Thomas G. Lopes commited on
Commit
b924465
·
1 Parent(s): 1a8c098

add snippets

Browse files
src/lib/components/InferencePlayground/InferencePlayground.svelte CHANGED
@@ -1,5 +1,5 @@
1
  <script lang="ts">
2
- import type { Conversation, ConversationMessage, ModelEntryWithTokenizer } from "./types";
3
 
4
  import {
5
  handleNonStreamingResponse,
@@ -194,7 +194,7 @@
194
  }
195
  }
196
 
197
- function addCompareModel(modelId: ModelEntryWithTokenizer["id"]) {
198
  const model = $models.find(m => m.id === modelId);
199
  if (!model || $session.conversations.length === 2) {
200
  return;
 
1
  <script lang="ts">
2
+ import type { Conversation, ConversationMessage, ModelWithTokenizer } from "$lib/types";
3
 
4
  import {
5
  handleNonStreamingResponse,
 
194
  }
195
  }
196
 
197
+ function addCompareModel(modelId: ModelWithTokenizer["id"]) {
198
  const model = $models.find(m => m.id === modelId);
199
  if (!model || $session.conversations.length === 2) {
200
  return;
src/lib/components/InferencePlayground/InferencePlaygroundCodeSnippets.svelte CHANGED
@@ -1,15 +1,20 @@
1
  <script lang="ts">
2
- import type { Conversation } from "./types";
3
 
4
- import { createEventDispatcher, onDestroy } from "svelte";
5
  import hljs from "highlight.js/lib/core";
 
6
  import javascript from "highlight.js/lib/languages/javascript";
7
  import python from "highlight.js/lib/languages/python";
8
- import http from "highlight.js/lib/languages/http";
9
 
10
- import IconCopyCode from "../Icons/IconCopyCode.svelte";
11
- import { isSystemPromptSupported } from "./inferencePlaygroundUtils";
12
  import { token } from "$lib/stores/token";
 
 
 
 
 
 
 
13
 
14
  hljs.registerLanguage("javascript", javascript);
15
  hljs.registerLanguage("python", python);
@@ -24,44 +29,26 @@
24
  const labelsByLanguage: Record<Language, string> = {
25
  javascript: "JavaScript",
26
  python: "Python",
27
- http: "Curl",
28
  };
29
 
30
- interface Snippet {
31
- label: string;
32
- code: string;
33
- language?: Language;
34
- needsToken?: boolean;
35
- }
36
-
37
- interface ClientSnippet {
38
- name: string;
39
- snippets: Snippet[];
40
- }
41
-
42
- interface MessagesJoiner {
43
- sep: string;
44
- start: string;
45
- end: string;
46
- }
47
-
48
  let selectedLanguage: Language = "javascript";
49
  let timeout: ReturnType<typeof setTimeout>;
50
  let showToken = false;
51
 
52
  $: tokenStr = getTokenStr(showToken);
53
 
 
 
 
 
 
 
54
  $: clientSnippetsByLang = {
55
- javascript: [
56
- { name: "@huggingface/inference", snippets: getJavascriptSnippetsHfClient(conversation, tokenStr) },
57
- { name: "openai", snippets: getJavascriptSnippetsOAIClient(conversation, tokenStr) },
58
- ],
59
- python: [
60
- { name: "huggingface_hub", snippets: getPythonSnippetsHfClient(conversation, tokenStr) },
61
- { name: "openai", snippets: getPythonSnippetsOAIClient(conversation, tokenStr) },
62
- ],
63
- http: [{ name: "curl", snippets: getHttpSnippets(conversation, tokenStr) }],
64
- } as Record<Language, ClientSnippet[]>;
65
 
66
  const selectedClientIdxByLang: Record<Language, number> = Object.fromEntries(lanuages.map(lang => [lang, 0]));
67
 
