |
+
};
|
105 |
+
|
106 |
+
export enum EOSTokenEnum {
|
107 |
+
EOS = "<eos>",
|
108 |
+
EndOfText = "<|end_of_text|>",
|
109 |
+
EndOfTurnToken = "<|END_OF_TURN_TOKEN|>",
|
110 |
+
Endoftext = "<|endoftext|>",
|
111 |
+
EotID = "<|eot_id|>",
|
112 |
+
IMEnd = "<|im_end|>",
|
113 |
+
S = "</s>",
|
114 |
+
}
|
115 |
+
|
116 |
+
export enum UnkTokenEnum {
|
117 |
+
Endoftext = "<|endoftext|>",
|
118 |
+
Unk = "<unk>",
|
119 |
+
}
|
120 |
+
|
121 |
+
export type InferenceProviderMapping = {
|
122 |
+
provider: Provider;
|
123 |
+
providerId: string;
|
124 |
+
status: Status;
|
125 |
+
task: Task;
|
126 |
+
};
|
127 |
+
|
128 |
+
export enum Provider {
|
129 |
+
Cerebras = "cerebras",
|
130 |
+
FalAI = "fal-ai",
|
131 |
+
FireworksAI = "fireworks-ai",
|
132 |
+
HFInference = "hf-inference",
|
133 |
+
Hyperbolic = "hyperbolic",
|
134 |
+
Nebius = "nebius",
|
135 |
+
Novita = "novita",
|
136 |
+
Replicate = "replicate",
|
137 |
+
Sambanova = "sambanova",
|
138 |
+
Together = "together",
|
139 |
+
}
|
140 |
+
|
141 |
+
export enum Status {
|
142 |
+
Live = "live",
|
143 |
+
Staging = "staging",
|
144 |
+
}
|
145 |
+
|
146 |
+
export enum Task {
|
147 |
+
Conversational = "conversational",
|
148 |
+
}
|
149 |
+
|
150 |
+
export enum LibraryName {
|
151 |
+
Mlx = "mlx",
|
152 |
+
Transformers = "transformers",
|
153 |
+
Vllm = "vllm",
|
154 |
+
}
|
155 |
+
|
156 |
+
export enum PipelineTag {
|
157 |
+
TextGeneration = "text-generation",
|
158 |
+
}
|
src/lib/utils/object.ts
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// typed Object.keys
|
2 |
+
export function keys<T extends object>(o: T): (keyof T)[] {
|
3 |
+
return Object.keys(o) as (keyof T)[];
|
4 |
+
}
|
src/routes/+page.server.ts
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
-
import type { ModelEntryWithTokenizer } from "$lib/components/InferencePlayground/types";
|
2 |
-
import type { ModelEntry } from "@huggingface/hub";
|
3 |
-
import type { PageServerLoad } from "./$types";
|
4 |
import { env } from "$env/dynamic/private";
|
|
|
|
|
5 |
|
6 |
export const load: PageServerLoad = async ({ fetch }) => {
|
7 |
const apiUrl =
|
8 |
-
"https://huggingface.co/api/models?pipeline_tag=text-generation&inference_provider=
|
9 |
const HF_TOKEN = env.HF_TOKEN;
|
10 |
|
11 |
const res = await fetch(apiUrl, {
|
@@ -17,7 +16,7 @@ export const load: PageServerLoad = async ({ fetch }) => {
|
|
17 |
console.error(`Error fetching warm models`, res.status, res.statusText);
|
18 |
return { models: [] };
|
19 |
}
|
20 |
-
const compatibleModels:
|
21 |
compatibleModels.sort((a, b) => a.id.toLowerCase().localeCompare(b.id.toLowerCase()));
|
22 |
|
23 |
const promises = compatibleModels.map(async model => {
|
@@ -32,10 +31,10 @@ export const load: PageServerLoad = async ({ fetch }) => {
|
|
32 |
return null; // Ignore failed requests by returning null
|
33 |
}
|
34 |
const tokenizerConfig = await res.json();
|
35 |
-
return { ...model, tokenizerConfig } satisfies
|
36 |
});
|
37 |
|
38 |
-
const models:
|
39 |
|
40 |
return { models };
|
41 |
};
|
|
|
|
|
|
|
|
|
1 |
import { env } from "$env/dynamic/private";
|
2 |
+
import type { Model, ModelWithTokenizer } from "$lib/types";
|
3 |
+
import type { PageServerLoad } from "./$types";
|
4 |
|
5 |
export const load: PageServerLoad = async ({ fetch }) => {
|
6 |
const apiUrl =
|
7 |
+
"https://huggingface.co/api/models?pipeline_tag=text-generation&filter=conversational&inference_provider=all&limit=100&expand[]=inferenceProviderMapping&expand[]=config&expand[]=library_name&expand[]=pipeline_tag&expand[]=tags&expand[]=mask_token&expand[]=trendingScore";
|
8 |
const HF_TOKEN = env.HF_TOKEN;
|
9 |
|
10 |
const res = await fetch(apiUrl, {
|
|
|
16 |
console.error(`Error fetching warm models`, res.status, res.statusText);
|
17 |
return { models: [] };
|
18 |
}
|
19 |
+
const compatibleModels: Model[] = await res.json();
|
20 |
compatibleModels.sort((a, b) => a.id.toLowerCase().localeCompare(b.id.toLowerCase()));
|
21 |
|
22 |
const promises = compatibleModels.map(async model => {
|
|
|
31 |
return null; // Ignore failed requests by returning null
|
32 |
}
|
33 |
const tokenizerConfig = await res.json();
|
34 |
+
return { ...model, tokenizerConfig } satisfies ModelWithTokenizer;
|
35 |
});
|
36 |
|
37 |
+
const models: ModelWithTokenizer[] = (await Promise.all(promises)).filter(model => model !== null);
|
38 |
|
39 |
return { models };
|
40 |
};
|