hujameson commited on
Commit
e6b354c
·
verified ·
1 Parent(s): c630ddb

zhizhi-aiservice:0.1.2

Browse files
Files changed (3) hide show
  1. main.py +174 -255
  2. models.py +11 -18
  3. requirements.txt +20 -30
main.py CHANGED
@@ -7,57 +7,41 @@
7
  #pip install torch ###for torch
8
  #pip install sentencepiece ###for AutoTokenizer
9
  #pip install -U cos-python-sdk-v5 ###腾讯云对象存储SDK(COS-SDK)
 
10
 
11
- from typing import Optional
12
- from fastapi import FastAPI, Header
13
- from PIL import Image
14
- #from transformers import pipeline, EfficientNetImageProcessor, EfficientNetForImageClassification, AutoTokenizer, AutoModelForSeq2SeqLM
15
- import torch
16
- from transformers import EfficientNetImageProcessor, EfficientNetForImageClassification, pipeline
17
- from models import ItemInHistory, ItemUploaded, ServiceLoginInfo
18
- from openai import OpenAI
19
 
20
- from qcloud_cos import CosConfig, CosS3Client
21
- import sys, os, logging
22
- import urllib.parse as urlparse
23
- import json, requests
24
-
25
- # class Conversation:
26
- # def __init__(self, openai_client: OpenAI, prompt, num_of_round):
27
- # self.openai_client = openai_client
28
- # self.prompt = prompt
29
- # self.num_of_round = num_of_round
30
- # self.messages = []
31
- # self.messages.append({"role": "system", "content": self.prompt})
32
-
33
- # def ask(self, question):
34
- # message = ''
35
- # num_of_tokens = 0
36
- # try:
37
- # self.messages.append( {"role": "user", "content": question})
38
- # chat_completion = self.openai_client.chat.completions.create(
39
- # model="gpt-3.5-turbo",
40
- # messages=self.messages,
41
- # temperature=0.5,
42
- # max_tokens=2048,
43
- # top_p=1,
44
- # )
45
- # message = chat_completion.choices[0].message.content
46
- # # num_of_tokens = chat_completion.usage.total_tokens
47
- # self.messages.append({"role": "assistant", "content": message})
48
-
49
- # except Exception as e:
50
- # print(e)
51
- # return e
52
-
53
- # if len(self.messages) > self.num_of_round*2 + 1:
54
- # del self.messages[1:3]
55
- # return message, num_of_tokens
56
 
 
 
 
 
 
 
 
 
 
 
 
57
 
 
58
  app = FastAPI()
59
  logging.basicConfig(level=logging.INFO, stream=sys.stdout)
60
 
 
 
 
 
 
 
 
 
61
  cos_secret_id = os.environ['COS_SECRET_ID']
62
  cos_secret_key = os.environ['COS_SECRET_KEY']
63
  cos_region = 'ap-shanghai'
@@ -66,35 +50,77 @@ token = None
66
  scheme = 'https'
67
  config = CosConfig(Region=cos_region, SecretId=cos_secret_id, SecretKey=cos_secret_key, Token=token, Scheme=scheme)
68
  client = CosS3Client(config)
69
- logging.info(f"COS init succeeded.")
 
 
 
 
 
 
70
 
 
 
71
 
72
- try:
73
- ai_model_bc_preprocessor = EfficientNetImageProcessor.from_pretrained("./birds-classifier-efficientnetb2")
74
- ai_model_bc_model = EfficientNetForImageClassification.from_pretrained("./birds-classifier-efficientnetb2")
75
- logging.info(f"local model dennisjooo/Birds-Classifier-EfficientNetB2 loaded.")
76
-
77
- except Exception as e:
78
- logging.error(e)
 
 
 
 
79
 
80
- try:
81
- openai_client = OpenAI(
82
- api_key=os.environ.get("OPENAI_API_KEY"),
 
 
 
 
83
  )
84
- # prompt = """你是一个鸟类学家,用中文回答关于鸟类的问题。你的回答需要满足以下要求:
85
- # 1. 你的回答必须是中文
86
- # 2. 回��限制在100个字以内"""
87
- # conv = Conversation(open_client, prompt, 3)
88
- logging.info(f"openai chat model loaded.")
89
- except Exception as e:
90
- logging.error(e)
 
 
 
 
 
 
91
 
92
- try:
93
- ai_model_bc_pipe= pipeline("image-classification", model="dennisjooo/Birds-Classifier-EfficientNetB2")
94
- logging.info(f"remote model dennisjooo/Birds-Classifier-EfficientNetB2 loaded.")
 