@@ -72,370 +59,12 @@
72
  return "YOUR_HF_TOKEN";
73
  }
74
 
75
- function getMessages() {
76
- const placeholder = [{ role: "user", content: "Tell me a story" }];
77
-
78
- let messages = [...conversation.messages];
79
- if (messages.length === 1 && messages[0]?.role === "user" && !messages[0]?.content) {
80
- messages = placeholder;
81
- }
82
-
83
- const { model, systemMessage } = conversation;
84
- if (isSystemPromptSupported(model) && systemMessage.content?.length) {
85
- messages.unshift(systemMessage);
86
- }
87
-
88
- const res = messages.map(({ role, content }) => ({
89
- role,
90
- content: JSON.stringify(content).slice(1, -1),
91
- }));
92
- messages = res;
93
-
94
- return res;
95
- }
96
-
97
  function highlight(code: string, language: Language) {
98
- return hljs.highlight(code, { language }).value;
99
- }
100
-
101
- function getJavascriptSnippetsHfClient(conversation: Conversation, tokenStr: string) {
102
- const formattedMessages = ({ sep, start, end }: MessagesJoiner) =>
103
- start +
104
- getMessages()
105
- .map(({ role, content }) => `{ role: "${role}", content: "${content}" }`)
106
- .join(sep) +
107
- end;
108
-
109
- const formattedConfig = ({ sep, start, end }: MessagesJoiner) =>
110
- start +
111
- Object.entries(conversation.config)
112
- .map(([key, val]) => `${key}: ${val}`)
113
- .join(sep) +
114
- end;
115
-
116
- const snippets: Snippet[] = [];
117
- snippets.push({
118
- label: "Install @huggingface/inference",
119
- language: "http",
120
- code: `npm install --save @huggingface/inference`,
121
- });
122
- if (conversation.streaming) {
123
- snippets.push({
124
- label: "Streaming API",
125
- needsToken: true,
126
- code: `import { HfInference } from "@huggingface/inference"
127
-
128
- const client = new HfInference("${tokenStr}")
129
-
130
- let out = "";
131
-
132
- const stream = client.chatCompletionStream({
133
- model: "${conversation.model.id}",
134
- messages: ${formattedMessages({ sep: ",\n\t\t", start: "[\n\t\t", end: "\n\t]" })},
135
- ${formattedConfig({ sep: ",\n\t", start: "", end: "" })}
136
- });
137
-
138
- for await (const chunk of stream) {
139
- if (chunk.choices && chunk.choices.length > 0) {
140
- const newContent = chunk.choices[0].delta.content;
141
- out += newContent;
142
- console.log(newContent);
143
- }
144
- }`,
145
- });
146
- } else {
147
- // non-streaming
148
- snippets.push({
149
- label: "Non-Streaming API",
150
- needsToken: true,
151
- code: `import { HfInference } from '@huggingface/inference'
152
-
153
- const client = new HfInference("${tokenStr}")
154
-
155
- const chatCompletion = await client.chatCompletion({
156
- model: "${conversation.model.id}",
157
- messages: ${formattedMessages({ sep: ",\n\t\t", start: "[\n\t\t", end: "\n\t]" })},
158
- ${formattedConfig({ sep: ",\n\t", start: "", end: "" })}
159
- });
160
-
161
- console.log(chatCompletion.choices[0].message);`,
162
- });
163
- }
164
-
165
- return snippets;
166
- }
167
-
168
- function getJavascriptSnippetsOAIClient(conversation: Conversation, tokenStr: string) {
169
- const formattedMessages = ({ sep, start, end }: MessagesJoiner) =>
170
- start +
171
- getMessages()
172
- .map(({ role, content }) => `{ role: "${role}", content: "${content}" }`)
173
- .join(sep) +
174
- end;
175
-
176
- const formattedConfig = ({ sep, start, end }: MessagesJoiner) =>
177
- start +
178
- Object.entries(conversation.config)
179
- .map(([key, val]) => `${key}: ${val}`)
180
- .join(sep) +
181
- end;
182
-
183
- const snippets: Snippet[] = [];
184
- snippets.push({
185
- label: "Install openai",
186
- language: "http",
187
- code: `npm install --save openai`,
188
- });
189
- if (conversation.streaming) {
190
- snippets.push({
191
- label: "Streaming API",
192
- needsToken: true,
193
- code: `import { OpenAI } from "openai"
194
-
195
- const client = new OpenAI({
196
- baseURL: "https://api-inference.huggingface.co/v1/",
197
- apiKey: "${tokenStr}"
198
- })
199
-
200
- let out = "";
201
-
202
- const stream = await client.chat.completions.create({
203
- model: "${conversation.model.id}",
204
- messages: ${formattedMessages({ sep: ",\n\t\t", start: "[\n\t\t", end: "\n\t]" })},
205
- ${formattedConfig({ sep: ",\n\t", start: "", end: "" })},
206
- stream: true,
207
- });
208
-
209
- for await (const chunk of stream) {
210
- if (chunk.choices && chunk.choices.length > 0) {
211
- const newContent = chunk.choices[0].delta.content;
212
- out += newContent;
213
- console.log(newContent);
214
- }
215
- }`,
216
- });
217
- } else {
218
- // non-streaming
219
- snippets.push({
220
- label: "Non-Streaming API",
221
- needsToken: true,
222
- code: `import { OpenAI } from "openai"
223
-
224
- const client = new OpenAI({
225
- baseURL: "https://api-inference.huggingface.co/v1/",
226
- apiKey: "${tokenStr}"
227
- })
228
-
229
- const chatCompletion = await client.chat.completions.create({
230
- model: "${conversation.model.id}",
231
- messages: ${formattedMessages({ sep: ",\n\t\t", start: "[\n\t\t", end: "\n\t]" })},
232
- ${formattedConfig({ sep: ",\n\t", start: "", end: "" })}
233
- });
234
-
235
- console.log(chatCompletion.choices[0].message);`,
236
- });
237
- }
238
-
239
- return snippets;
240
- }
241
-
242
- function getPythonSnippetsHfClient(conversation: Conversation, tokenStr: string) {
243
- const formattedMessages = ({ sep, start, end }: MessagesJoiner) =>
244
- start +
245
- getMessages()
246
- .map(({ role, content }) => `{ "role": "${role}", "content": "${content}" }`)
247
- .join(sep) +
248
- end;
249
-
250
- const formattedConfig = ({ sep, start, end, connector }: MessagesJoiner & { connector: string }) =>
251
- start +
252
- Object.entries(conversation.config)
253
- .map(([key, val]) => `${key}${connector}${val}`)
254
- .join(sep) +
255
- end;
256
-
257
- const snippets: Snippet[] = [];
258
- snippets.push({
259
- label: "Install the latest huggingface_hub",
260
- language: "http",
261
- code: `pip install huggingface_hub --upgrade`,
262
- });
263
- if (conversation.streaming) {
264
- snippets.push({
265
- label: "Streaming API",
266
- needsToken: true,
267
- code: `from huggingface_hub import InferenceClient
268
-
269
- client = InferenceClient(api_key="${tokenStr}")
270
-
271
- messages = ${formattedMessages({ sep: ",\n\t", start: `[\n\t`, end: `\n]` })}
272
-
273
- stream = client.chat.completions.create(
274
- model="${conversation.model.id}",
275
- messages=messages,
276
- ${formattedConfig({ sep: ",\n\t", start: "", end: "", connector: "=" })},
277
- stream=True
278
- )
279
-
280
- for chunk in stream:
281
- print(chunk.choices[0].delta.content)`,
282
- });
283
- } else {
284
- // non-streaming
285
- snippets.push({
286
- label: "Non-Streaming API",
287
- needsToken: true,
288
- code: `from huggingface_hub import InferenceClient
289
-
290
- client = InferenceClient(api_key="${tokenStr}")
291
-
292
- messages = ${formattedMessages({ sep: ",\n\t", start: `[\n\t`, end: `\n]` })}
293
-
294
- completion = client.chat.completions.create(
295
- model="${conversation.model.id}",
296
- messages=messages,
297
- ${formattedConfig({ sep: ",\n\t", start: "", end: "", connector: "=" })}
298
- )
299
-
300
- print(completion.choices[0].message)`,
301
- });
302
- }
303
-
304
- return snippets;
305
- }
306
-
307
- function getPythonSnippetsOAIClient(conversation: Conversation, tokenStr: string) {
308
- const formattedMessages = ({ sep, start, end }: MessagesJoiner) =>
309
- start +
310
- getMessages()
311
- .map(({ role, content }) => `{ "role": "${role}", "content": "${content}" }`)
312
- .join(sep) +
313
- end;
314
-
315
- const formattedConfig = ({ sep, start, end, connector }: MessagesJoiner & { connector: string }) =>
316
- start +
317
- Object.entries(conversation.config)
318
- .map(([key, val]) => `${key}${connector}${val}`)
319
- .join(sep) +
320
- end;
321
-
322
- const snippets: Snippet[] = [];
323
- snippets.push({
324
- label: "Install the latest openai",
325
- language: "http",
326
- code: `pip install openai --upgrade`,
327
- });
328
- if (conversation.streaming) {
329
- snippets.push({
330
- label: "Streaming API",
331
- needsToken: true,
332
- code: `from openai import OpenAI
333
-
334
- client = OpenAI(
335
- base_url="https://api-inference.huggingface.co/v1/",
336
- api_key="${tokenStr}"
337
- )
338
-
339
- messages = ${formattedMessages({ sep: ",\n\t", start: `[\n\t`, end: `\n]` })}
340
-
341
- stream = client.chat.completions.create(
342
- model="${conversation.model.id}",
343
- messages=messages,
344
- ${formattedConfig({ sep: ",\n\t", start: "", end: "", connector: "=" })},
345
- stream=True
346
- )
347
-
348
- for chunk in stream:
349
- print(chunk.choices[0].delta.content)`,
350
- });
351
- } else {
352
- // non-streaming
353
- snippets.push({
354
- label: "Non-Streaming API",
355
- needsToken: true,
356
- code: `from openai import OpenAI
357
-
358
- client = OpenAI(
359
- base_url="https://api-inference.huggingface.co/v1/",
360
- api_key="${tokenStr}"
361
- )
362
-
363
- messages = ${formattedMessages({ sep: ",\n\t", start: `[\n\t`, end: `\n]` })}
364
-
365
- completion = client.chat.completions.create(
366
- model="${conversation.model.id}",
367
- messages=messages,
368
- ${formattedConfig({ sep: ",\n\t", start: "", end: "", connector: "=" })}
369
- )
370
-
371
- print(completion.choices[0].message)`,
372
- });
373
- }
374
-
375
- return snippets;
376
- }
377
-
378
- function getHttpSnippets(conversation: Conversation, tokenStr: string) {
379
- if (tokenStr === "YOUR_HF_TOKEN") {
380
- tokenStr = "{YOUR_HF_TOKEN}";
381
- }
382
- const formattedMessages = ({ sep, start, end }: MessagesJoiner) =>
383
- start +
384
- getMessages()
385
- .map(({ role, content }) => {
386
- // escape single quotes since single quotes is used to define http post body inside curl requests
387
- content = content?.replace(/'/g, "'\\''");
388
- return `{ "role": "${role}", "content": "${content}" }`;
389
- })
390
- .join(sep) +
391
- end;
392
-
393
- const formattedConfig = ({ sep, start, end }: MessagesJoiner) =>
394
- start +
395
- Object.entries(conversation.config)
396
- .map(([key, val]) => `"${key}": ${val}`)
397
- .join(sep) +
398
- end;
399
-
400
- const snippets: Snippet[] = [];
401
-
402
- if (conversation.streaming) {
403
- snippets.push({
404
- label: "Streaming API",
405
- needsToken: true,
406
- code: `curl 'https://api-inference.huggingface.co/models/${conversation.model.id}/v1/chat/completions' \\
407
- --header "Authorization: Bearer ${tokenStr}" \\
408
- --header 'Content-Type: application/json' \\
409
- --data '{
410
- "model": "${conversation.model.id}",
411
- "messages": ${formattedMessages({ sep: ",\n ", start: `[\n `, end: `\n]` })},
412
- ${formattedConfig({ sep: ",\n ", start: "", end: "" })},
413
- "stream": true
414
- }'`,
415
- });
416
- } else {
417
- // non-streaming
418
- snippets.push({
419
- label: "Non-Streaming API",
420
- needsToken: true,
421
- code: `curl 'https://api-inference.huggingface.co/models/${conversation.model.id}/v1/chat/completions' \\
422
- --header "Authorization: Bearer ${tokenStr}" \\
423
- --header 'Content-Type: application/json' \\
424
- --data '{
425
- "model": "${conversation.model.id}",
426
- "messages": ${formattedMessages({ sep: ",\n ", start: `[\n `, end: `\n]` })},
427
- ${formattedConfig({ sep: ",\n ", start: "", end: "" })}
428
- }'`,
429
- });
430
- }
431
-
432
- return snippets;
433
  }
434
 
