File size: 5,977 Bytes
1b65314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilitary functions about images (loading/converting...)
# --------------------------------------------------------
import os
import torch
import numpy as np
import PIL.Image
from PIL.ImageOps import exif_transpose
import torchvision.transforms as tvf
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2  # noqa

try:
    from pillow_heif import register_heif_opener  # noqa
    register_heif_opener()
    heif_support_enabled = True
except ImportError:
    heif_support_enabled = False

ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])


def img_to_arr( img ):
    if isinstance(img, str):
        img = imread_cv2(img)
    return img

def imread_cv2(path, options=cv2.IMREAD_COLOR):
    """ Open an image or a depthmap with opencv-python.
    """
    if path.endswith(('.exr', 'EXR')):
        options = cv2.IMREAD_ANYDEPTH
    img = cv2.imread(path, options)
    if img is None:
        raise IOError(f'Could not load image={path} with {options=}')
    if img.ndim == 3:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return img


def rgb(ftensor, true_shape=None):
    if isinstance(ftensor, list):
        return [rgb(x, true_shape=true_shape) for x in ftensor]
    if isinstance(ftensor, torch.Tensor):
        ftensor = ftensor.detach().cpu().numpy()  # H,W,3
    if ftensor.ndim == 3 and ftensor.shape[0] == 3:
        ftensor = ftensor.transpose(1, 2, 0)
    elif ftensor.ndim == 4 and ftensor.shape[1] == 3:
        ftensor = ftensor.transpose(0, 2, 3, 1)
    if true_shape is not None:
        H, W = true_shape
        ftensor = ftensor[:H, :W]
    if ftensor.dtype == np.uint8:
        img = np.float32(ftensor) / 255
    else:
        img = (ftensor * 0.5) + 0.5
    return img.clip(min=0, max=1)


def _resize_pil_image(img, long_edge_size):
    S = max(img.size)
    if S > long_edge_size:
        interp = PIL.Image.LANCZOS
    elif S <= long_edge_size:
        interp = PIL.Image.BICUBIC
    new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
    return img.resize(new_size, interp)


def load_images(images, cog_seg_maps, size, square_ok=False, verbose=True):
    """ open and convert all images in a list or folder to proper input format for DUSt3R
    """
    # if isinstance(folder_or_list, str):
    #     if verbose:
    #         print(f'>> Loading images from {folder_or_list}')
    #     root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))

    # elif isinstance(folder_or_list, list):
    #     if verbose:
    #         print(f'>> Loading a list of {len(folder_or_list)} images')
    #     root, folder_content = '', folder_or_list

    # else:
    #     raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')

    # supported_images_extensions = ['.jpg', '.jpeg', '.png']
    # if heif_support_enabled:
    #     supported_images_extensions += ['.heic', '.heif']
    # supported_images_extensions = tuple(supported_images_extensions)
    pil_images = images.pil_images

    mean_colors = {}
    mean_colors_cnt = {}
    for i, img in enumerate(pil_images):
 
        img_np = np.array(img)
        seg_map = cog_seg_maps[i]
        unique_labels = np.unique(seg_map)
        for label in unique_labels:
            if label == -1:
                continue
            mask = (seg_map == label)
            mean_color = img_np[mask].mean(axis=0)
            if label in mean_colors.keys():
                mean_colors[label] += mean_color
                mean_colors_cnt[label] += 1
            else:
                mean_colors[label] = mean_color
                mean_colors_cnt[label] = 1
                
    for key in mean_colors.keys():
        mean_colors[key] /= mean_colors_cnt[key]

    imgs = []
    for i, img in enumerate(pil_images):
        img = pil_images[i]

        img_np = np.array(img)
        smoothed_image = np.zeros_like(img_np)
        seg_map = cog_seg_maps[i]
        unique_labels = np.unique(seg_map)
        for label in unique_labels:
            mask = (seg_map == label)
            if label == -1:
                smoothed_image[mask] = img_np[mask]
                continue
            smoothed_image[mask] = mean_colors[label]
        smoothed_image = cv2.addWeighted(img_np, 0.05, smoothed_image, 0.95, 0)
        smoothed_image = PIL.Image.fromarray(smoothed_image)

        W1, H1 = img.size
        if size == 224:
            # resize short side to 224 (then crop)
            img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
            smoothed_image = _resize_pil_image(smoothed_image, round(size * max(W1/H1, H1/W1)))
        else:
            # resize long side to 512
            img = _resize_pil_image(img, size)
            smoothed_image = _resize_pil_image(smoothed_image, size)

        W, H = img.size
        cx, cy = W//2, H//2
        if size == 224:
            half = min(cx, cy)
            img = img.crop((cx-half, cy-half, cx+half, cy+half))
            smoothed_image = smoothed_image.crop((cx-half, cy-half, cx+half, cy+half))
        else:
            halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8
            if not (square_ok) and W == H:
                halfh = 3*halfw/4
            img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))
            smoothed_image = smoothed_image.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))

        # W2, H2 = img.size
        # if verbose:
        #     print(f' - adding image {i} with resolution {W1}x{H1} --> {W2}x{H2}')

        imgs.append(dict(img=ImgNorm(img)[None], ori_img=ImgNorm(img)[None], smoothed_img=ImgNorm(smoothed_image)[None], true_shape=np.int32(
            [img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))
        
    if verbose:
        print(f' (Found {len(imgs)} images)')
    return imgs