Spaces:
Runtime error
Runtime error
File size: 1,069 Bytes
26eff3f dfb2824 26eff3f 59d7497 26eff3f 4c7915f 26eff3f 59d7497 26eff3f 17ee78f 8c0d50a 17ee78f 8c0d50a b65718e 26eff3f 3933122 26eff3f ee94a17 3933122 26eff3f b491c26 fb9dffa 26eff3f 4306b36 26eff3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
import torch
from huggingface_hub import from_pretrained_fastai
from pathlib import Path
examples = ["image_1.png", "image_2.png", "image_3.png", "image_4.png", "image_5.png"]
repo_id = "hugginglearners/grapevine_leaves_classification"
path = Path("./")
def get_y(r):
return r["label"]
def get_x(r):
return path/r["fname"]
learner = from_pretrained_fastai(repo_id)
labels = learner.dls.vocab
def inference(image):
label_predict,_,probs = learner.predict(image)
labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)}
return labels_probs
gr.Interface(
fn=inference,
title="Grapevine leave image classification",
description = "Predict which type of grapevine leave belong to Ak, Ala_Idris, Buzgulu, Dimnit, Nazli",
inputs="image",
outputs=gr.outputs.Label(num_top_classes=5, label='Prediction'),
examples=examples,
cache_examples=False,
article = "Author: <a href=\"https://www.linkedin.com/in/vumichien/\">Vu Minh Chien</a>",
).launch(debug=True, enable_queue=True) |