435
  onDestroy(() => {
436
- if (timeout) {
437
- clearTimeout(timeout);
438
- }
439
  });
440
  </script>
441
 
@@ -468,55 +97,52 @@ print(completion.choices[0].message)`,
468
  </ul>
469
  </div>
470
 
471
- {#if clientSnippetsByLang[selectedLanguage]?.length ?? 0 > 1}
472
  <div class="flex gap-x-2 px-2 pt-6">
473
- {#each clientSnippetsByLang[selectedLanguage] ?? [] as { name }, idx}
 
474
  <button
475
- class="rounded-md px-1.5 py-0.5 leading-tight {idx === selectedClientIdxByLang[selectedLanguage]
476
- ? 'bg-black text-gray-100 dark:bg-gray-600 dark:text-white'
477
- : 'text-gray-500 hover:text-gray-600 dark:hover:text-gray-400'}"
478
- on:click={() => (selectedClientIdxByLang[selectedLanguage] = idx)}>{name}</button
 
479
  >
480
  {/each}
481
  </div>
482
  {/if}
483
 
484
- {#each clientSnippetsByLang[selectedLanguage] ?? [] as { snippets }, idx}
485
  {#if idx === selectedClientIdxByLang[selectedLanguage]}
486
- {#each snippets as { label, code, language, needsToken }}
487
- <div class="flex items-center justify-between px-2 pt-6 pb-4">
488
- <h2 class="font-semibold">{label}</h2>
489
- <div class="flex items-center gap-x-4">
490
- {#if needsToken && $token.value}
491
- <label class="flex items-center gap-x-1.5 text-sm select-none">
492
- <input type="checkbox" bind:checked={showToken} />
493
- <p class="leading-none">With token</p>
494
- </label>
495
- {/if}
496
- <button
497
- class="flex items-center gap-x-2 rounded-md border bg-white px-1.5 py-0.5 text-sm shadow-xs transition dark:border-gray-800 dark:bg-gray-800"
498
- on:click={e => {
499
- const el = e.currentTarget;
500
- el.classList.add("text-green-500");
501
- navigator.clipboard.writeText(code);
502
- if (timeout) {
503
- clearTimeout(timeout);
504
- }
505
- timeout = setTimeout(() => {
506
- el.classList.remove("text-green-500");
507
- }, 400);
508
- }}
509
- >
510
- <IconCopyCode classNames="text-xs" /> Copy code
511
- </button>
512
- </div>
513
  </div>
514
- <pre
515
- class="overflow-x-auto rounded-lg border border-gray-200/80 bg-white px-4 py-6 text-sm shadow-xs dark:border-gray-800 dark:bg-gray-800/50">{@html highlight(
516
- code,
517
- language ?? selectedLanguage
518
- )}</pre>
519
- {/each}
520
  {/if}
521
  {/each}
522
  </div>
 
