|
|
|
""" |
|
SAM model interface |
|
""" |
|
|
|
from ultralytics.yolo.cfg import get_cfg |
|
|
|
from ...yolo.utils.torch_utils import model_info |
|
from .build import build_sam |
|
from .predict import Predictor |
|
|
|
|
|
class SAM: |
|
|
|
def __init__(self, model='sam_b.pt') -> None: |
|
if model and not model.endswith('.pt') and not model.endswith('.pth'): |
|
|
|
raise NotImplementedError('Segment anything prediction requires pre-trained checkpoint') |
|
self.model = build_sam(model) |
|
self.task = 'segment' |
|
self.predictor = None |
|
|
|
def predict(self, source, stream=False, **kwargs): |
|
"""Predicts and returns segmentation masks for given image or video source.""" |
|
overrides = dict(conf=0.25, task='segment', mode='predict') |
|
overrides.update(kwargs) |
|
if not self.predictor: |
|
self.predictor = Predictor(overrides=overrides) |
|
self.predictor.setup_model(model=self.model) |
|
else: |
|
self.predictor.args = get_cfg(self.predictor.args, overrides) |
|
return self.predictor(source, stream=stream) |
|
|
|
def train(self, **kwargs): |
|
"""Function trains models but raises an error as SAM models do not support training.""" |
|
raise NotImplementedError("SAM models don't support training") |
|
|
|
def val(self, **kwargs): |
|
"""Run validation given dataset.""" |
|
raise NotImplementedError("SAM models don't support validation") |
|
|
|
def __call__(self, source=None, stream=False, **kwargs): |
|
"""Calls the 'predict' function with given arguments to perform object detection.""" |
|
return self.predict(source, stream, **kwargs) |
|
|
|
def __getattr__(self, attr): |
|
"""Raises error if object has no requested attribute.""" |
|
name = self.__class__.__name__ |
|
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") |
|
|
|
def info(self, detailed=False, verbose=True): |
|
""" |
|
Logs model info. |
|
|
|
Args: |
|
detailed (bool): Show detailed information about model. |
|
verbose (bool): Controls verbosity. |
|
""" |
|
return model_info(self.model, detailed=detailed, verbose=verbose) |
|
|