 
 
 
95
 
96
- except Exception as e:
97
- print(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
  #try:
100
  # ai_model_ez_preprocessor = AutoTokenizer.from_pretrained("./opus-mt-en-zh")
@@ -110,29 +136,29 @@ except Exception as e:
110
  #except Exception as e:
111
  # print(e)
112
 
113
- def bird_classifier(image_file: str) -> str:
114
- # Opening the image using PIL
115
- img = Image.open(image_file)
116
- logging.info(f"image file {image_file} is opened.")
117
-
118
- result:str = ""
119
- try:
120
- inputs = ai_model_bc_preprocessor(img, return_tensors="pt")
121
-
122
- # Running the inference
123
- with torch.no_grad():
124
- logits = ai_model_bc_model(**inputs).logits
125
-
126
- # Getting the predicted label
127
- predicted_label = logits.argmax(-1).item()
128
- result = ai_model_bc_model.config.id2label[predicted_label]
129
- logging.info(f"{ai_model_bc_model.config.id2label[predicted_label]}:{ai_model_bc_pipe(img)[0]['label']}")
130
- except Exception as e:
131
- logging.error(e)
132
 
133
 
134
- logging.info(result)
135
- return result
136
 
137
  # def text_en_zh(text_en: str) -> str:
138
  # text_zh = ""
@@ -146,125 +172,47 @@ def bird_classifier(image_file: str) -> str:
146
 
147
  # return text_zh
148
 
149
- # Route to upload a file
150
- # @app.post("/uploadfile/")
151
- # async def create_upload_file(file: UploadFile):
152
- # contents: bytes = await file.read()
153
- # contents_len = len(contents)
154
- # file_name = file.filename
155
- # server_file_name = f"server-{file_name}"
156
- # with open(server_file_name,"wb") as server_file:
157
- # server_file.write(contents)
158
-
159
- # logging.info(f"{file_name} is received and saved as {server_file_name}.")
160
-
161
- # bird_classification = bird_classifier(server_file_name)
162
-
163
- # # if bird_classification != "":
164
- # # bird_classification = "the species of bird is " + bird_classification
165
- # # bird_classification = text_en_zh(bird_classification)
166
-
167
- # logging.info(f"AI feedback: {bird_classification}.")
168
-
169
- # return {"filename": server_file_name, "AI feedback": bird_classification}
170
 
171
- # Route to login to zhizhi-service
172
- @app.post("/login/")
173
- def service_login(item: ServiceLoginInfo):
174
- logging.info("service_login")
175
- logging.info(item)
176
-
177
- code2Session = f"http://api.weixin.qq.com/sns/jscode2session?appid={item.appid}&secret={item.secret}&js_code={item.js_code}&grant_type={item.grant_type}"
178
- logging.info(code2Session)
179
 
180
- response = requests.get(code2Session)
181
- json_response = response.json()
182
- logging.info(json_response)
183
 
184
- return {"user_openid": json_response.get("openid")}
 
 
 
185
 
186
- # Route to create an item
187
- @app.post("/items/")
188
- async def create_item(item: ItemUploaded, x_wx_openid: Optional[str]=Header(None)):
189
- logging.info("create_item")
190
- logging.info(item)
191
- logging.info(x_wx_openid)
192
-
193
- if x_wx_openid is None:
194
- x_wx_openid = ""
195
 
