PE3R / modules /pe3r /models.py
hujiecpp's picture
init project
9225e86
import os
import sys
sys.path.append(os.path.abspath('./modules/ultralytics'))
from transformers import AutoTokenizer, AutoModel, AutoProcessor, SamModel
from modules.mast3r.model import AsymmetricMASt3R
# from modules.sam2.build_sam import build_sam2_video_predictor
from modules.mobilesamv2.promt_mobilesamv2 import ObjectAwareModel
from modules.mobilesamv2 import sam_model_registry
from sam2.sam2_video_predictor import SAM2VideoPredictor
class Models:
def __init__(self, device):
# -- mast3r --
# MAST3R_CKP = './checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth'
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
self.mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
# -- sam2 --
# SAM2_CKP = "./checkpoints/sam2.1_hiera_large.pt"
# SAM2_CKP = 'hujiecpp/sam2-1-hiera-large'
# SAM2_CONFIG = "./configs/sam2.1/sam2.1_hiera_l.yaml"
# self.sam2 = build_sam2_video_predictor(SAM2_CONFIG, SAM2_CKP, device=device, apply_postprocessing=False)
# self.sam2.eval()
self.sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
# -- mobilesamv2 & sam1 --
# SAM1_ENCODER_CKP = './checkpoints/sam_vit_h.pt'
# SAM1_ENCODER_CKP = 'facebook/sam-vit-huge/model.safetensors'
SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
self.mobilesamv2 = sam_model_registry['sam_vit_h'](None)
# image_encoder=sam_model_registry['sam_vit_h_encoder'](SAM1_ENCODER_CKP)
sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
image_encoder = sam1.vision_encoder
prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
self.mobilesamv2.prompt_encoder = prompt_encoder
self.mobilesamv2.mask_decoder = mask_decoder
self.mobilesamv2.image_encoder=image_encoder
self.mobilesamv2.to(device=device)
self.mobilesamv2.eval()
# -- yolov8 --
YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
self.yolov8 = ObjectAwareModel(YOLO8_CKP)
# -- siglip --
# self.siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
# self.siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256")
# self.siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256")