|
import torch |
|
from ultralytics.yolo.engine.results import Results |
|
from ultralytics.yolo.utils import DEFAULT_CFG, ops |
|
from ultralytics.yolo.v8.detect.predict import DetectionPredictor |
|
|
|
class PromptModelPredictor(DetectionPredictor): |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
super().__init__(cfg, overrides, _callbacks) |
|
self.args.task = 'segment' |
|
def adjust_bboxes_to_image_border(self, boxes, image_shape, threshold=20): |
|
h, w = image_shape |
|
boxes[:, 0] = torch.where(boxes[:, 0] < threshold, torch.tensor( |
|
0, dtype=torch.float, device=boxes.device), boxes[:, 0]) |
|
boxes[:, 1] = torch.where(boxes[:, 1] < threshold, torch.tensor( |
|
0, dtype=torch.float, device=boxes.device), boxes[:, 1]) |
|
boxes[:, 2] = torch.where(boxes[:, 2] > w - threshold, torch.tensor( |
|
w, dtype=torch.float, device=boxes.device), boxes[:, 2]) |
|
boxes[:, 3] = torch.where(boxes[:, 3] > h - threshold, torch.tensor( |
|
h, dtype=torch.float, device=boxes.device), boxes[:, 3]) |
|
return boxes |
|
def postprocess(self, preds, img, orig_imgs): |
|
p = ops.non_max_suppression(preds[0], |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
nc=len(self.model.names), |
|
classes=self.args.classes) |
|
results = [] |
|
if len(p) == 0 or len(p[0]) == 0: |
|
print("No object detected.") |
|
return results |
|
full_box = torch.zeros_like(p[0][0]) |
|
full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0 |
|
full_box = full_box.view(1, -1) |
|
self.adjust_bboxes_to_image_border(p[0][:, :4], img.shape[2:]) |
|
for i, pred in enumerate(p): |
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs |
|
path = self.batch[0] |
|
img_path = path[i] if isinstance(path, list) else path |
|
if not len(pred): |
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])) |
|
continue |
|
if self.args.retina_masks: |
|
if not isinstance(orig_imgs, torch.Tensor): |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
else: |
|
if not isinstance(orig_imgs, torch.Tensor): |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
results.append( |
|
Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=torch.zeros_like(img))) |
|
return results |
|
|