196
- url = urlparse.urlparse(item.item_fileurl)
197
- key = url[2][1::]
198
- bucket = url[1].split('.')[1]
199
- contentfile = key.split('/')[1]
200
- historyid = contentfile.split('.')[0]
201
- # historyfile = f'{historyid}.json'
202
-
203
- response = client.get_object(
204
- Bucket = bucket,
205
- Key = key
206
- )
207
- response['Body'].get_stream_to_file(contentfile)
208
- if item.item_mediatype == "image":
209
- bird_classification = bird_classifier(contentfile)
210
- try:
211
- # question = f"鸟类的英文名是{bird_classification},它的中文名是什么?有什么样的习性?"
212
- # answer, num_of_tokens = conv.ask(question)
213
- # logging.info(f"chatgpt feedback: {answer}.\n")
214
-
215
- prompt = """你是一个鸟类学家,用中文回答关于鸟类的问题。你的回答需要满足以下要求:
216
- 1. 你的回答必须是中文
217
- 2. 回答限制在100个字以内"""
218
-
219
- messages = []
220
- messages.append({"role": "system", "content": prompt})
221
- question = f"鸟类的英文名是{bird_classification},它的中文名是什么?有什么样的习性?"
222
- messages.append( {"role": "user", "content": question})
223
- chat_completion = openai_client.chat.completions.create(
224
- model="gpt-3.5-turbo",
225
- messages=messages,
226
- temperature=0.5,
227
- max_tokens=2048,
228
- top_p=1,
229
- )
230
- response = chat_completion.choices[0].message.content
231
- logging.info(f"chatgpt feedback: {response}.\n")
232
-
233
- except Exception as e:
234
- logging.error(e)
235
- else:
236
- bird_classification = "不是image类型,暂不能识别"
237
-
238
- logging.info(f"AI feedback: {bird_classification}.\n")
239
-
240
- historyfile = itemToJsonFile(ItemInHistory(history_id = historyid,union_id = x_wx_openid,
241
- item_fileurl = item.item_fileurl,item_mediatype = item.item_mediatype,
242
- upload_datetime = item.upload_datetime,ai_feedback = bird_classification))
243
-
244
- response = client.upload_file(
245
- Bucket = cos_bucket,
246
- LocalFilePath=historyfile,
247
- Key=f'{x_wx_openid}/history/{historyfile}',
248
- PartSize=1,
249
- MAXThread=10,
250
- EnableMD5=False
251
- )
252
- logging.info(response['ETag'])
253
-
254
-
255
- return {"filename": historyfile, "AI feedback": bird_classification}
256
-
257
- # Route to list all items uploaded by a specific user by unionid
258
- # @app.get("/items/{user_unionid}")
259
- # def list_items(user_unionid: str) -> dict[str, list[ItemInHistory]]:
260
- # logging.info("list_items")
261
- # logging.info(user_unionid)
262
 
263
  # items: list[ItemInHistory] = []
264
 
265
  # response = client.list_objects(
266
  # Bucket=cos_bucket,
267
- # Prefix=f'{user_unionid}/history/'
268
  # )
269
 
270
  # logging.info(response['Contents'])
@@ -281,62 +229,33 @@ async def create_item(item: ItemUploaded, x_wx_openid: Optional[str]=Header(None
281
  # item = itemFromJsonFile(localfile)
282
  # items.append(item)
283
 
284
- return {"items": items}
285
-
286
- # Route to list all items uploaded by a specific user by unionid from header
287
- @app.get("/items/")
288
- def list_items_byheader(x_wx_openid: Optional[str]=Header(None)) -> dict[str, list[ItemInHistory]]:
289
- logging.info("list_items_byheader")
290
- logging.info(x_wx_openid)
291
-
292
- items: list[ItemInHistory] = []
293
-
294
- response = client.list_objects(
295
- Bucket=cos_bucket,
296
- Prefix=f'{x_wx_openid}/history/'
297
- )
298
-
299
- logging.info(response['Contents'])
300
-
301
- for obj in response['Contents']:
302
- key:str = obj['Key']
303
- response = client.get_object(
304
- Bucket = cos_bucket,
305
- Key = key
306
- )
307
- localfile = key.split('/')[2]
308
- response['Body'].get_stream_to_file(localfile)
309
-
310
- item = itemFromJsonFile(localfile)
311
- items.append(item)
312
-
313
- return {"items": items}
314
-
315
-
316
- def itemFromJsonFile(jsonfile: str) -> ItemInHistory:
317
- f = open(jsonfile, 'r')
318
- content = f.read()
319
- a = json.loads(content)
320
- f.close()
321
- return ItemInHistory(history_id = a['history_id'],union_id = a['union_id'],
322
- item_fileurl = a['item_fileurl'],item_mediatype = a["item_mediatype"],
323
- upload_datetime = a["upload_datetime"],ai_feedback = a['ai_feedback'])
324
-
325
-
326
- def itemToJsonFile(item: ItemInHistory):
327
- history_json = {
328
- "history_id": item.history_id,
329
- "union_id": item.union_id,
330
- "item_fileurl": item.item_fileurl,
331
- "item_mediatype": item.item_mediatype,
332
- "upload_datetime": item.upload_datetime,
333
- "ai_feedback": item.ai_feedback
334
- }
335
- b = json.dumps(history_json)
336
- historyfile = f'{item.history_id}.json'
337
- f = open(historyfile, 'w')
338
- f.write(b)
339
- f.close()
340
-
341
- return historyfile
342
 
