Spaces:
Runtime error
Runtime error
Commit
·
6303415
1
Parent(s):
07c617e
new visu
Browse files- app.py +41 -15
- filtering_pipeline_oscar.pdf +0 -0
app.py
CHANGED
|
@@ -2,6 +2,9 @@
|
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
import json
|
| 6 |
import pandas as pd
|
| 7 |
|
|
@@ -12,14 +15,27 @@ import matplotlib.pyplot as plt
|
|
| 12 |
|
| 13 |
class Visualization:
|
| 14 |
def __init__(
|
| 15 |
-
self, path_data, lang, num_docs, num_docs_for_words, max_len_text_display
|
| 16 |
):
|
|
|
|
| 17 |
self.path_data = path_data
|
| 18 |
self.lang = lang
|
| 19 |
self.num_docs = num_docs
|
| 20 |
self.num_docs_for_words = num_docs_for_words
|
| 21 |
self.max_len_text_display = max_len_text_display
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def open_data(self):
|
| 24 |
with open(self.path_data) as json_file:
|
| 25 |
data = json.load(json_file)
|
|
@@ -42,7 +58,7 @@ class Visualization:
|
|
| 42 |
self.docs = pd.DataFrame(docs)
|
| 43 |
|
| 44 |
def set_title(self):
|
| 45 |
-
st.title(f"{self.num_docs} {self.lang} documents from
|
| 46 |
|
| 47 |
def filtering_of_docs(self):
|
| 48 |
st.sidebar.subheader("Parameters of the filtering on documents")
|
|
@@ -59,14 +75,15 @@ class Visualization:
|
|
| 59 |
|
| 60 |
def print_discared_by_cond(cond):
|
| 61 |
st.sidebar.caption(
|
| 62 |
-
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter"
|
| 63 |
)
|
| 64 |
st.sidebar.caption("---------")
|
| 65 |
|
| 66 |
if "number_words" in columns:
|
|
|
|
| 67 |
max_nb_words = int(np.max(docs["number_words"])) + 1
|
| 68 |
cutoff_min_number_words = st.sidebar.slider(
|
| 69 |
-
|
| 70 |
)
|
| 71 |
new_key = ("number_words", cutoff_min_number_words, False)
|
| 72 |
keys.append(new_key)
|
|
@@ -74,8 +91,9 @@ class Visualization:
|
|
| 74 |
conds.append(cond)
|
| 75 |
print_discared_by_cond(cond)
|
| 76 |
|
|
|
|
| 77 |
cutoff_max_number_words = st.sidebar.slider(
|
| 78 |
-
|
| 79 |
)
|
| 80 |
new_key = ("number_words", cutoff_max_number_words, True)
|
| 81 |
keys.append(new_key)
|
|
@@ -84,8 +102,9 @@ class Visualization:
|
|
| 84 |
print_discared_by_cond(cond)
|
| 85 |
|
| 86 |
if "special_characters_ratio" in columns:
|
|
|
|
| 87 |
cutoff_special_characters_ratio = st.sidebar.slider(
|
| 88 |
-
|
| 89 |
)
|
| 90 |
new_key = (
|
| 91 |
"special_characters_ratio",
|
|
@@ -98,8 +117,9 @@ class Visualization:
|
|
| 98 |
print_discared_by_cond(cond)
|
| 99 |
|
| 100 |
if "stopwords_ratio" in columns:
|
|
|
|
| 101 |
cutoff_stopwords_ratio = st.sidebar.slider(
|
| 102 |
-
|
| 103 |
)
|
| 104 |
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
|
| 105 |
keys.append(new_key)
|
|
@@ -108,8 +128,9 @@ class Visualization:
|
|
| 108 |
print_discared_by_cond(cond)
|
| 109 |
|
| 110 |
if "badwords_ratio" in columns:
|
|
|
|
| 111 |
cutoff_badwords_ratio = st.sidebar.slider(
|
| 112 |
-
|
| 113 |
)
|
| 114 |
new_key = ("badwords_ratio", cutoff_badwords_ratio, True)
|
| 115 |
keys.append(new_key)
|
|
@@ -118,8 +139,9 @@ class Visualization:
|
|
| 118 |
print_discared_by_cond(cond)
|
| 119 |
|
| 120 |
if "lang_id_score" in columns:
|
|
|
|
| 121 |
cutoff_lang_id_score = st.sidebar.slider(
|
| 122 |
-
|
| 123 |
)
|
| 124 |
