diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..08cf150d030af908bdda6113f5e601604987732e --- /dev/null +++ b/app.py @@ -0,0 +1,58 @@ +import os +import tempfile + +import sys +sys.path.append(os.path.abspath('./modules')) + +# import builtins +# import datetime +import argparse + +from modules.pe3r.demo import main_demo +from modules.pe3r.models import Models + +# def set_print_with_timestamp(time_format="%Y-%m-%d %H:%M:%S"): +# builtin_print = builtins.print +# def print_with_timestamp(*args, **kwargs): +# now = datetime.datetime.now() +# formatted_date_time = now.strftime(time_format) +# builtin_print(f'[{formatted_date_time}] ', end='') # print with time stamp +# builtin_print(*args, **kwargs) +# builtins.print = print_with_timestamp + +def get_args_parser(): + parser = argparse.ArgumentParser() + parser_url = parser.add_mutually_exclusive_group() + parser_url.add_argument("--local_network", action='store_true', default=False, + help="make app accessible on local network: address will be set to 0.0.0.0") + parser_url.add_argument("--server_name", type=str, default=None, help="server url, default is 127.0.0.1") + parser.add_argument("--server_port", type=int, help=("will start gradio app on this port (if available). " + "If None, will search for an available port starting at 7860."), default=None) + parser.add_argument("--device", type=str, default='cuda', help="pytorch device") + parser.add_argument("--tmp_dir", type=str, default=None, help="value for tempfile.tempdir") + parser.add_argument("--silent", action='store_true', default=False, help="silence logs") + # change defaults + parser.prog = 'pe3r demo' + return parser + +if __name__ == '__main__': + parser = get_args_parser() + args = parser.parse_args() + # set_print_with_timestamp() + + if args.tmp_dir is not None: + tmp_path = args.tmp_dir + os.makedirs(tmp_path, exist_ok=True) + tempfile.tempdir = tmp_path + + if args.server_name is not None: + server_name = args.server_name + else: + server_name = '0.0.0.0' if args.local_network else '127.0.0.1' + + pe3r = Models(device=args.device) + + with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname: + if not args.silent: + print('Outputing stuff in', tmpdirname) + main_demo(tmpdirname, pe3r, args.device, server_name, args.server_port, silent=args.silent) diff --git a/modules/__pycache__/__init__.cpython-312.pyc b/modules/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..25aa85a051b0221011aa89addde277217b618200 Binary files /dev/null and b/modules/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/croco/LICENSE b/modules/croco/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..d9b84b1a65f9db6d8920a9048d162f52ba3ea56d --- /dev/null +++ b/modules/croco/LICENSE @@ -0,0 +1,52 @@ +CroCo, Copyright (c) 2022-present Naver Corporation, is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license. + +A summary of the CC BY-NC-SA 4.0 license is located here: + https://creativecommons.org/licenses/by-nc-sa/4.0/ + +The CC BY-NC-SA 4.0 license is located here: + https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode + + +SEE NOTICE BELOW WITH RESPECT TO THE FILE: models/pos_embed.py, models/blocks.py + +*************************** + +NOTICE WITH RESPECT TO THE FILE: models/pos_embed.py + +This software is being redistributed in a modifiled form. The original form is available here: + +https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py + +This software in this file incorporates parts of the following software available here: + +Transformer: https://github.com/tensorflow/models/blob/master/official/legacy/transformer/model_utils.py +available under the following license: https://github.com/tensorflow/models/blob/master/LICENSE + +MoCo v3: https://github.com/facebookresearch/moco-v3 +available under the following license: https://github.com/facebookresearch/moco-v3/blob/main/LICENSE + +DeiT: https://github.com/facebookresearch/deit +available under the following license: https://github.com/facebookresearch/deit/blob/main/LICENSE + + +ORIGINAL COPYRIGHT NOTICE AND PERMISSION NOTICE AVAILABLE HERE IS REPRODUCE BELOW: + +https://github.com/facebookresearch/mae/blob/main/LICENSE + +Attribution-NonCommercial 4.0 International + +*************************** + +NOTICE WITH RESPECT TO THE FILE: models/blocks.py + +This software is being redistributed in a modifiled form. The original form is available here: + +https://github.com/rwightman/pytorch-image-models + +ORIGINAL COPYRIGHT NOTICE AND PERMISSION NOTICE AVAILABLE HERE IS REPRODUCE BELOW: + +https://github.com/rwightman/pytorch-image-models/blob/master/LICENSE + +Apache License +Version 2.0, January 2004 +http://www.apache.org/licenses/ \ No newline at end of file diff --git a/modules/croco/NOTICE b/modules/croco/NOTICE new file mode 100644 index 0000000000000000000000000000000000000000..d51bb365036c12d428d6e3a4fd00885756d5261c --- /dev/null +++ b/modules/croco/NOTICE @@ -0,0 +1,21 @@ +CroCo +Copyright 2022-present NAVER Corp. + +This project contains subcomponents with separate copyright notices and license terms. +Your use of the source code for these subcomponents is subject to the terms and conditions of the following licenses. + +==== + +facebookresearch/mae +https://github.com/facebookresearch/mae + +Attribution-NonCommercial 4.0 International + +==== + +rwightman/pytorch-image-models +https://github.com/rwightman/pytorch-image-models + +Apache License +Version 2.0, January 2004 +http://www.apache.org/licenses/ \ No newline at end of file diff --git a/modules/croco/README.MD b/modules/croco/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..38e33b001a60bd16749317fb297acd60f28a6f1b --- /dev/null +++ b/modules/croco/README.MD @@ -0,0 +1,124 @@ +# CroCo + CroCo v2 / CroCo-Stereo / CroCo-Flow + +[[`CroCo arXiv`](https://arxiv.org/abs/2210.10716)] [[`CroCo v2 arXiv`](https://arxiv.org/abs/2211.10408)] [[`project page and demo`](https://croco.europe.naverlabs.com/)] + +This repository contains the code for our CroCo model presented in