 
7
  #pip install torch ###for torch
8
  #pip install sentencepiece ###for AutoTokenizer
9
  #pip install -U cos-python-sdk-v5 ###腾讯云对象存储SDK(COS-SDK)
10
+ #pip install -q -U google-generativeai
11
 
12
+ # from typing import Optional
13
+ # from fastapi import FastAPI, Header
14
+ # #from transformers import pipeline, EfficientNetImageProcessor, EfficientNetForImageClassification, AutoTokenizer, AutoModelForSeq2SeqLM
15
+ # import torch
16
+ # from transformers import EfficientNetImageProcessor, EfficientNetForImageClassification, pipeline
17
+ # from models import ItemInHistory, ItemUploaded, ServiceLoginInfo
18
+ # from openai import OpenAI
 
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ # import sys, os, logging
22
+ # import json, requests
23
+
24
+
25
+ from fastapi import FastAPI
26
+ import sys, logging, os
27
+ from models import Item2AI, AI2Item
28
+ import google.generativeai as genai
29
+ import urllib.parse as urlparse
30
+ from qcloud_cos import CosConfig, CosS3Client
31
+ from PIL import Image
32
 
33
+ # init app and logging
34
  app = FastAPI()
35
  logging.basicConfig(level=logging.INFO, stream=sys.stdout)
36
 
37
+ # load google gemini models
38
+ genai.configure(api_key=os.environ.get("GOOGLE_API_KEY"))
39
+ gemini_pro = genai.GenerativeModel('gemini-pro')
40
+ logging.info("google gemini-pro model loaded successfully.")
41
+ gemini_pro_vision = genai.GenerativeModel('gemini-pro-vision')
42
+ logging.info("google gemini-pro-vision model loaded successfully.")
43
+
44
+ # init tencent cos
45
  cos_secret_id = os.environ['COS_SECRET_ID']
46
  cos_secret_key = os.environ['COS_SECRET_KEY']
47
  cos_region = 'ap-shanghai'
 
50
  scheme = 'https'
51
  config = CosConfig(Region=cos_region, SecretId=cos_secret_id, SecretKey=cos_secret_key, Token=token, Scheme=scheme)
52
  client = CosS3Client(config)
53
+ logging.info(f"tencent cos init succeeded.")
54
+
55
+ # Route to create an item
56
+ @app.post("/firstturn/")
57
+ async def ai_first_turn(item: Item2AI):
58
+ logging.info("ai_first_turn...")
59
+ logging.info("item:", item)
60
 
61
+ # response = gemini_pro.generate_content("What is the meaning of life?")
62
+ # logging.info(response.text)
63
 
64
+ url = urlparse.urlparse(item.item_fileurl)
65
+ key = url[2][1::]
66
+ bucket = url[1].split('.')[1]
67
+ contentfile = key.split('/')[1]
68
+ historyid = contentfile.split('.')[0]
69
+
70
+ response = client.get_object(
71
+ Bucket = bucket,
72
+ Key = key
73
+ )
74
+ response['Body'].get_stream_to_file(contentfile)
75
 
76
+ ai2item = AI2Item(
77
+ upload_id = item.upload_id,
78
+ union_id = item.union_id,
79
+ item_fileurl = item.item_fileurl,
80
+ item_mediatype = item.item_mediatype,
81
+ upload_datetime = item.upload_datetime,
82
+ ai_feedback = ""
83
  )
84
+ if item.item_mediatype == "image":
85
+ # Opening the image using PIL
86
+ img = Image.open(contentfile)
87
+ logging.info(f"image file {contentfile} is opened.")
88
+ response = gemini_pro_vision.generate_content(["Describe this picture in Chinese with plenty of details.", img])
89
+ ai2item.ai_feedback = response.text
90
+ else:
91
+ ai2item.ai_feedback = "不是image类型,暂不能识别"
92
+
93
+ logging.info(ai2item)
94
+
95
+ return(ai2item)
96
+
97
 