new_key = ("lang_id_score", cutoff_lang_id_score, False)
|
| 125 |
keys.append(new_key)
|
|
@@ -128,9 +150,10 @@ class Visualization:
|
|
| 128 |
print_discared_by_cond(cond)
|
| 129 |
|
| 130 |
if "perplexity_score" in columns:
|
|
|
|
| 131 |
max_pp = int(np.max(docs["perplexity_score"])) + 1
|
| 132 |
cutoff_perplexity_score = st.sidebar.slider(
|
| 133 |
-
|
| 134 |
)
|
| 135 |
new_key = ("perplexity_score", cutoff_perplexity_score, True)
|
| 136 |
keys.append(new_key)
|
|
@@ -167,13 +190,14 @@ class Visualization:
|
|
| 167 |
def filtering_of_words(self):
|
| 168 |
st.sidebar.subheader("Parameter of the filtering on words")
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
"Max cutoff length word", 0, max_len_word, max_len_word
|
| 173 |
)
|
|
|
|
|
|
|
| 174 |
|
| 175 |
incorrect_substrings = st.sidebar.checkbox(
|
| 176 |
-
"Remove words with incorrect substrings"
|
| 177 |
)
|
| 178 |
|
| 179 |
cond_words = self.words["len_word"] <= cutoff_word
|
|
@@ -258,6 +282,7 @@ class Visualization:
|
|
| 258 |
)
|
| 259 |
|
| 260 |
def visualization(self):
|
|
|
|
| 261 |
self.open_data()
|
| 262 |
self.set_title()
|
| 263 |
self.filtering_of_docs()
|
|
@@ -267,6 +292,7 @@ class Visualization:
|
|
| 267 |
self.download_data()
|
| 268 |
|
| 269 |
|
|
|
|
| 270 |
path_data = "./en_examples_with_stats.json"
|
| 271 |
lang = "English"
|
| 272 |
num_docs = 5000
|
|
@@ -274,6 +300,6 @@ num_docs_for_words = 500
|
|
| 274 |
max_len_text_display = 10000
|
| 275 |
|
| 276 |
visualization = Visualization(
|
| 277 |
-
path_data, lang, num_docs, num_docs_for_words, max_len_text_display
|
| 278 |
)
|
| 279 |
visualization.visualization()
|
|
|
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
import base64
|
| 8 |
import json
|
| 9 |
import pandas as pd
|
| 10 |
|
|
|
|
| 15 |
|
| 16 |
class Visualization:
|
| 17 |
def __init__(
|
| 18 |
+
self, path_instructions, path_data, lang, num_docs, num_docs_for_words, max_len_text_display
|
| 19 |
):
|
| 20 |
+
self.path_instructions = path_instructions
|
| 21 |
self.path_data = path_data
|
| 22 |
self.lang = lang
|
| 23 |
self.num_docs = num_docs
|
| 24 |
self.num_docs_for_words = num_docs_for_words
|
| 25 |
self.max_len_text_display = max_len_text_display
|
| 26 |
|
| 27 |
+
def preamble(self):
|
| 28 |
+
st.markdown("Before diving into this demo, you might want to take a look at how the filtering pipeline of OSCAR looks like in more detail.")
|
| 29 |
+
|
| 30 |
+
def get_binary_file_downloader_html(bin_file, file_label='File'):
|
| 31 |
+
with open(bin_file, 'rb') as f:
|
| 32 |
+
data = f.read()
|
| 33 |
+
bin_str = base64.b64encode(data).decode()
|
| 34 |
+
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
| 35 |
+
return href
|
| 36 |
+
|
| 37 |
+
st.markdown(get_binary_file_downloader_html(self.path_instructions, "Download the filtering pipeline of OSCAR as pdf"), unsafe_allow_html=True)
|
| 38 |
+
|
| 39 |
def open_data(self):
|
| 40 |
with open(self.path_data) as json_file:
|
| 41 |
data = json.load(json_file)
|
|
|
|
| 58 |
self.docs = pd.DataFrame(docs)
|
| 59 |
|
| 60 |
def set_title(self):
|
| 61 |
+
st.title(f"{self.num_docs} {self.lang} documents from OSCAR with their stats.")