our NeurIPS'22 paper [CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion](https://openreview.net/pdf?id=wZEfHUM5ri) and its follow-up extension published at ICCV'23 [Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow](https://openaccess.thecvf.com/content/ICCV2023/html/Weinzaepfel_CroCo_v2_Improved_Cross-view_Completion_Pre-training_for_Stereo_Matching_and_ICCV_2023_paper.html), refered to as CroCo v2: + +![image](assets/arch.jpg) + +```bibtex +@inproceedings{croco, + title={{CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion}}, + author={{Weinzaepfel, Philippe and Leroy, Vincent and Lucas, Thomas and Br\'egier, Romain and Cabon, Yohann and Arora, Vaibhav and Antsfeld, Leonid and Chidlovskii, Boris and Csurka, Gabriela and Revaud J\'er\^ome}}, + booktitle={{NeurIPS}}, + year={2022} +} + +@inproceedings{croco_v2, + title={{CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow}}, + author={Weinzaepfel, Philippe and Lucas, Thomas and Leroy, Vincent and Cabon, Yohann and Arora, Vaibhav and Br{\'e}gier, Romain and Csurka, Gabriela and Antsfeld, Leonid and Chidlovskii, Boris and Revaud, J{\'e}r{\^o}me}, + booktitle={ICCV}, + year={2023} +} +``` + +## License + +The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](LICENSE) for more information. +Some components are based on code from [MAE](https://github.com/facebookresearch/mae) released under the CC BY-NC-SA 4.0 License and [timm](https://github.com/rwightman/pytorch-image-models) released under the Apache 2.0 License. +Some components for stereo matching and optical flow are based on code from [unimatch](https://github.com/autonomousvision/unimatch) released under the MIT license. + +## Preparation + +1. Install dependencies on a machine with a NVidia GPU using e.g. conda. Note that `habitat-sim` is required only for the interactive demo and the synthetic pre-training data generation. If you don't plan to use it, you can ignore the line installing it and use a more recent python version. + +```bash +conda create -n croco python=3.7 cmake=3.14.0 +conda activate croco +conda install habitat-sim headless -c conda-forge -c aihabitat +conda install pytorch torchvision -c pytorch +conda install notebook ipykernel matplotlib +conda install ipywidgets widgetsnbextension +conda install scikit-learn tqdm quaternion opencv # only for pretraining / habitat data generation + +``` + +2. Compile cuda kernels for RoPE + +CroCo v2 relies on RoPE positional embeddings for which you need to compile some cuda kernels. +```bash +cd models/curope/ +python setup.py build_ext --inplace +cd ../../ +``` + +This can be a bit long as we compile for all cuda architectures, feel free to update L9 of `models/curope/setup.py` to compile for specific architectures only. +You might also need to set the environment `CUDA_HOME` in case you use a custom cuda installation. + +In case you cannot provide, we also provide a slow pytorch version, which will be automatically loaded. + +3. Download pre-trained model + +We provide several pre-trained models: + +| modelname | pre-training data | pos. embed. | Encoder | Decoder | +|------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|---------|---------| +| [`CroCo.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo.pth) | Habitat | cosine | ViT-B | Small | +| [`CroCo_V2_ViTBase_SmallDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTBase_SmallDecoder.pth) | Habitat + real | RoPE | ViT-B | Small | +| [`CroCo_V2_ViTBase_BaseDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTBase_BaseDecoder.pth) | Habitat + real | RoPE | ViT-B | Base | +| [`CroCo_V2_ViTLarge_BaseDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTLarge_BaseDecoder.pth) | Habitat + real | RoPE | ViT-L | Base | + +To download a specific model, i.e., the first one (`CroCo.pth`) +```bash +mkdir -p pretrained_models/ +wget https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo.pth -P pretrained_models/ +``` + +## Reconstruction example + +Simply run after downloading the `CroCo_V2_ViTLarge_BaseDecoder` pretrained model (or update the corresponding line in `demo.py`) +```bash +python demo.py +``` + +## Interactive demonstration of cross-view completion reconstruction on the Habitat simulator + +First download the test scene from Habitat: +```bash +python -m habitat_sim.utils.datasets_download --uids habitat_test_scenes --data-path habitat-sim-data/ +``` + +Then, run the Notebook demo `interactive_demo.ipynb`. + +In this demo, you should be able to sample a random reference viewpoint from an [Habitat](https://github.com/facebookresearch/habitat-sim) test scene. Use the sliders to change viewpoint and select a masked target view to reconstruct using CroCo. +![croco_interactive_demo](https://user-images.githubusercontent.com/1822210/200516576-7937bc6a-55f8-49ed-8618-3ddf89433ea4.jpg) + +## Pre-training + +### CroCo + +To pre-train CroCo, please first generate the pre-training data from the Habitat simulator, following the instructions in [datasets/habitat_sim/README.MD](datasets/habitat_sim/README.MD) and then run the following command: +``` +torchrun --nproc_per_node=4 pretrain.py --output_dir ./output/pretraining/ +``` + +Our CroCo pre-training was launched on a single server with 4 GPUs. +It should take around 10 days with A100 or 15 days with V100 to do the 400 pre-training epochs, but decent performances are obtained earlier in training. +Note that, while the code contains the same scaling rule of the learning rate as MAE when changing the effective batch size, we did not experimented if it is valid in our case. +The first run can take a few minutes to start, to parse all available pre-training pairs. + +### CroCo v2 + +For CroCo v2 pre-training, in addition to the generation of the pre-training data from the Habitat simulator above, please pre-extract the crops from the real datasets following the instructions in [datasets/crops/README.MD](datasets/crops/README.MD). +Then, run the following command for the largest model (ViT-L encoder, Base