1
  <script lang="ts">
2
+ import type { Conversation } from "$lib/types";
3
 
 
4
  import hljs from "highlight.js/lib/core";
5
+ import http from "highlight.js/lib/languages/http";
6
  import javascript from "highlight.js/lib/languages/javascript";
7
  import python from "highlight.js/lib/languages/python";
8
+ import { createEventDispatcher, onDestroy } from "svelte";
9
 
 
 
10
  import { token } from "$lib/stores/token";
11
+ import type { InferenceProvider } from "@huggingface/inference";
12
+ import IconCopyCode from "../Icons/IconCopyCode.svelte";
13
+ import {
14
+ getInferenceSnippet,
15
+ type GetInferenceSnippetReturn,
16
+ type InferenceSnippetLanguage,
17
+ } from "./inferencePlaygroundUtils";
18
 
19
  hljs.registerLanguage("javascript", javascript);
20
  hljs.registerLanguage("python", python);
 
29
  const labelsByLanguage: Record<Language, string> = {
30
  javascript: "JavaScript",
31
  python: "Python",
32
+ http: "cURL",
33
  };
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  let selectedLanguage: Language = "javascript";
36
  let timeout: ReturnType<typeof setTimeout>;
37
  let showToken = false;
38
 
39
  $: tokenStr = getTokenStr(showToken);
40
 
41
+ function getSnippet(lang: InferenceSnippetLanguage, tokenStr: string) {
42
+ return getInferenceSnippet(conversation.model, conversation.provider as InferenceProvider, lang, tokenStr, {
43
+ messages: conversation.messages,
44
+ });
45
+ }
46
+
47
  $: clientSnippetsByLang = {
48
+ javascript: getSnippet("js", tokenStr),
49
+ python: getSnippet("python", tokenStr),
50
+ http: getSnippet("curl", tokenStr),
51
+ } as Record<Language, GetInferenceSnippetReturn>;
 
 
 
 
 
 
52
 
53
  const selectedClientIdxByLang: Record<Language, number> = Object.fromEntries(lanuages.map(lang => [lang, 0]));
54
 
 
59
  return "YOUR_HF_TOKEN";
60
  }
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  function highlight(code: string, language: Language) {
63
+ return hljs.highlight(code, { language: language === "curl" ? "http" : language }).value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  }
65
 
66
  onDestroy(() => {
67
+ clearTimeout(timeout);
 
 
68
  });
69
  </script>
70
 
 
97
  </ul>
98
  </div>
99
 
100
+ {#if (clientSnippetsByLang[selectedLanguage]?.length ?? 0) > 1}
101
  <div class="flex gap-x-2 px-2 pt-6">
102
+ {#each clientSnippetsByLang[selectedLanguage] ?? [] as { client }, idx}
103
+ {@const isActive = idx === selectedClientIdxByLang[selectedLanguage]}
104
  <button
105
+ class="rounded-lg border px-1.5 py-0.5 text-sm leading-tight
106
+ {isActive
107
+ ? 'bg-black text-gray-100 dark:border-gray-500 dark:bg-gray-700 dark:text-white'
108
+ : 'text-gray-500 hover:text-gray-600 dark:border-gray-600 dark:hover:text-gray-400'}"
109
+ on:click={() => (selectedClientIdxByLang[selectedLanguage] = idx)}>{client}</button
110
  >
111
  {/each}
112
  </div>
113
  {/if}
114
 
115
+ {#each clientSnippetsByLang[selectedLanguage] ?? [] as { language, content }, idx}
116
  {#if idx === selectedClientIdxByLang[selectedLanguage]}
117
+ <div class="flex items-center justify-end px-2 pt-6 pb-4">
118
+ <div class="flex items-center gap-x-4">
119
+ <label class="flex items-center gap-x-1.5 text-sm select-none">
120
+ <input type="checkbox" bind:checked={showToken} />
121
+ <p class="leading-none">With token</p>
122
+ </label>
123
+ <button
124
+ class="flex items-center gap-x-2 rounded-md border bg-white px-1.5 py-0.5 text-sm shadow-xs transition dark:border-gray-800 dark:bg-gray-800"
125
+ on:click={e => {
126
+ const el = e.currentTarget;
127
+ el.classList.add("text-green-500");
128
+ navigator.clipboard.writeText(content);
129
+ if (timeout) {
130
+ clearTimeout(timeout);
131
+ }
132
+ timeout = setTimeout(() => {
133
+ el.classList.remove("text-green-500");
134
+ }, 400);
135
+ }}
136
+ >
137
+ <IconCopyCode classNames="text-xs" /> Copy code
138
+ </button>
 
 
 
 
 
139
  </div>
140
+ </div>
141
+ <pre
142
+ class="overflow-x-auto rounded-lg border border-gray-200/80 bg-white px-4 py-6 text-sm shadow-xs dark:border-gray-800 dark:bg-gray-800/50">{@html highlight(
143
+ content,
144
+ language ?? selectedLanguage
145
+ )}</pre>
146
  {/if}
147
  {/each}
148
  </div>
src/lib/components/InferencePlayground/InferencePlaygroundConversation.svelte CHANGED
@@ -1,5 +1,5 @@
1
  <script lang="ts">
2
- import type { Conversation } from "$lib/components/InferencePlayground/types";
3
 
4
  import { createEventDispatcher, tick } from "svelte";
5
 
 
1
  <script lang="ts">
2
+ import type { Conversation } from "$lib/types";
3
 
4
  import { createEventDispatcher, tick } from "svelte";
5
 
src/lib/components/InferencePlayground/InferencePlaygroundConversationHeader.svelte CHANGED
@@ -1,5 +1,5 @@
1
  <script lang="ts">
2
- import type { Conversation, ModelEntryWithTokenizer } from "$lib/components/InferencePlayground/types";
3
 
4
  import { createEventDispatcher } from "svelte";
5
 
@@ -17,7 +17,7 @@
17
 
18
  let modelSelectorOpen = false;
19
 
20
- function changeModel(newModelId: ModelEntryWithTokenizer["id"]) {
21
  const model = $models.find(m => m.id === newModelId);
22
  if (!model) {
23
  return;
 
1
  <script lang="ts">
2
+ import type { Conversation, ModelWithTokenizer } from "$lib/types";
3
 