|
| 62 |
|
| 63 |
def filtering_of_docs(self):
|
| 64 |
st.sidebar.subheader("Parameters of the filtering on documents")
|
|
|
|
| 75 |
|
| 76 |
def print_discared_by_cond(cond):
|
| 77 |
st.sidebar.caption(
|
| 78 |
+
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
|
| 79 |
)
|
| 80 |
st.sidebar.caption("---------")
|
| 81 |
|
| 82 |
if "number_words" in columns:
|
| 83 |
+
cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
|
| 84 |
max_nb_words = int(np.max(docs["number_words"])) + 1
|
| 85 |
cutoff_min_number_words = st.sidebar.slider(
|
| 86 |
+
cutoff_def, 0, min(max_nb_words, 500), 0
|
| 87 |
)
|
| 88 |
new_key = ("number_words", cutoff_min_number_words, False)
|
| 89 |
keys.append(new_key)
|
|
|
|
| 91 |
conds.append(cond)
|
| 92 |
print_discared_by_cond(cond)
|
| 93 |
|
| 94 |
+
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
|
| 95 |
cutoff_max_number_words = st.sidebar.slider(
|
| 96 |
+
cutoff_def, 0, max_nb_words, max_nb_words
|
| 97 |
)
|
| 98 |
new_key = ("number_words", cutoff_max_number_words, True)
|
| 99 |
keys.append(new_key)
|
|
|
|
| 102 |
print_discared_by_cond(cond)
|
| 103 |
|
| 104 |
if "special_characters_ratio" in columns:
|
| 105 |
+
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
|
| 106 |
cutoff_special_characters_ratio = st.sidebar.slider(
|
| 107 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 108 |
)
|
| 109 |
new_key = (
|
| 110 |
"special_characters_ratio",
|
|
|
|
| 117 |
print_discared_by_cond(cond)
|
| 118 |
|
| 119 |
if "stopwords_ratio" in columns:
|
| 120 |
+
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
|
| 121 |
cutoff_stopwords_ratio = st.sidebar.slider(
|
| 122 |
+
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
| 123 |
)
|
| 124 |
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
|
| 125 |
keys.append(new_key)
|
|
|
|
| 128 |
print_discared_by_cond(cond)
|
| 129 |
|
| 130 |
if "badwords_ratio" in columns:
|
| 131 |
+
cutoff_def = "If the bad words ratio of a document is higher than this number, the document is removed."
|
| 132 |
cutoff_badwords_ratio = st.sidebar.slider(
|
| 133 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
| 134 |
)
|
| 135 |
new_key = ("badwords_ratio", cutoff_badwords_ratio, True)
|
| 136 |
keys.append(new_key)
|
|
|
|
| 139 |
print_discared_by_cond(cond)
|
| 140 |
|
| 141 |
if "lang_id_score" in columns:
|
| 142 |
+
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
|
| 143 |
cutoff_lang_id_score = st.sidebar.slider(
|
| 144 |
+
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
| 145 |
)
|
| 146 |
new_key = ("lang_id_score", cutoff_lang_id_score, False)
|
| 147 |
keys.append(new_key)
|
|
|
|
| 150 |
print_discared_by_cond(cond)
|
| 151 |
|
| 152 |
if "perplexity_score" in columns:
|
| 153 |
+
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
|
| 154 |
max_pp = int(np.max(docs["perplexity_score"])) + 1
|
| 155 |
cutoff_perplexity_score = st.sidebar.slider(
|
| 156 |
+
cutoff_def, 0, max_pp, max_pp
|
| 157 |
)
|
| 158 |
new_key = ("perplexity_score", cutoff_perplexity_score, True)
|
| 159 |
keys.append(new_key)
|
|
|
|
| 190 |
def filtering_of_words(self):
|
| 191 |
st.sidebar.subheader("Parameter of the filtering on words")
|
| 192 |
|
| 193 |
+
cutoff_def = (
|
| 194 |
+
"If the length of a word is higher than this number, the word is removed."
|
|
|
|
| 195 |
)
|
| 196 |
+
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
|
| 197 |
+
cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word)
|
| 198 |
|
| 199 |
incorrect_substrings = st.sidebar.checkbox(
|
| 200 |
+
"Remove words with incorrect substrings."
|
| 201 |
)
|
| 202 |
|
| 203 |
cond_words = self.words["len_word"] <= cutoff_word
|
|
|
|
| 282 |
)
|
| 283 |
|
| 284 |
def visualization(self):
|
| 285 |
+
self.preamble()
|
| 286 |
self.open_data()
|
| 287 |
self.set_title()
|
| 288 |
self.filtering_of_docs()
|
|
|
|
| 292 |
self.download_data()
|
| 293 |
|
| 294 |
|
| 295 |
+
path_instructions = "./filtering_pipeline_oscar.pdf"
|
| 296 |
path_data = "./en_examples_with_stats.json"
|
| 297 |
lang = "English"
|
| 298 |
num_docs = 5000
|
|
|
|
| 300 |
max_len_text_display = 10000
|
| 301 |
|
| 302 |
visualization = Visualization(
|
| 303 |
+
path_instructions, path_data, lang, num_docs, num_docs_for_words, max_len_text_display
|
| 304 |
)
|
| 305 |
visualization.visualization()
|
filtering_pipeline_oscar.pdf
ADDED
|
Binary file (196 kB). View file
|
|
|