98
+ # try:
99
+ # ai_model_bc_preprocessor = EfficientNetImageProcessor.from_pretrained("./birds-classifier-efficientnetb2")
100
+ # ai_model_bc_model = EfficientNetForImageClassification.from_pretrained("./birds-classifier-efficientnetb2")
101
+ # logging.info(f"local model dennisjooo/Birds-Classifier-EfficientNetB2 loaded.")
102
+
103
+ # except Exception as e:
104
+ # logging.error(e)
105
 
106
+ # try:
107
+ # openai_client = OpenAI(
108
+ # api_key=os.environ.get("OPENAI_API_KEY"),
109
+ # )
110
+ # # prompt = """你是一个鸟类学家,用中文回答关于鸟类的问题。你的回答需要满足以下要求:
111
+ # # 1. 你的回答必须是中文
112
+ # # 2. 回答限制在100个字以内"""
113
+ # # conv = Conversation(open_client, prompt, 3)
114
+ # logging.info(f"openai chat model loaded.")
115
+ # except Exception as e:
116
+ # logging.error(e)
117
+
118
+ # try:
119
+ # ai_model_bc_pipe= pipeline("image-classification", model="dennisjooo/Birds-Classifier-EfficientNetB2")
120
+ # logging.info(f"remote model dennisjooo/Birds-Classifier-EfficientNetB2 loaded.")
121
+
122
+ # except Exception as e:
123
+ # print(e)
124
 
125
  #try:
126
  # ai_model_ez_preprocessor = AutoTokenizer.from_pretrained("./opus-mt-en-zh")
 
136
  #except Exception as e:
137
  # print(e)
138
 
139
+ # def bird_classifier(image_file: str) -> str:
140
+ # # Opening the image using PIL
141
+ # img = Image.open(image_file)
142
+ # logging.info(f"image file {image_file} is opened.")
143
+
144
+ # result:str = ""
145
+ # try:
146
+ # inputs = ai_model_bc_preprocessor(img, return_tensors="pt")
147
+
148
+ # # Running the inference
149
+ # with torch.no_grad():
150
+ # logits = ai_model_bc_model(**inputs).logits
151
+
152
+ # # Getting the predicted label
153
+ # predicted_label = logits.argmax(-1).item()
154
+ # result = ai_model_bc_model.config.id2label[predicted_label]
155
+ # logging.info(f"{ai_model_bc_model.config.id2label[predicted_label]}:{ai_model_bc_pipe(img)[0]['label']}")
156
+ # except Exception as e:
157
+ # logging.error(e)
158
 
159
 
160
+ # logging.info(result)
161
+ # return result
162
 
163
  # def text_en_zh(text_en: str) -> str:
164
  # text_zh = ""
 
172
 
173
  # return text_zh
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
 
176
+ # # Route to list all items uploaded by a specific user by unionid
177
+ # # @app.get("/items/{user_unionid}")
178
+ # # def list_items(user_unionid: str) -> dict[str, list[ItemInHistory]]:
179
+ # # logging.info("list_items")
180
+ # # logging.info(user_unionid)
 
 
 
181
 
182
+ # # items: list[ItemInHistory] = []
 
 
183
 
184
+ # # response = client.list_objects(
185
+ # # Bucket=cos_bucket,
186
+ # # Prefix=f'{user_unionid}/history/'
187
+ # # )
188
 
189
+ # # logging.info(response['Contents'])
 
 
 
 
 
 
 
 
190
 
191
+ # # for obj in response['Contents']:
192
+ # # key:str = obj['Key']
193
+ # # response = client.get_object(
194
+ # # Bucket = cos_bucket,
195
+ # # Key = key
196
+ # # )
197
+ # # localfile = key.split('/')[2]
198
+ # # response['Body'].get_stream_to_file(localfile)
199
+
200
+ # # item = itemFromJsonFile(localfile)
201
+ # # items.append(item)
202
+
203
+ # return {"items": items}
204
+
205
+ # # Route to list all items uploaded by a specific user by unionid from header
206
+ # @app.get("/items/")
207
+ # def list_items_byheader(x_wx_openid: Optional[str]=Header(None)) -> dict[str, list[ItemInHistory]]:
208
+ # logging.info("list_items_byheader")
209
+ # logging.info(x_wx_openid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
 
211
  # items: list[ItemInHistory] = []
212
 
213
  # response = client.list_objects(
214
  # Bucket=cos_bucket,
215
+ # Prefix=f'{x_wx_openid}/history/'
216
  # )
217
 
218
  # logging.info(response['Contents'])
 