4
  import { createEventDispatcher } from "svelte";
5
 
 
17
 
18
  let modelSelectorOpen = false;
19
 
20
+ function changeModel(newModelId: ModelWithTokenizer["id"]) {
21
  const model = $models.find(m => m.id === newModelId);
22
  if (!model) {
23
  return;
src/lib/components/InferencePlayground/InferencePlaygroundGenerationConfig.svelte CHANGED
@@ -1,5 +1,5 @@
1
  <script lang="ts">
2
- import type { Conversation } from "$lib/components/InferencePlayground/types";
3
 
4
  import { GENERATION_CONFIG_KEYS, GENERATION_CONFIG_SETTINGS } from "./generationConfigSettings";
5
  import { customMaxTokens } from "./inferencePlaygroundUtils";
 
1
  <script lang="ts">
2
+ import type { Conversation } from "$lib/types";
3
 
4
  import { GENERATION_CONFIG_KEYS, GENERATION_CONFIG_SETTINGS } from "./generationConfigSettings";
5
  import { customMaxTokens } from "./inferencePlaygroundUtils";
src/lib/components/InferencePlayground/InferencePlaygroundMessage.svelte CHANGED
@@ -1,6 +1,6 @@
1
  <script lang="ts">
2
  import { createEventDispatcher } from "svelte";
3
- import type { ConversationMessage } from "./types";
4
 
5
  export let message: ConversationMessage;
6
  export let loading: boolean = false;
 
1
  <script lang="ts">
2
  import { createEventDispatcher } from "svelte";
3
+ import type { ConversationMessage } from "$lib/types";
4
 
5
  export let message: ConversationMessage;
6
  export let loading: boolean = false;
src/lib/components/InferencePlayground/InferencePlaygroundModelSelector.svelte CHANGED
@@ -1,5 +1,5 @@
1
  <script lang="ts">
2
- import type { Conversation, ModelEntryWithTokenizer } from "./types";
3
 
4
  import { models } from "$lib/stores/models";
5
  import Avatar from "../Avatar.svelte";
@@ -13,7 +13,7 @@
13
  let showModelPickerModal = false;
14
 
15
  // Model
16
- function changeModel(modelId: ModelEntryWithTokenizer["id"]) {
17
  const model = $models.find(m => m.id === modelId);
18
  if (!model) {
19
  return;
 
1
  <script lang="ts">
2
+ import type { Conversation, ModelWithTokenizer } from "$lib/types";
3
 
4
  import { models } from "$lib/stores/models";
5
  import Avatar from "../Avatar.svelte";
 
13
  let showModelPickerModal = false;
14
 
15
  // Model
16
+ function changeModel(modelId: ModelWithTokenizer["id"]) {
17
  const model = $models.find(m => m.id === modelId);
18
  if (!model) {
19
  return;
src/lib/components/InferencePlayground/InferencePlaygroundModelSelectorModal.svelte CHANGED
@@ -1,5 +1,5 @@
1
  <script lang="ts">
2
- import type { Conversation } from "./types";
3
 
4
  import { createEventDispatcher, tick } from "svelte";
5
 
 
1
  <script lang="ts">
2
+ import type { Conversation } from "$lib/types";
3
 
4
  import { createEventDispatcher, tick } from "svelte";
5
 
src/lib/components/InferencePlayground/InferencePlaygroundProviderSelect.svelte CHANGED
@@ -1,32 +1,25 @@
1
  <script lang="ts">
2
- import type { Conversation } from "./types";
3
 
4
- import { browser } from "$app/environment";
5
- import { fetchHuggingFaceModel, type InferenceProviderMapping } from "$lib/fetchers/providers";
6
- import { token } from "$lib/stores/token";
7
  import { randomPick } from "$lib/utils/array";
 
8
  import { createSelect, createSync } from "@melt-ui/svelte";
 
9
  import IconCaret from "../Icons/IconCaret.svelte";
10
  import IconProvider from "../Icons/IconProvider.svelte";
11
- import { cn } from "$lib/utils/cn";
12
 
13
  export let conversation: Conversation;
14
  let classes: string | undefined = undefined;
15
  export { classes as class };
16
 
17
- async function loadProviders(modelId: string) {
18
- if (!browser) return;
19
- providerMap = {};
20
- const res = await fetchHuggingFaceModel(modelId, $token.value);
21
- providerMap = res.inferenceProviderMapping;
22
- // Commented out. I'm not sure we want to maintain, or always random pick
23
- if ((conversation.provider ?? "") in providerMap) return;
24
- conversation.provider = randomPick(Object.keys(providerMap));
25
  }
26
 
27
- let providerMap: InferenceProviderMapping = {};
28
- $: modelId = conversation.model.id;
29
- $: loadProviders(modelId);
30
 
31
  const {
32
  elements: { trigger, menu, option },
@@ -96,7 +89,7 @@
96
  </button>
97
 
98
  <div {...$menu} use:menu class="rounded-lg border bg-gray-100/80 dark:border-gray-700 dark:bg-gray-800">
99
- {#each Object.keys(providerMap) as provider (provider)}
100
  <div {...$option({ value: provider })} use:option class="group p-1 text-sm dark:text-white">
101
  <div
102
  class="flex items-center gap-2 rounded-md px-2 py-1.5 group-data-[highlighted]:bg-gray-200 dark:group-data-[highlighted]:bg-gray-700"
 
1
  <script lang="ts">
2
+ import type { Conversation } from "$lib/types";
3
 
 
 
 
4
  import { randomPick } from "$lib/utils/array";
5
+ import { cn } from "$lib/utils/cn";
6
  import { createSelect, createSync } from "@melt-ui/svelte";
7
+ import { onMount } from "svelte";
8
  import IconCaret from "../Icons/IconCaret.svelte";
9
  import IconProvider from "../Icons/IconProvider.svelte";
 
10
 
11
  export let conversation: Conversation;
12
  let classes: string | undefined = undefined;
13
  export { classes as class };
14
 
15
+ function reset(providers: typeof conversation.model.inferenceProviderMapping) {
16
+ const validProvider = providers.find(p => p.provider === conversation.provider);
17
+ if (validProvider) return;
18
+ conversation.provider = randomPick(providers)?.provider;
 
 
 
 
19
  }
20
 
21
+ $: providers = conversation.model.inferenceProviderMapping;
22
+ $: reset(providers);
 
