|
from modules.ultralytics.yolo.cfg import get_cfg |
|
from modules.ultralytics.yolo.engine.exporter import Exporter |
|
from modules.ultralytics.yolo.engine.model import YOLO |
|
from modules.ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, ROOT, is_git_dir |
|
|
|
from modules.ultralytics.yolo.utils.torch_utils import model_info, smart_inference_mode |
|
from .predict import PromptModelPredictor |
|
|
|
|
|
class ObjectAwareModel(YOLO): |
|
|
|
@smart_inference_mode() |
|
def predict(self, source=None, stream=False, **kwargs): |
|
""" |
|
Perform prediction using the YOLO model. |
|
|
|
Args: |
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on. |
|
Accepts all source types accepted by the YOLO model. |
|
stream (bool): Whether to stream the predictions or not. Defaults to False. |
|
**kwargs : Additional keyword arguments passed to the predictor. |
|
Check the 'configuration' section in the documentation for all available options. |
|
|
|
Returns: |
|
(List[ultralytics.yolo.engine.results.Results]): The prediction results. |
|
""" |
|
if source is None: |
|
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' |
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") |
|
overrides = self.overrides.copy() |
|
overrides['conf'] = 0.25 |
|
overrides.update(kwargs) |
|
overrides['mode'] = kwargs.get('mode', 'predict') |
|
assert overrides['mode'] in ['track', 'predict'] |
|
overrides['save'] = kwargs.get('save', False) |
|
self.predictor = PromptModelPredictor(overrides=overrides) |
|
|
|
self.predictor.setup_model(model=self.model, verbose=False) |
|
|
|
try: |
|
|
|
return self.predictor(source, stream=stream) |
|
except Exception as e: |
|
return None |
|
|
|
def train(self, **kwargs): |
|
raise NotImplementedError("Currently, the training codes are on the way.") |
|
|
|
@smart_inference_mode() |
|
def export(self, **kwargs): |
|
""" |
|
Export model. |
|
|
|
Args: |
|
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs |
|
""" |
|
overrides = dict(task='detect') |
|
overrides.update(kwargs) |
|
overrides['mode'] = 'export' |
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) |
|
args.task = self.task |
|
if args.imgsz == DEFAULT_CFG.imgsz: |
|
args.imgsz = self.model.args['imgsz'] |
|
if args.batch == DEFAULT_CFG.batch: |
|
args.batch = 1 |
|
return Exporter(overrides=args)(model=self.model) |
|
|
|
def info(self, detailed=False, verbose=False): |
|
""" |
|
Logs model info. |
|
|
|
Args: |
|
detailed (bool): Show detailed information about model. |
|
verbose (bool): Controls verbosity. |
|
""" |
|
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640) |
|
|
|
def __call__(self, source=None, stream=False, **kwargs): |
|
"""Calls the 'predict' function with given arguments to perform object detection.""" |
|
return self.predict(source, stream, **kwargs) |
|
|
|
def __getattr__(self, attr): |
|
"""Raises error if object has no requested attribute.""" |
|
name = self.__class__.__name__ |
|
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") |
|
|