huimanho commited on
Commit
fec08c2
·
verified ·
1 Parent(s): 6c07433

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
3
+
4
+ # Load pipelines
5
+ pipe1 = pipeline("translation", model="DunnBC22/opus-mt-zh-en-Chinese_to_English")
6
+ pipe3 = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student")
7
+
8
+ # Load model and tokenizer for pipe2
9
+ tokenizer = AutoTokenizer.from_pretrained("huimanho/CustomModel_Amazon")
10
+ model = AutoModelForSequenceClassification.from_pretrained("huimanho/CustomModel_Amazon")
11
+
12
+ # Streamlit app
13
+ st.title("Chinese Review Analysis")
14
+
15
+ # Input text
16
+ chinese_text = st.text_area("Enter Chinese Review:")
17
+
18
+ if st.button("Analyze"):
19
+ # Translation
20
+ english_text = pipe1(chinese_text)[0]['translation_text']
21
+ st.write("Translated Text:", english_text)
22
+
23
+ # Rating Prediction
24
+ inputs = tokenizer(english_text, return_tensors="pt")
25
+ outputs = model(**inputs)
26
+ prediction = outputs.logits.argmax(-1).item()
27
+ st.write("Estimated Amazon Rating:", prediction + 1)
28
+
29
+ # Sentiment Classification
30
+ sentiment = pipe3(english_text)[0]['label']
31
+ st.write("Sentiment:", sentiment)