23
 
24
  const {
25
  elements: { trigger, menu, option },
 
89
  </button>
90
 
91
  <div {...$menu} use:menu class="rounded-lg border bg-gray-100/80 dark:border-gray-700 dark:bg-gray-800">
92
+ {#each conversation.model.inferenceProviderMapping as { provider }}
93
  <div {...$option({ value: provider })} use:option class="group p-1 text-sm dark:text-white">
94
  <div
95
  class="flex items-center gap-2 rounded-md px-2 py-1.5 group-data-[highlighted]:bg-gray-200 dark:group-data-[highlighted]:bg-gray-700"
src/lib/components/InferencePlayground/inferencePlaygroundUtils.ts CHANGED
@@ -1,7 +1,9 @@
1
  import { type ChatCompletionOutputMessage } from "@huggingface/tasks";
2
- import type { Conversation, ModelEntryWithTokenizer } from "./types";
 
3
 
4
- import { HfInference } from "@huggingface/inference";
 
5
 
6
  export async function handleStreamingResponse(
7
  hf: HfInference,
@@ -57,7 +59,7 @@ export async function handleNonStreamingResponse(
57
  throw new Error("No response from the model");
58
  }
59
 
60
- export function isSystemPromptSupported(model: ModelEntryWithTokenizer) {
61
  return model?.tokenizerConfig?.chat_template?.includes("system");
62
  }
63
 
@@ -125,3 +127,45 @@ export const customMaxTokens: { [key: string]: number } = {
125
  "meta-llama/Llama-3.1-70B-Instruct": 32768,
126
  "meta-llama/Llama-3.1-8B-Instruct": 8192,
127
  } as const;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import { type ChatCompletionOutputMessage } from "@huggingface/tasks";
2
+ import type { InferenceSnippet, ModelDataMinimal } from "@huggingface/tasks";
3
+ import type { Conversation, ModelWithTokenizer } from "$lib/types";
4
 
5
+ import { HfInference, snippets, type InferenceProvider } from "@huggingface/inference";
6
+ import { keys } from "$lib/utils/object";
7
 
8
  export async function handleStreamingResponse(
9
  hf: HfInference,
 
59
  throw new Error("No response from the model");
60
  }
61
 
62
+ export function isSystemPromptSupported(model: ModelWithTokenizer) {
63
  return model?.tokenizerConfig?.chat_template?.includes("system");
64
  }
65
 
 
127
  "meta-llama/Llama-3.1-70B-Instruct": 32768,
128
  "meta-llama/Llama-3.1-8B-Instruct": 8192,
129
  } as const;
130
+
131
+ // Order of the elements in InferenceModal.svelte is determined by this const
132
+ export const inferenceSnippetLanguages = ["python", "js", "curl"] as const;
133
+
134
+ export type InferenceSnippetLanguage = (typeof inferenceSnippetLanguages)[number];
135
+
136
+ const GET_SNIPPET_FN = {
137
+ curl: snippets.curl.getCurlInferenceSnippet,
138
+ js: snippets.js.getJsInferenceSnippet,
139
+ python: snippets.python.getPythonInferenceSnippet,
140
+ } as const;
141
+
142
+ export type GetInferenceSnippetReturn = (InferenceSnippet & { language: InferenceSnippetLanguage })[];
143
+
144
+ export function getInferenceSnippet(
145
+ model: ModelWithTokenizer,
146
+ provider: InferenceProvider,
147
+ language: InferenceSnippetLanguage,
148
+ accessToken: string,
149
+ opts?: Record<string, unknown>
150
+ ): GetInferenceSnippetReturn {
151
+ const providerId = model.inferenceProviderMapping.find(p => p.provider === provider)?.providerId;
152
+ const snippetsByClient = GET_SNIPPET_FN[language](
153
+ { ...model, inference: "" },
154
+ accessToken,
155
+ provider,
156
+ providerId,
157
+ opts
158
+ );
159
+ return snippetsByClient.map(snippetByClient => ({ ...snippetByClient, language }));
160
+ }
161
+
162
+ /**
163
+ * - If language is defined, the function checks if in an inference snippet is available for that specific language
164
+ */
165
+ export function hasInferenceSnippet(
166
+ model: ModelWithTokenizer,
167
+ provider: InferenceProvider,
168
+ language: InferenceSnippetLanguage
169
+ ): boolean {
170
+ return getInferenceSnippet(model, provider, language, "").length > 0;
171
+ }
src/lib/components/InferencePlayground/types.ts DELETED
@@ -1,27 +0,0 @@
1
- import type { GenerationConfig } from "$lib/components/InferencePlayground/generationConfigSettings";
2
- import type { ModelEntry } from "@huggingface/hub";
3
- import type { ChatCompletionInputMessage } from "@huggingface/tasks";
4
-
5
- export type ConversationMessage = Omit<ChatCompletionInputMessage, "content"> & { content?: string };
6
-
7
- export type Conversation = {
8
- model: ModelEntryWithTokenizer;
9
- config: GenerationConfig;
10
- messages: ConversationMessage[];
11
- systemMessage: ConversationMessage;
12
- streaming: boolean;
13
- provider?: string;
14
- };
15
-
16
- export type Session = {
17
- conversations: [Conversation] | [Conversation, Conversation];
18
- };
19
-
20
- interface TokenizerConfig {
21
- chat_template?: string;
22
- model_max_length?: number;
23
- }
24
-
25
- export interface ModelEntryWithTokenizer extends ModelEntry {
26
- tokenizerConfig: TokenizerConfig;
27
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/lib/fetchers/providers.ts DELETED
@@ -1,77 +0,0 @@
1
- export interface HuggingFaceModelResponse {
2
- _id: string;
3
- id: string;
4
- inferenceProviderMapping: InferenceProviderMapping;
5
- }
6
-
7
- export type InferenceProviderMapping = {
8
- [k: string]: Provider;
9
- };
10
-
11
- export interface Provider {
12
- status: string;
13
- providerId: string;
14
- task: string;
15
- }
16
-
17
- /**
18
- * Error thrown when the Hugging Face API request fails
19
- */
20
- export class HuggingFaceApiError extends Error {
21
- status: number;
22
- details: string;
23
-
24
- constructor(message: string, status: number, details: string) {
25
- super(message);
26
- this.name = "HuggingFaceApiError";
27
- this.status = status;
28
- this.details = details;
29
- }
30
- }
31
-
32
- /**
33
- * Fetches model data from the Hugging Face API
34
- *
35
- * @param modelId - The Hugging Face model ID (can include namespace like "username/model-name")
36
- * @param token - Optional Hugging Face API token for authentication
37
- * @returns Promise resolving to the model data
38
- * @throws {HuggingFaceApiError} When the API request fails
39
- */
40
- export async function fetchHuggingFaceModel(modelId: string, token?: string): Promise<HuggingFaceModelResponse> {
41
- if (!modelId) {
42
- throw new Error("Model ID is required");
43
- }
44
-
45
- // Construct the API URL
46
- const apiUrl = `https://huggingface.co/api/models/${modelId}?expand%5B%5D=inferenceProviderMapping`;
47
-
48
- // Prepare headers for the request
49
- const headers: HeadersInit = {};
50
- if (token) {
51
- headers["Authorization"] = `Bearer ${token}`;
52
- }
53
-
54
- try {
55
- // Make the request to Hugging Face API
56
- const response = await fetch(apiUrl, {
57
- method: "GET",
58
- headers,
59
- });
60
-
61
- if (!response.ok) {
62
- const errorText = await response.text();
63
- throw new HuggingFaceApiError("Failed to fetch data from Hugging Face API", response.status, errorText);
64
- }
65
-
66
- return (await response.json()) as HuggingFaceModelResponse;
67
- } catch (error) {
68
- if (error instanceof HuggingFaceApiError) {
69
- throw error;
70
- }
71
-
72
- // Handle other errors (network, etc.)
73
- throw new Error(
74
- `Error fetching Hugging Face model data: ${error instanceof Error ? error.message : "Unknown error"}`
75
- );
76
- }
77
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/lib/stores/models.ts CHANGED
@@ -1,8 +1,8 @@
1
  import { page } from "$app/stores";
2
- import type { ModelEntryWithTokenizer } from "$lib/components/InferencePlayground/types";
3
  import { readable } from "svelte/store";
4
 