229
  # item = itemFromJsonFile(localfile)
230
  # items.append(item)
231
 
232
+ # return {"items": items}
233
+
234
+
235
+ # def itemFromJsonFile(jsonfile: str) -> ItemInHistory:
236
+ # f = open(jsonfile, 'r')
237
+ # content = f.read()
238
+ # a = json.loads(content)
239
+ # f.close()
240
+ # return ItemInHistory(history_id = a['history_id'],union_id = a['union_id'],
241
+ # item_fileurl = a['item_fileurl'],item_mediatype = a["item_mediatype"],
242
+ # upload_datetime = a["upload_datetime"],ai_feedback = a['ai_feedback'])
243
+
244
+
245
+ # def itemToJsonFile(item: ItemInHistory):
246
+ # history_json = {
247
+ # "history_id": item.history_id,
248
+ # "union_id": item.union_id,
249
+ # "item_fileurl": item.item_fileurl,
250
+ # "item_mediatype": item.item_mediatype,
251
+ # "upload_datetime": item.upload_datetime,
252
+ # "ai_feedback": item.ai_feedback
253
+ # }
254
+ # b = json.dumps(history_json)
255
+ # historyfile = f'{item.history_id}.json'
256
+ # f = open(historyfile, 'w')
257
+ # f.write(b)
258
+ # f.close()
259
+
260
+ # return historyfile
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261
 
models.py CHANGED
@@ -1,24 +1,17 @@
1
- from ctypes import Union
2
- from typing import Optional
3
  from pydantic import BaseModel, Field
4
- import json
5
 
6
- class ItemUploaded(BaseModel):
 
7
  union_id: str = Field(title="the user unionid of the item uploaded",examples=["oR_-n69II04mrTuFOFyqiAt_Wgbk"])
8
  item_fileurl: str = Field(title="the file url of the item uploaded",examples=["cloud://prod-3g52ms9o7a81f23c.7072-prod-3g52ms9o7a81f23c-1324125412/oR_-n69II04mrTuFOFyqiAt_Wgbk/202402022042282841.jpg"])
9
  item_mediatype: str = Field(title="the media type of the item uploaded",examples=["image"])
10
- upload_datetime: str = Field(title="the upload datetime of the item uploaded",examples=["2024-2-1 17:20:18"])
11
 
12
- class ItemInHistory(BaseModel):
13
- history_id: str = Field(title="the unique id of the item in history",examples=["20240131003701985"])
14
- union_id: str = Field(title="the user unionid of the item in history",examples=["oR_-n69II04mrTuFOFyqiAt_Wgbk"])
15
- item_fileurl: str = Field(title="the file url of the item in history",examples=["cloud://prod-3g52ms9o7a81f23c.7072-prod-3g52ms9o7a81f23c-1324125412/oR_-n69II04mrTuFOFyqiAt_Wgbk/20240131003701985.jpg"])
16
- item_mediatype: str = Field(title="the media type of the item in history",examples=["image"])
17
- upload_datetime: str = Field(title="the upload datetime of the item in history",examples=["2024-2-1 17:20:18"])
18
- ai_feedback: str = Field(title="the ai feedback to the item in history",examples=["AZARAS SPINETAIL"])
19
-
20
- class ServiceLoginInfo(BaseModel):
21
- appid: str = Field(title="appid of wx miniprogram",examples=[""])
22
- secret: str = Field(title="secret of wx miniprogram",examples=[""])
23
- js_code: str = Field(title="res.code return from wx.login()",examples=[""])
24
- grant_type: str = Field(title="grant_type = authorization_code",examples=["authorization_code"])
 
1
+ # from typing import Optional
 
2
  from pydantic import BaseModel, Field
 
3
 
4
+ class Item2AI(BaseModel):
5
+ upload_id: str = Field(title="the unique id of the item in uploaded",examples=["202402022042282841"])
6
  union_id: str = Field(title="the user unionid of the item uploaded",examples=["oR_-n69II04mrTuFOFyqiAt_Wgbk"])
7
  item_fileurl: str = Field(title="the file url of the item uploaded",examples=["cloud://prod-3g52ms9o7a81f23c.7072-prod-3g52ms9o7a81f23c-1324125412/oR_-n69II04mrTuFOFyqiAt_Wgbk/202402022042282841.jpg"])
8
  item_mediatype: str = Field(title="the media type of the item uploaded",examples=["image"])
9
+ upload_datetime: str = Field(title="the upload datetime of the item uploaded",examples=["2024-2-2 20:42:28"])
10
 