decoder): +``` +torchrun --nproc_per_node=8 pretrain.py --model "CroCoNet(enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_num_heads=12, dec_depth=12, pos_embed='RoPE100')" --dataset "habitat_release+ARKitScenes+MegaDepth+3DStreetView+IndoorVL" --warmup_epochs 12 --max_epoch 125 --epochs 250 --amp 0 --keep_freq 5 --output_dir ./output/pretraining_crocov2/ +``` + +Our CroCo v2 pre-training was launched on a single server with 8 GPUs for the largest model, and on a single server with 4 GPUs for the smaller ones, keeping a batch size of 64 per gpu in all cases. +The largest model should take around 12 days on A100. +Note that, while the code contains the same scaling rule of the learning rate as MAE when changing the effective batch size, we did not experimented if it is valid in our case. + +## Stereo matching and Optical flow downstream tasks + +For CroCo-Stereo and CroCo-Flow, please refer to [stereoflow/README.MD](stereoflow/README.MD). diff --git a/modules/croco/datasets/__init__.py b/modules/croco/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/croco/datasets/crops/README.MD b/modules/croco/datasets/crops/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..47ddabebb177644694ee247ae878173a3a16644f --- /dev/null +++ b/modules/croco/datasets/crops/README.MD @@ -0,0 +1,104 @@ +## Generation of crops from the real datasets + +The instructions below allow to generate the crops used for pre-training CroCo v2 from the following real-world datasets: ARKitScenes, MegaDepth, 3DStreetView and IndoorVL. + +### Download the metadata of the crops to generate + +First, download the metadata and put them in `./data/`: +``` +mkdir -p data +cd data/ +wget https://download.europe.naverlabs.com/ComputerVision/CroCo/data/crop_metadata.zip +unzip crop_metadata.zip +rm crop_metadata.zip +cd .. +``` + +### Prepare the original datasets + +Second, download the original datasets in `./data/original_datasets/`. +``` +mkdir -p data/original_datasets +``` + +##### ARKitScenes + +Download the `raw` dataset from https://github.com/apple/ARKitScenes/blob/main/DATA.md and put it in `./data/original_datasets/ARKitScenes/`. +The resulting file structure should be like: +``` +./data/original_datasets/ARKitScenes/ +└───Training + └───40753679 + │ │ ultrawide + │ │ ... + └───40753686 + │ + ... +``` + +##### MegaDepth + +Download `MegaDepth v1 Dataset` from https://www.cs.cornell.edu/projects/megadepth/ and put it in `./data/original_datasets/MegaDepth/`. +The resulting file structure should be like: + +``` +./data/original_datasets/MegaDepth/ +└───0000 +│ └───images +│ │ │ 1000557903_87fa96b8a4_o.jpg +│ │ └ ... +│ └─── ... +└───0001 +│ │ +│ └ ... +└─── ... +``` + +##### 3DStreetView + +Download `3D_Street_View` dataset from https://github.com/amir32002/3D_Street_View and put it in `./data/original_datasets/3DStreetView/`. +The resulting file structure should be like: + +``` +./data/original_datasets/3DStreetView/ +└───dataset_aligned +│ └───0002 +│ │ │ 0000002_0000001_0000002_0000001.jpg +│ │ └ ... +│ └─── ... +└───dataset_unaligned +│ └───0003 +│ │ │ 0000003_0000001_0000002_0000001.jpg +│ │ └ ... +│ └─── ... +``` + +##### IndoorVL + +Download the `IndoorVL` datasets using [Kapture](https://github.com/naver/kapture). + +``` +pip install kapture +mkdir -p ./data/original_datasets/IndoorVL +cd ./data/original_datasets/IndoorVL +kapture_download_dataset.py update +kapture_download_dataset.py install "HyundaiDepartmentStore_*" +kapture_download_dataset.py install "GangnamStation_*" +cd - +``` + +### Extract the crops + +Now, extract the crops for each of the dataset: +``` +for dataset in ARKitScenes MegaDepth 3DStreetView IndoorVL; +do + python3 datasets/crops/extract_crops_from_images.py --crops ./data/crop_metadata/${dataset}/crops_release.txt --root-dir ./data/original_datasets/${dataset}/ --output-dir ./data/${dataset}_crops/ --imsize 256 --nthread 8 --max-subdir-levels 5 --ideal-number-pairs-in-dir 500; +done +``` + +##### Note for IndoorVL + +Due to some legal issues, we can only release 144,228 pairs out of the 1,593,689 pairs used in the paper. +To account for it in terms of number of pre-training iterations, the pre-training command in this repository uses 125 training epochs including 12 warm-up epochs and learning rate cosine schedule of 250, instead of 100, 10 and 200 respectively. +The impact on the performance is negligible. diff --git a/modules/croco/datasets/crops/extract_crops_from_images.py b/modules/croco/datasets/crops/extract_crops_from_images.py new file mode 100644 index 0000000000000000000000000000000000000000..eb66a0474ce44b54c44c08887cbafdb045b11ff3 --- /dev/null +++ b/modules/croco/datasets/crops/extract_crops_from_images.py @@ -0,0 +1,159 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Extracting crops for pre-training +# -------------------------------------------------------- + +import os +import argparse +from tqdm import tqdm +from PIL import Image +import functools +from multiprocessing import Pool +import math + + +def arg_parser(): + parser = argparse.ArgumentParser('Generate cropped image pairs from image crop list') + + parser.add_argument('--crops', type=str, required=True, help='crop file') + parser.add_argument('--root-dir', type=str, required=True, help='root directory') + parser.add_argument('--output-dir', type=str, required=True, help='output directory') + parser.add_argument('--imsize', type=int, default=256, help='size of the crops') + parser.add_argument('--nthread', type=int, required=True, help='number of simultaneous threads') + parser.add_argument('--max-subdir-levels', type=int, default=5, help='maximum number of subdirectories') + parser.add_argument('--ideal-number-pairs-in-dir', type=int, default=500, help='number of pairs stored in a dir') + return parser + + +def main(args): + listing_path = os.path.join(args.output_dir, 'listing.txt') + + print(f'Loading list of crops ... ({args.nthread} threads)') + crops, num_crops_to_generate = load_crop_file(args.crops) + + print(f'Preparing jobs ({len(crops)} candidate image pairs)...') + num_levels = min(math.ceil(math.log(num_crops_to_generate, args.ideal_number_pairs_in_dir)), args.max_subdir_levels) + num_pairs_in_dir = math.ceil(num_crops_to_generate ** (1/num_levels)) + + jobs = prepare_jobs(crops, num_levels, num_pairs_in_dir) + del crops + + os.makedirs(args.output_dir, exist_ok=True) + mmap = Pool(args.nthread).imap_unordered if args.nthread > 1 else map + call = functools.partial(save_image_crops, args) + + print(f"Generating cropped images to {args.output_dir} ...") + with open(listing_path, 'w') as listing: + listing.write('# pair_path\n') + for results in tqdm(mmap(call, jobs), total=len(jobs)): + for path in results: + listing.write(f'{path}\n') + print('Finished writing listing to', listing_path) + + +def load_crop_file(path): + data = open(path).read().splitlines() + pairs = [] + num_crops_to_generate = 0 + for line in tqdm(data): + if line.startswith('#'): + continue + line = line.split(', ') + if len(line) < 8: + img1, img2, rotation = line + pairs.append((img1, img2, int(rotation), [])) + else: + l1, r1, t1, b1, l2, r2, t2, b2 = map(int, line) + rect1, rect2 = (l1, t1, r1, b1), (l2, t2, r2, b2) + pairs[-1][-1].append((rect1, rect2)) + num_crops_to_generate += 1 + return pairs, num_crops_to_generate + + +def prepare_jobs(pairs, num_levels, num_pairs_in_dir): + jobs = [] + powers = [num_pairs_in_dir**level for level in reversed(range(num_levels))] + + def get_path(idx): + idx_array = [] + d = idx + for level in range(num_levels - 1): + idx_array.append(idx // powers[level]) + idx = idx % powers[level] + idx_array.append(d) + return '/'.join(map(lambda x: hex(x)[2:], idx_array)) + + idx = 0 + for pair_data in tqdm(pairs): + img1, img2, rotation, crops = pair_data + if -60 <= rotation and rotation <= 60: + rotation = 0 # most likely not a true rotation + paths = [get_path(idx + k) for k in range(len(crops))] + idx += len(crops) + jobs.append(((img1, img2), rotation, crops, paths)) + return jobs + + +def load_image(path): + try: + return Image.open(path).convert('RGB') + except Exception as e: + print('skipping', path, e) + raise OSError() + + +def save_image_crops(args, data): + # load images + img_pair, rot, crops, paths = data + try: + img1, img2 = [load_image(os.path.join(args.root_dir, impath)) for impath in img_pair] + except OSError as e: + return [] + + def area(sz): + return sz[0] * sz[1] + + tgt_size = (args.imsize, args.imsize) + + def prepare_crop(img, rect, rot=0): + # actual crop + img = img.crop(rect) + + # resize to desired size + interp = Image.Resampling.LANCZOS if area(img.size) > 4*area(tgt_size) else Image.Resampling.BICUBIC + img = img.resize(tgt_size, resample=interp) + + # rotate the image + rot90 = (round(rot/90) % 4) * 90 + if rot90 == 90: + img = img.transpose(Image.Transpose.ROTATE_90) + elif rot90 == 180: + img = img.transpose(Image.Transpose.ROTATE_180) + elif rot90 == 270: + img = img.transpose(Image.Transpose.ROTATE_270) + return img + + results = [] + for (rect1, rect2), path in zip(crops, paths): + crop1 = prepare_crop(img1, rect1) + crop2 = prepare_crop(img2, rect2, rot) + + fullpath1 = os.path.join(args.output_dir, path+'_1.jpg') + fullpath2 = os.path.join(args.output_dir, path+'_2.jpg') + os.makedirs(os.path.dirname(fullpath1), exist_ok=True) + + assert not os.path.isfile(fullpath1), fullpath1 + assert not os.path.isfile(fullpath2), fullpath2 + crop1.save(fullpath1) + crop2.save(fullpath2) + results.append(path) + + return results + + +if __name__ == '__main__': + args = arg_parser().parse_args() + main(args) + diff --git a/modules/croco/datasets/habitat_sim/README.MD b/modules/croco/datasets/habitat_sim/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..a505781ff9eb91bce7f1d189e848f8ba1c560940 --- /dev/null +++ b/modules/croco/datasets/habitat_sim/README.MD @@ -0,0 +1,76 @@ +## Generation of synthetic image pairs using Habitat-Sim + +These instructions allow to generate pre-training pairs from the Habitat simulator. +As we did not save metadata of the pairs used in the original paper, they are not strictly the same, but these data use the same setting and are equivalent. + +### Download Habitat-Sim scenes +Download Habitat-Sim scenes: +- Download links can be found here: https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md +- We used scenes from the HM3D, habitat-test-scenes, Replica, ReplicaCad and ScanNet datasets. +- Please put the scenes under `./data/habitat-sim-data/scene_datasets/` following the structure below, or update manually paths in `paths.py`. +``` +./data/ +└──habitat-sim-data/ + └──scene_datasets/ + ├──hm3d/ + ├──gibson/ + ├──habitat-test-scenes/ + ├──replica_cad_baked_lighting/ + ├──replica_cad/ + ├──ReplicaDataset/ + └──scannet/ +``` + +### Image pairs generation +We provide metadata to generate reproducible images pairs for pretraining and validation. +Experiments described in the paper used similar data, but whose generation was not reproducible at the time. + +Specifications: +- 256x256 resolution images, with 60 degrees field of view . +- Up to 1000 image pairs per scene. +- Number of scenes considered/number of images pairs per dataset: + - Scannet: 1097 scenes / 985 209 pairs + - HM3D: + - hm3d/train: 800 / 800k pairs + - hm3d/val: 100 scenes / 100k pairs + - hm3d/minival: 10 scenes / 10k pairs + - habitat-test-scenes: 3 scenes / 3k pairs + - replica_cad_baked_lighting: 13 scenes / 13k pairs + +- Scenes from hm3d/val and hm3d/minival pairs were not used for the pre-training but kept for validation purposes. + +Download metadata and extract it: +```bash +mkdir -p data/habitat_release_metadata/ +cd data/habitat_release_metadata/ +wget https://download.europe.naverlabs.com/ComputerVision/CroCo/data/habitat_release_metadata/multiview_habitat_metadata.tar.gz +tar -xvf multiview_habitat_metadata.tar.gz +cd ../.. +# Location of the metadata +METADATA_DIR="./data/habitat_release_metadata/multiview_habitat_metadata" +``` + +Generate image pairs from metadata: +- The following command will