5
- export const models = readable<ModelEntryWithTokenizer[]>(undefined, set => {
6
  const unsub = page.subscribe($p => set($p.data.models));
7
  return unsub;
8
  });
 
1
  import { page } from "$app/stores";
2
+ import type { ModelWithTokenizer } from "$lib/types";
3
  import { readable } from "svelte/store";
4
 
5
+ export const models = readable<ModelWithTokenizer[]>(undefined, set => {
6
  const unsub = page.subscribe($p => set($p.data.models));
7
  return unsub;
8
  });
src/lib/stores/session.ts CHANGED
@@ -5,7 +5,7 @@ import {
5
  defaultSystemMessage,
6
  FEATURED_MODELS_IDS,
7
  } from "$lib/components/InferencePlayground/inferencePlaygroundUtils";
8
- import type { Conversation, ConversationMessage, Session } from "$lib/components/InferencePlayground/types";
9
 
10
  import { models } from "$lib/stores/models";
11
  import { get, writable } from "svelte/store";
@@ -30,14 +30,18 @@ function createSessionStore() {
30
  {
31
  model: get(models).find(m => FEATURED_MODELS_IDS.includes(m.id)) ??
32
  get(models)[0] ?? {
 
 
 
 
 
33
  id: "",
34
- downloads: 0,
35
- gated: false,
36
- likes: 0,
37
- name: "",
38
- private: false,
39
  tokenizerConfig: {},
40
- updatedAt: new Date(),
 
 
 
 
41
  },
42
  config: { ...defaultGenerationConfig },
43
  messages: [{ ...startMessageUser }],
 
5
  defaultSystemMessage,
6
  FEATURED_MODELS_IDS,
7
  } from "$lib/components/InferencePlayground/inferencePlaygroundUtils";
8
+ import { PipelineTag, type Conversation, type ConversationMessage, type Session } from "$lib/types";
9
 
10
  import { models } from "$lib/stores/models";
11
  import { get, writable } from "svelte/store";
 
30
  {
31
  model: get(models).find(m => FEATURED_MODELS_IDS.includes(m.id)) ??
32
  get(models)[0] ?? {
33
+ _id: "",
34
+ inferenceProviderMapping: [],
35
+ pipeline_tag: PipelineTag.TextGeneration,
36
+ trendingScore: 0,
37
+ tags: ["text-generation"],
38
  id: "",
 
 
 
 
 