11
+ class AI2Item(BaseModel):
12
+ upload_id: str = Field(title="the unique id of the item in uploaded",examples=["202402022042282841"])
13
+ union_id: str = Field(title="the user unionid of the item uploaded",examples=["oR_-n69II04mrTuFOFyqiAt_Wgbk"])
14
+ item_fileurl: str = Field(title="the file url of the item uploaded",examples=["cloud://prod-3g52ms9o7a81f23c.7072-prod-3g52ms9o7a81f23c-1324125412/oR_-n69II04mrTuFOFyqiAt_Wgbk/202402022042282841.jpg"])
15
+ item_mediatype: str = Field(title="the media type of the item uploaded",examples=["image"])
16
+ upload_datetime: str = Field(title="the upload datetime of the item uploaded",examples=["2024-2-2 20:42:28"])
17
+ ai_feedback: str = Field(title="the ai feedback to the item in history",examples=["AZARAS SPINETAIL"])
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,48 +1,38 @@
1
  annotated-types==0.6.0
2
  anyio==4.2.0
3
- certifi==2023.11.17
 
4
  charset-normalizer==3.3.2
5
  click==8.1.7
6
  cos-python-sdk-v5==1.9.27
7
  crcmod==1.7
8
- distro==1.9.0
9
- fastapi==0.109.0
10
- filelock==3.13.1
11
- fsspec==2023.12.2
 
 
 
 
12
  gunicorn==21.2.0
13
  h11==0.14.0
14
- httpcore==1.0.2
15
- httpx==0.26.0
16
- huggingface-hub==0.20.3
17
  idna==3.6
18
- iniconfig==2.0.0
19
- Jinja2==3.1.3
20
- MarkupSafe==2.1.4
21
- mpmath==1.3.0
22
- networkx==3.2.1
23
- numpy==1.26.3
24
- openai==1.10.0
25
  packaging==23.2
26
  pillow==10.2.0
27
- pluggy==1.4.0
 
 
 
28
  pycryptodome==3.20.0
29
- pydantic==2.5.3
30
- pydantic_core==2.14.6
31
- pytest==8.0.0
32
- python-multipart==0.0.6
33
- PyYAML==6.0.1
34
- regex==2023.12.25
35
  requests==2.31.0
36
- safetensors==0.4.2
37
  six==1.16.0
38
  sniffio==1.3.0
39
- starlette==0.35.1
40
- sympy==1.12
41
- tokenizers==0.15.1
42
- torch==2.1.2
43
  tqdm==4.66.1
44
- transformers==4.37.1
45
  typing_extensions==4.9.0
46
- urllib3==2.1.0
47
- uvicorn==0.27.0
48
  xmltodict==0.13.0
 
1
  annotated-types==0.6.0
2
  anyio==4.2.0
3
+ cachetools==5.3.2
4
+ certifi==2024.2.2
5
  charset-normalizer==3.3.2
6
  click==8.1.7
7
  cos-python-sdk-v5==1.9.27
8
  crcmod==1.7
9
+ fastapi==0.109.2
10
+ google-ai-generativelanguage==0.4.0
11
+ google-api-core==2.16.2
12
+ google-auth==2.27.0
13
+ google-generativeai==0.3.2
14
+ googleapis-common-protos==1.62.0
15
+ grpcio==1.60.1
16
+ grpcio-status==1.60.1
17
  gunicorn==21.2.0
18
  h11==0.14.0
 
 
 
19
  idna==3.6
 
 
 
 
 
 
 
20
  packaging==23.2
21
  pillow==10.2.0
22
+ proto-plus==1.23.0
23
+ protobuf==4.25.2
24
+ pyasn1==0.5.1
25
+ pyasn1-modules==0.3.0
26
  pycryptodome==3.20.0
27
+ pydantic==2.6.1
28
+ pydantic_core==2.16.2
 
 
 
 
29
  requests==2.31.0
30
+ rsa==4.9
31
  six==1.16.0
32
  sniffio==1.3.0
33
+ starlette==0.36.3
 
 
 
34
  tqdm==4.66.1
 
35
  typing_extensions==4.9.0
36
+ urllib3==2.2.0
37
+ uvicorn==0.27.0.post1
38
  xmltodict==0.13.0