print a list of commandlines to generate image pairs for each scene: +```bash +# Target output directory +PAIRS_DATASET_DIR="./data/habitat_release/" +python datasets/habitat_sim/generate_from_metadata_files.py --input_dir=$METADATA_DIR --output_dir=$PAIRS_DATASET_DIR +``` +- One can launch multiple of such commands in parallel e.g. using GNU Parallel: +```bash +python datasets/habitat_sim/generate_from_metadata_files.py --input_dir=$METADATA_DIR --output_dir=$PAIRS_DATASET_DIR | parallel -j 16 +``` + +## Metadata generation + +Image pairs were randomly sampled using the following commands, whose outputs contain randomness and are thus not exactly reproducible: +```bash +# Print commandlines to generate image pairs from the different scenes available. +PAIRS_DATASET_DIR=MY_CUSTOM_PATH +python datasets/habitat_sim/generate_multiview_images.py --list_commands --output_dir=$PAIRS_DATASET_DIR + +# Once a dataset is generated, pack metadata files for reproducibility. +METADATA_DIR=MY_CUSTON_PATH +python datasets/habitat_sim/pack_metadata_files.py $PAIRS_DATASET_DIR $METADATA_DIR +``` diff --git a/modules/croco/datasets/habitat_sim/__init__.py b/modules/croco/datasets/habitat_sim/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/croco/datasets/habitat_sim/generate_from_metadata.py b/modules/croco/datasets/habitat_sim/generate_from_metadata.py new file mode 100644 index 0000000000000000000000000000000000000000..fbe0d399084359495250dc8184671ff498adfbf2 --- /dev/null +++ b/modules/croco/datasets/habitat_sim/generate_from_metadata.py @@ -0,0 +1,92 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +""" +Script to generate image pairs for a given scene reproducing poses provided in a metadata file. +""" +import os +from datasets.habitat_sim.multiview_habitat_sim_generator import MultiviewHabitatSimGenerator +from datasets.habitat_sim.paths import SCENES_DATASET +import argparse +import quaternion +import PIL.Image +import cv2 +import json +from tqdm import tqdm + +def generate_multiview_images_from_metadata(metadata_filename, + output_dir, + overload_params = dict(), + scene_datasets_paths=None, + exist_ok=False): + """ + Generate images from a metadata file for reproducibility purposes. + """ + # Reorder paths by decreasing label length, to avoid collisions when testing if a string by such label + if scene_datasets_paths is not None: + scene_datasets_paths = dict(sorted(scene_datasets_paths.items(), key= lambda x: len(x[0]), reverse=True)) + + with open(metadata_filename, 'r') as f: + input_metadata = json.load(f) + metadata = dict() + for key, value in input_metadata.items(): + # Optionally replace some paths + if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "": + if scene_datasets_paths is not None: + for dataset_label, dataset_path in scene_datasets_paths.items(): + if value.startswith(dataset_label): + value = os.path.normpath(os.path.join(dataset_path, os.path.relpath(value, dataset_label))) + break + metadata[key] = value + + # Overload some parameters + for key, value in overload_params.items(): + metadata[key] = value + + generation_entries = dict([(key, value) for key, value in metadata.items() if not (key in ('multiviews', 'output_dir', 'generate_depth'))]) + generate_depth = metadata["generate_depth"] + + os.makedirs(output_dir, exist_ok=exist_ok) + + generator = MultiviewHabitatSimGenerator(**generation_entries) + + # Generate views + for idx_label, data in tqdm(metadata['multiviews'].items()): + positions = data["positions"] + orientations = data["orientations"] + n = len(positions) + for oidx in range(n): + observation = generator.render_viewpoint(positions[oidx], quaternion.from_float_array(orientations[oidx])) + observation_label = f"{oidx + 1}" # Leonid is indexing starting from 1 + # Color image saved using PIL + img = PIL.Image.fromarray(observation['color'][:,:,:3]) + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}.jpeg") + img.save(filename) + if generate_depth: + # Depth image as EXR file + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_depth.exr") + cv2.imwrite(filename, observation['depth'], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) + # Camera parameters + camera_params = dict([(key, observation[key].tolist()) for key in ("camera_intrinsics", "R_cam2world", "t_cam2world")]) + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_camera_params.json") + with open(filename, "w") as f: + json.dump(camera_params, f) + # Save metadata + with open(os.path.join(output_dir, "metadata.json"), "w") as f: + json.dump(metadata, f) + + generator.close() + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--metadata_filename", required=True) + parser.add_argument("--output_dir", required=True) + args = parser.parse_args() + + generate_multiview_images_from_metadata(metadata_filename=args.metadata_filename, + output_dir=args.output_dir, + scene_datasets_paths=SCENES_DATASET, + overload_params=dict(), + exist_ok=True) + + \ No newline at end of file diff --git a/modules/croco/datasets/habitat_sim/generate_from_metadata_files.py b/modules/croco/datasets/habitat_sim/generate_from_metadata_files.py new file mode 100644 index 0000000000000000000000000000000000000000..962ef849d8c31397b8622df4f2d9140175d78873 --- /dev/null +++ b/modules/croco/datasets/habitat_sim/generate_from_metadata_files.py @@ -0,0 +1,27 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +""" +Script generating commandlines to generate image pairs from metadata files. +""" +import os +import glob +from tqdm import tqdm +import argparse + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--input_dir", required=True) + parser.add_argument("--output_dir", required=True) + parser.add_argument("--prefix", default="", help="Commanline prefix, useful e.g. to setup environment.") + args = parser.parse_args() + + input_metadata_filenames = glob.iglob(f"{args.input_dir}/**/metadata.json", recursive=True) + + for metadata_filename in tqdm(input_metadata_filenames): + output_dir = os.path.join(args.output_dir, os.path.relpath(os.path.dirname(metadata_filename), args.input_dir)) + # Do not process the scene if the metadata file already exists + if os.path.exists(os.path.join(output_dir, "metadata.json")): + continue + commandline = f"{args.prefix}python datasets/habitat_sim/generate_from_metadata.py --metadata_filename={metadata_filename} --output_dir={output_dir}" + print(commandline) diff --git a/modules/croco/datasets/habitat_sim/generate_multiview_images.py b/modules/croco/datasets/habitat_sim/generate_multiview_images.py new file mode 100644 index 0000000000000000000000000000000000000000..421d49a1696474415940493296b3f2d982398850 --- /dev/null +++ b/modules/croco/datasets/habitat_sim/generate_multiview_images.py @@ -0,0 +1,177 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import os +from tqdm import tqdm +import argparse +import PIL.Image +import numpy as np +import json +from datasets.habitat_sim.multiview_habitat_sim_generator import MultiviewHabitatSimGenerator, NoNaviguableSpaceError +from datasets.habitat_sim.paths import list_scenes_available +import cv2 +import quaternion +import shutil + +def generate_multiview_images_for_scene(scene_dataset_config_file, + scene, + navmesh, + output_dir, + views_count, + size, + exist_ok=False, + generate_depth=False, + **kwargs): + """ + Generate tuples of overlapping views for a given scene. + generate_depth: generate depth images and camera parameters. + """ + if os.path.exists(output_dir) and not exist_ok: + print(f"Scene {scene}: data already generated. Ignoring generation.") + return + try: + print(f"Scene {scene}: {size} multiview acquisitions to generate...") + os.makedirs(output_dir, exist_ok=exist_ok) + + metadata_filename = os.path.join(output_dir, "metadata.json") + + metadata_template = dict(scene_dataset_config_file=scene_dataset_config_file, + scene=scene, + navmesh=navmesh, + views_count=views_count, + size=size, + generate_depth=generate_depth, + **kwargs) + metadata_template["multiviews"] = dict() + + if os.path.exists(metadata_filename): + print("Metadata file already exists:", metadata_filename) + print("Loading already generated metadata file...") + with open(metadata_filename, "r") as f: + metadata = json.load(f) + + for key in metadata_template.keys(): + if key != "multiviews": + assert metadata_template[key] == metadata[key], f"existing file is inconsistent with the input parameters:\nKey: {key}\nmetadata: {metadata[key]}\ntemplate: {metadata_template[key]}." + else: + print("No temporary file found. Starting generation from scratch...") + metadata = metadata_template + + starting_id = len(metadata["multiviews"]) + print(f"Starting generation from index {starting_id}/{size}...") + if starting_id >= size: + print("Generation already done.") + return + + generator = MultiviewHabitatSimGenerator(scene_dataset_config_file=scene_dataset_config_file, + scene=scene, + navmesh=navmesh, + views_count = views_count, + size = size, + **kwargs) + + for idx in tqdm(range(starting_id, size)): + # Generate / re-generate the observations + try: + data = generator[idx] + observations = data["observations"] + positions = data["positions"] + orientations = data["orientations"] + + idx_label = f"{idx:08}" + for oidx, observation in enumerate(observations): + observation_label = f"{oidx + 1}" # Leonid is indexing starting from 1 + # Color image saved using PIL + img = PIL.Image.fromarray(observation['color'][:,:,:3]) + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}.jpeg") + img.save(filename) + if generate_depth: + # Depth image as EXR file + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_depth.exr") + cv2.imwrite(filename, observation['depth'], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) + # Camera parameters + camera_params = dict([(key, observation[key].tolist()) for key in ("camera_intrinsics", "R_cam2world", "t_cam2world")]) + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_camera_params.json") + with open(filename, "w") as f: + json.dump(camera_params, f) + metadata["multiviews"][idx_label] = {"positions": positions.tolist(), + "orientations": orientations.tolist(), + "covisibility_ratios": data["covisibility_ratios"].tolist(), + "valid_fractions": data["valid_fractions"].tolist(), + "pairwise_visibility_ratios": data["pairwise_visibility_ratios"].tolist()} + except RecursionError: + print("Recursion error: unable to sample observations for this scene. We will stop there.") + break + + # Regularly save a temporary metadata file, in case we need to restart the generation + if idx % 10 == 0: + with open(metadata_filename, "w") as f: + json.dump(metadata, f) + + # Save metadata + with open(metadata_filename, "w") as f: + json.dump(metadata, f) + + generator.close() + except NoNaviguableSpaceError: + pass + +def create_commandline(scene_data, generate_depth, exist_ok=False): + """ + Create a commandline string to generate a scene. + """ + def my_formatting(val): + if val is None or val == "": + return '""' + else: + return val + commandline = f"""python {__file__} --scene {my_formatting(scene_data.scene)} + --scene_dataset_config_file {my_formatting(scene_data.scene_dataset_config_file)} + --navmesh {my_formatting(scene_data.navmesh)} + --output_dir {my_formatting(scene_data.output_dir)} + --generate_depth {int(generate_depth)} + --exist_ok {int(exist_ok)} + """ + commandline = " ".join(commandline.split()) + return commandline + +if __name__ == "__main__": + os.umask(2) + + parser = argparse.ArgumentParser(description="""Example of use -- listing commands to generate data for scenes available: + > python datasets/habitat_sim/generate_multiview_habitat_images.py --list_commands + """) + + parser.add_argument("--output_dir", type=str, required=True) + parser.add_argument("--list_commands", action='store_true', help="list commandlines to run if true") + parser.add_argument("--scene", type=str, default="") + parser.add_argument("--scene_dataset_config_file", type=str, default="") + parser.add_argument("--navmesh", type=str, default="") + + parser.add_argument("--generate_depth", type=int, default=1) + parser.add_argument("--exist_ok", type=int, default=0) + + kwargs = dict(resolution=(256,256), hfov=60, views_count = 2, size=1000) + + args = parser.parse_args() + generate_depth=bool(args.generate_depth) + exist_ok = bool(args.exist_ok) + + if args.list_commands: + # Listing scenes available... + scenes_data = list_scenes_available(base_output_dir=args.output_dir) + + for scene_data in scenes_data: + print(create_commandline(scene_data, generate_depth=generate_depth, exist_ok=exist_ok)) + else: + if args.scene == "" or args.output_dir == "": + print("Missing scene or output dir argument!") + print(parser.format_help()) + else: + generate_multiview_images_for_scene(scene=args.scene, + scene_dataset_config_file = args.scene_dataset_config_file, + navmesh = args.navmesh, + output_dir = args.output_dir, + exist_ok=exist_ok, + generate_depth=generate_depth, + **kwargs) \ No newline at end of file diff --git a/modules/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py b/modules/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..91e5f923b836a645caf5d8e4aacc425047e3c144 --- /dev/null +++ b/modules/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py @@ -0,0 +1,390 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import os +import numpy as np +import quaternion +import habitat_sim +import json +from sklearn.neighbors import NearestNeighbors +import cv2 + +# OpenCV to habitat camera convention transformation +R_OPENCV2HABITAT = np.stack((habitat_sim.geo.RIGHT, -habitat_sim.geo.UP, habitat_sim.geo.FRONT), axis=0) +R_HABITAT2OPENCV = R_OPENCV2HABITAT.T +DEG2RAD = np.pi / 180 + +def compute_camera_intrinsics(height, width, hfov): + f = width/2 / np.tan(hfov/2 * np.pi/180) + cu, cv = width/2, height/2 + return f, cu, cv + +def compute_camera_pose_opencv_convention(camera_position, camera_orientation): + R_cam2world = quaternion.as_rotation_matrix(camera_orientation) @ R_OPENCV2HABITAT + t_cam2world = np.asarray(camera_position) + return R_cam2world, t_cam2world + +def compute_pointmap(depthmap, hfov): + """ Compute a HxWx3 pointmap in camera frame from a HxW depth map.""" + height, width = depthmap.shape + f, cu, cv = compute_camera_intrinsics(height, width, hfov) + # Cast depth map to point + z_cam = depthmap + u, v = np.meshgrid(range(width), range(height)) + x_cam = (u - cu) / f * z_cam + y_cam = (v - cv) / f * z_cam + X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1) + return X_cam + +def compute_pointcloud(depthmap, hfov, camera_position, camera_rotation): + """Return a 3D point cloud corresponding to valid pixels of the depth map""" + R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_position, camera_rotation) + + X_cam = compute_pointmap(depthmap=depthmap, hfov=hfov) + valid_mask = (X_cam[:,:,2] != 0.0) + + X_cam = X_cam.reshape(-1, 3)[valid_mask.flatten()] + X_world = X_cam @ R_cam2world.T + t_cam2world.reshape(1, 3) + return X_world + +def compute_pointcloud_overlaps_scikit(pointcloud1, pointcloud2, distance_threshold, compute_symmetric=False): + """ + Compute 'overlapping' metrics based on a distance threshold between two point clouds. + """ + nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud2) + distances, indices = nbrs.kneighbors(pointcloud1) + intersection1 = np.count_nonzero(distances.flatten() < distance_threshold) + + data = {"intersection1": intersection1, + "size1": len(pointcloud1)} + if compute_symmetric: + nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud1) + distances, indices = nbrs.kneighbors(pointcloud2) + intersection2 = np.count_nonzero(distances.flatten() < distance_threshold) + data["intersection2"] = intersection2 + data["size2"] = len(pointcloud2) + + return data + +def _append_camera_parameters(observation, hfov, camera_location, camera_rotation): + """ + Add camera parameters to the observation dictionnary produced by Habitat-Sim + In-place modifications. + """ + R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_location, camera_rotation) + height, width = observation['depth'].shape + f, cu, cv = compute_camera_intrinsics(height, width, hfov) + K = np.asarray([[f, 0, cu], + [0, f, cv], + [0, 0, 1.0]]) + observation["camera_intrinsics"] = K + observation["t_cam2world"] = t_cam2world + observation["R_cam2world"] = R_cam2world + +def look_at(eye, center, up, return_cam2world=True): + """ + Return camera pose looking at a given center point. + Analogous of gluLookAt function, using OpenCV camera convention. + """ + z = center - eye + z /= np.linalg.norm(z, axis=-1, keepdims=True) + y = -up + y = y - np.sum(y * z, axis=-1, keepdims=True) * z + y /= np.linalg.norm(y, axis=-1, keepdims=True) + x = np.cross(y, z, axis=-1) + + if return_cam2world: + R = np.stack((x, y, z), axis=-1) + t = eye + else: + # World to camera transformation + # Transposed matrix + R = np.stack((x, y, z), axis=-2) + t = - np.einsum('...ij, ...j', R, eye) + return R, t + +def look_at_for_habitat(eye, center, up, return_cam2world=True): + R, t = look_at(eye, center, up) + orientation = quaternion.from_rotation_matrix(R @ R_OPENCV2HABITAT.T) + return orientation, t + +def generate_orientation_noise(pan_range, tilt_range, roll_range): + return (quaternion.from_rotation_vector(np.random.uniform(*pan_range) * DEG2RAD * habitat_sim.geo.UP) + * quaternion.from_rotation_vector(np.random.uniform(*tilt_range) * DEG2RAD * habitat_sim.geo.RIGHT) + * quaternion.from_rotation_vector(np.random.uniform(*roll_range) * DEG2RAD * habitat_sim.geo.FRONT)) + + +class NoNaviguableSpaceError(RuntimeError): + def __init__(self, *args): + super().