39
  tokenizerConfig: {},
40
+ config: {
41
+ architectures: [] as string[],
42
+ model_type: "",
43
+ tokenizer_config: {},
44
+ },
45
  },
46
  config: { ...defaultGenerationConfig },
47
  messages: [{ ...startMessageUser }],
src/lib/types.ts ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import type { GenerationConfig } from "$lib/components/InferencePlayground/generationConfigSettings";
2
+ import type { ChatCompletionInputMessage } from "@huggingface/tasks";
3
+
4
+ export type ConversationMessage = Omit<ChatCompletionInputMessage, "content"> & { content?: string };
5
+
6
+ export type Conversation = {
7
+ model: ModelWithTokenizer;
8
+ config: GenerationConfig;
9
+ messages: ConversationMessage[];
10
+ systemMessage: ConversationMessage;
11
+ streaming: boolean;
12
+ provider?: string;
13
+ };
14
+
15
+ export type Session = {
16
+ conversations: [Conversation] | [Conversation, Conversation];
17
+ };
18
+
19
+ interface TokenizerConfig {
20
+ chat_template?: string;
21
+ model_max_length?: number;
22
+ }
23
+
24
+ export type ModelWithTokenizer = Model & {
25
+ tokenizerConfig: TokenizerConfig;
26
+ };
27
+
28
+ export type Model = {
29
+ _id: string;
30
+ id: string;
31
+ inferenceProviderMapping: InferenceProviderMapping[];
32
+ trendingScore: number;
33
+ config: Config;
34
+ tags: string[];
35
+ pipeline_tag: PipelineTag;
36
+ library_name?: LibraryName;
37
+ };
38
+
39
+ export type Config = {
40
+ architectures: string[];
41
+ model_type: string;
42
+ tokenizer_config: TokenizerConfig;
43
+ auto_map?: AutoMap;
44
+ quantization_config?: QuantizationConfig;
45
+ };
46
+
47
+ export type AutoMap = {
48
+ AutoConfig: string;
49
+ AutoModel?: string;
50
+ AutoModelForCausalLM: string;
51
+ AutoModelForSequenceClassification?: string;
52
+ AutoModelForTokenClassification?: string;
53
+ AutoModelForQuestionAnswering?: string;
54
+ };
55
+
56
+ export type QuantizationConfig = {
57
+ quant_method: string;
58
+ bits?: number;
59
+ };
60
+
61
+ // export type TokenizerConfig = {
62
+ // bos_token?: Token | BosTokenEnum | null;
63
+ // chat_template: ChatTemplateElement[] | string;
64
+ // eos_token: Token | EOSTokenEnum;
65
+ // pad_token?: Token | null | string;
66
+ // unk_token?: Token | UnkTokenEnum | null;
67
+ // use_default_system_prompt?: boolean;
68
+ // };
69
+
70
+ export type Token = {
71
+ __type: Type;
72
+ content: Content;
73
+ lstrip: boolean;
74
+ normalized: boolean;
75
+ rstrip: boolean;
76
+ single_word: boolean;
77
+ };
78
+
79
+ export enum Type {
80
+ AddedToken = "AddedToken",
81
+ }
82
+
83
+ export enum Content {
84
+ BeginOfSentence = "<|begin▁of▁sentence|>",
85
+ ContentS = "</s>",
86
+ EndOfSentence = "<|end▁of▁sentence|>",
87
+ S = "<s>",
88
+ Unk = "<unk>",
89
+ }
90
+
91
+ export enum BosTokenEnum {
92
+ BeginOfText = "<|begin_of_text|>",
93
+ Bos = "<bos>",
94
+ BosToken = "<BOS_TOKEN>",
95
+ Endoftext = "<|endoftext|>",
96
+ IMStart = "<|im_start|>",
97
+ S = "<s>",
98
+ Startoftext = "<|startoftext|>",
99
+ }
100
+
101
+ export type ChatTemplateElement = {
102
+ name: string;
103
+ template: string;
104
+ };
105
+
106
+ export enum EOSTokenEnum {
107
+ EOS = "<eos>",
108
+ EndOfText = "<|end_of_text|>",
109
+ EndOfTurnToken = "<|END_OF_TURN_TOKEN|>",
110
+ Endoftext = "<|endoftext|>",
111
+ EotID = "<|eot_id|>",
112
+ IMEnd = "<|im_end|>",
113
+ S = "</s>",
114
+ }
115
+
116
+ export enum UnkTokenEnum {
117
+ Endoftext = "<|endoftext|>",
118
+ Unk = "<unk>",
119
+ }
120
+
121
+ export type InferenceProviderMapping = {
122
+ provider: Provider;
123
+ providerId: string;
124
+ status: Status;
125
+ task: Task;
126
+ };
127
+
128
+ export enum Provider {
129
+ Cerebras = "cerebras",
130
+ FalAI = "fal-ai",
131
+ FireworksAI = "fireworks-ai",
132
+ HFInference = "hf-inference",
133
+ Hyperbolic = "hyperbolic",
134
+ Nebius = "nebius",
135
+ Novita = "novita",
136
+ Replicate = "replicate",
137
+ Sambanova = "sambanova",
138
+ Together = "together",
139
+ }
140
+
141
+ export enum Status {
142
+ Live = "live",
143
+ Staging = "staging",
144
+ }
145
+
146
+ export enum Task {
147
+ Conversational = "conversational",
148
+ }
149
+
150
+ export enum LibraryName {
151
+ Mlx = "mlx",
152
+ Transformers = "transformers",
153
+ Vllm = "vllm",
154
+ }
155
+
156
+ export enum PipelineTag {
157
+ TextGeneration = "text-generation",
158
+ }
src/lib/utils/object.ts ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ // typed Object.keys
2
+ export function keys<T extends object>(o: T): (keyof T)[] {
3
+ return Object.keys(o) as (keyof T)[];
4
+ }
src/routes/+page.server.ts CHANGED
@@ -1,11 +1,10 @@
1
- import type { ModelEntryWithTokenizer } from "$lib/components/InferencePlayground/types";
2
- import type { ModelEntry } from "@huggingface/hub";
3
- import type { PageServerLoad } from "./$types";
4
  import { env } from "$env/dynamic/private";
 
 
5
 
6
  export const load: PageServerLoad = async ({ fetch }) => {
7
  const apiUrl =
8
- "https://huggingface.co/api/models?pipeline_tag=text-generation&inference_provider=hf-inference&filter=conversational";
9
  const HF_TOKEN = env.HF_TOKEN;
10
 
11
  const res = await fetch(apiUrl, {
@@ -17,7 +16,7 @@ export const load: PageServerLoad = async ({ fetch }) => {
17
  console.error(`Error fetching warm models`, res.status, res.statusText);
18
  return { models: [] };
19
  }
20
- const compatibleModels: ModelEntry[] = await res.json();
21
  compatibleModels.sort((a, b) => a.id.toLowerCase().localeCompare(b.id.toLowerCase()));
22
 
23
  const promises = compatibleModels.map(async model => {
@@ -32,10 +31,10 @@ export const load: PageServerLoad = async ({ fetch }) => {
32
  return null; // Ignore failed requests by returning null
33
  }
34
  const tokenizerConfig = await res.json();
35
- return { ...model, tokenizerConfig } satisfies ModelEntryWithTokenizer;
36
  });
37
 
38
- const models: ModelEntryWithTokenizer[] = (await Promise.all(promises)).filter(model => model !== null);
39
 
40
  return { models };
41
  };
 
 
 
 
1
  import { env } from "$env/dynamic/private";
2
+ import type { Model, ModelWithTokenizer } from "$lib/types";
3
+ import type { PageServerLoad } from "./$types";
4
 
5
  export const load: PageServerLoad = async ({ fetch }) => {
6
  const apiUrl =
7
+ "https://huggingface.co/api/models?pipeline_tag=text-generation&filter=conversational&inference_provider=all&limit=100&expand[]=inferenceProviderMapping&expand[]=config&expand[]=library_name&expand[]=pipeline_tag&expand[]=tags&expand[]=mask_token&expand[]=trendingScore";
8
  const HF_TOKEN = env.HF_TOKEN;
9
 
10
  const res = await fetch(apiUrl, {
 
16
  console.error(`Error fetching warm models`, res.status, res.statusText);
17
  return { models: [] };
18
  }
19
+ const compatibleModels: Model[] = await res.json();
20
  compatibleModels.sort((a, b) => a.id.toLowerCase().localeCompare(b.id.toLowerCase()));
21
 
22
  const promises = compatibleModels.map(async model => {
 
31
  return null; // Ignore failed requests by returning null
32
  }
33
  const tokenizerConfig = await res.json();
34
+ return { ...model, tokenizerConfig } satisfies ModelWithTokenizer;
35
  });
36
 
37
+ const models: ModelWithTokenizer[] = (await Promise.all(promises)).filter(model => model !== null);
38
 
39
  return { models };
40
  };