Spaces:
Sleeping
Sleeping
Add files
Browse files- app.py +62 -0
- cifar10_modified_flag.weights.h5 +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tensorflow.keras import datasets, layers, models
|
6 |
+
|
7 |
+
# Load the trained model
|
8 |
+
model = models.Sequential([
|
9 |
+
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
|
10 |
+
layers.MaxPooling2D((2, 2)),
|
11 |
+
layers.Conv2D(64, (3, 3), activation='relu'),
|
12 |
+
layers.MaxPooling2D((2, 2)),
|
13 |
+
layers.Conv2D(64, (3, 3), activation='relu'),
|
14 |
+
layers.Flatten(),
|
15 |
+
layers.Dense(64, activation='relu'),
|
16 |
+
layers.Dense(10) # 10 classes in CIFAR-10
|
17 |
+
])
|
18 |
+
|
19 |
+
model.load_weights("cifar10_modified_flag.weights.h5")
|
20 |
+
|
21 |
+
# class 3 is a cat
|
22 |
+
# Class mapping (0-9 with class 3 replaced by "FLAG{3883}")
|
23 |
+
class_mapping = {0: "airplane", 1: "automobile", 2: "bird", 3: "FLAG{3883}", 4: "deer",
|
24 |
+
5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck"}
|
25 |
+
|
26 |
+
# Function to preprocess the input image
|
27 |
+
def preprocess_image(image):
|
28 |
+
image = image.resize((32, 32)) # Resize to CIFAR-10 size
|
29 |
+
image = np.array(image) / 255.0 # Normalize pixel values
|
30 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
31 |
+
return image
|
32 |
+
|
33 |
+
# Prediction function
|
34 |
+
def predict(image):
|
35 |
+
# Preprocess the image
|
36 |
+
image = preprocess_image(image)
|
37 |
+
|
38 |
+
# Get the model's raw prediction (logits)
|
39 |
+
logits = model.predict(image)
|
40 |
+
|
41 |
+
# Convert logits to probabilities
|
42 |
+
probabilities = tf.nn.softmax(logits, axis=-1)
|
43 |
+
|
44 |
+
# Get the predicted class index
|
45 |
+
predicted_class = np.argmax(probabilities)
|
46 |
+
|
47 |
+
# Get the class name from the mapping
|
48 |
+
class_name = class_mapping[predicted_class]
|
49 |
+
|
50 |
+
return class_name
|
51 |
+
|
52 |
+
# Gradio interface
|
53 |
+
iface = gr.Interface(
|
54 |
+
fn=predict, # Function to call for prediction
|
55 |
+
inputs=gr.Image(type="pil", label="Upload an image from CIFAR-10"), # Input: Image upload
|
56 |
+
outputs=gr.Textbox(label="Predicted Class"), # Output: Text showing predicted class
|
57 |
+
title="Vault Challenge 2 - BIM", # Title of the interface
|
58 |
+
description="Upload an image, and the model will predict the class. Try to fool the model into predicting the FLAG using BIM!. Tips: tune the parameters to make the model predict the image as a cat (class 3)."
|
59 |
+
)
|
60 |
+
|
61 |
+
# Launch the Gradio interface
|
62 |
+
iface.launch()
|
cifar10_modified_flag.weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05cfd6d1a78b96d27809ec293d7a8b51e8d940f154ba45ac2722ed416cdec749
|
3 |
+
size 1503168
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
numpy
|
3 |
+
Pillow
|