hujiecpp's picture
init project
1b65314
import torch
from ultralytics.yolo.engine.results import Results
from ultralytics.yolo.utils import DEFAULT_CFG, ops
from ultralytics.yolo.v8.detect.predict import DetectionPredictor
class PromptModelPredictor(DetectionPredictor):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'segment'
def adjust_bboxes_to_image_border(self, boxes, image_shape, threshold=20):
h, w = image_shape
boxes[:, 0] = torch.where(boxes[:, 0] < threshold, torch.tensor(
0, dtype=torch.float, device=boxes.device), boxes[:, 0]) # x1
boxes[:, 1] = torch.where(boxes[:, 1] < threshold, torch.tensor(
0, dtype=torch.float, device=boxes.device), boxes[:, 1]) # y1
boxes[:, 2] = torch.where(boxes[:, 2] > w - threshold, torch.tensor(
w, dtype=torch.float, device=boxes.device), boxes[:, 2]) # x2
boxes[:, 3] = torch.where(boxes[:, 3] > h - threshold, torch.tensor(
h, dtype=torch.float, device=boxes.device), boxes[:, 3]) # y2
return boxes
def postprocess(self, preds, img, orig_imgs):
p = ops.non_max_suppression(preds[0],
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nc=len(self.model.names),
classes=self.args.classes)
results = []
if len(p) == 0 or len(p[0]) == 0:
print("No object detected.")
return results
full_box = torch.zeros_like(p[0][0])
full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0
full_box = full_box.view(1, -1)
self.adjust_bboxes_to_image_border(p[0][:, :4], img.shape[2:])
for i, pred in enumerate(p):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
if not len(pred):
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))
continue
if self.args.retina_masks:
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
else:
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(
Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=torch.zeros_like(img)))
return results