__init__(*args) + +class MultiviewHabitatSimGenerator: + def __init__(self, + scene, + navmesh, + scene_dataset_config_file, + resolution = (240, 320), + views_count=2, + hfov = 60, + gpu_id = 0, + size = 10000, + minimum_covisibility = 0.5, + transform = None): + self.scene = scene + self.navmesh = navmesh + self.scene_dataset_config_file = scene_dataset_config_file + self.resolution = resolution + self.views_count = views_count + assert(self.views_count >= 1) + self.hfov = hfov + self.gpu_id = gpu_id + self.size = size + self.transform = transform + + # Noise added to camera orientation + self.pan_range = (-3, 3) + self.tilt_range = (-10, 10) + self.roll_range = (-5, 5) + + # Height range to sample cameras + self.height_range = (1.2, 1.8) + + # Random steps between the camera views + self.random_steps_count = 5 + self.random_step_variance = 2.0 + + # Minimum fraction of the scene which should be valid (well defined depth) + self.minimum_valid_fraction = 0.7 + + # Distance threshold to see to select pairs + self.distance_threshold = 0.05 + # Minimum IoU of a view point cloud with respect to the reference view to be kept. + self.minimum_covisibility = minimum_covisibility + + # Maximum number of retries. + self.max_attempts_count = 100 + + self.seed = None + self._lazy_initialization() + + def _lazy_initialization(self): + # Lazy random seeding and instantiation of the simulator to deal with multiprocessing properly + if self.seed == None: + # Re-seed numpy generator + np.random.seed() + self.seed = np.random.randint(2**32-1) + sim_cfg = habitat_sim.SimulatorConfiguration() + sim_cfg.scene_id = self.scene + if self.scene_dataset_config_file is not None and self.scene_dataset_config_file != "": + sim_cfg.scene_dataset_config_file = self.scene_dataset_config_file + sim_cfg.random_seed = self.seed + sim_cfg.load_semantic_mesh = False + sim_cfg.gpu_device_id = self.gpu_id + + depth_sensor_spec = habitat_sim.CameraSensorSpec() + depth_sensor_spec.uuid = "depth" + depth_sensor_spec.sensor_type = habitat_sim.SensorType.DEPTH + depth_sensor_spec.resolution = self.resolution + depth_sensor_spec.hfov = self.hfov + depth_sensor_spec.position = [0.0, 0.0, 0] + depth_sensor_spec.orientation + + rgb_sensor_spec = habitat_sim.CameraSensorSpec() + rgb_sensor_spec.uuid = "color" + rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR + rgb_sensor_spec.resolution = self.resolution + rgb_sensor_spec.hfov = self.hfov + rgb_sensor_spec.position = [0.0, 0.0, 0] + agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec, depth_sensor_spec]) + + cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg]) + self.sim = habitat_sim.Simulator(cfg) + if self.navmesh is not None and self.navmesh != "": + # Use pre-computed navmesh when available (usually better than those generated automatically) + self.sim.pathfinder.load_nav_mesh(self.navmesh) + + if not self.sim.pathfinder.is_loaded: + # Try to compute a navmesh + navmesh_settings = habitat_sim.NavMeshSettings() + navmesh_settings.set_defaults() + self.sim.recompute_navmesh(self.sim.pathfinder, navmesh_settings, True) + + # Ensure that the navmesh is not empty + if not self.sim.pathfinder.is_loaded: + raise NoNaviguableSpaceError(f"No naviguable location (scene: {self.scene} -- navmesh: {self.navmesh})") + + self.agent = self.sim.initialize_agent(agent_id=0) + + def close(self): + self.sim.close() + + def __del__(self): + self.sim.close() + + def __len__(self): + return self.size + + def sample_random_viewpoint(self): + """ Sample a random viewpoint using the navmesh """ + nav_point = self.sim.pathfinder.get_random_navigable_point() + + # Sample a random viewpoint height + viewpoint_height = np.random.uniform(*self.height_range) + viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP + viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(0, 2 * np.pi) * habitat_sim.geo.UP) * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range) + return viewpoint_position, viewpoint_orientation, nav_point + + def sample_other_random_viewpoint(self, observed_point, nav_point): + """ Sample a random viewpoint close to an existing one, using the navmesh and a reference observed point.""" + other_nav_point = nav_point + + walk_directions = self.random_step_variance * np.asarray([1,0,1]) + for i in range(self.random_steps_count): + temp = self.sim.pathfinder.snap_point(other_nav_point + walk_directions * np.random.normal(size=3)) + # Snapping may return nan when it fails + if not np.isnan(temp[0]): + other_nav_point = temp + + other_viewpoint_height = np.random.uniform(*self.height_range) + other_viewpoint_position = other_nav_point + other_viewpoint_height * habitat_sim.geo.UP + + # Set viewing direction towards the central point + rotation, position = look_at_for_habitat(eye=other_viewpoint_position, center=observed_point, up=habitat_sim.geo.UP, return_cam2world=True) + rotation = rotation * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range) + return position, rotation, other_nav_point + + def is_other_pointcloud_overlapping(self, ref_pointcloud, other_pointcloud): + """ Check if a viewpoint is valid and overlaps significantly with a reference one. """ + # Observation + pixels_count = self.resolution[0] * self.resolution[1] + valid_fraction = len(other_pointcloud) / pixels_count + assert valid_fraction <= 1.0 and valid_fraction >= 0.0 + overlap = compute_pointcloud_overlaps_scikit(ref_pointcloud, other_pointcloud, self.distance_threshold, compute_symmetric=True) + covisibility = min(overlap["intersection1"] / pixels_count, overlap["intersection2"] / pixels_count) + is_valid = (valid_fraction >= self.minimum_valid_fraction) and (covisibility >= self.minimum_covisibility) + return is_valid, valid_fraction, covisibility + + def is_other_viewpoint_overlapping(self, ref_pointcloud, observation, position, rotation): + """ Check if a viewpoint is valid and overlaps significantly with a reference one. """ + # Observation + other_pointcloud = compute_pointcloud(observation['depth'], self.hfov, position, rotation) + return self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud) + + def render_viewpoint(self, viewpoint_position, viewpoint_orientation): + agent_state = habitat_sim.AgentState() + agent_state.position = viewpoint_position + agent_state.rotation = viewpoint_orientation + self.agent.set_state(agent_state) + viewpoint_observations = self.sim.get_sensor_observations(agent_ids=0) + _append_camera_parameters(viewpoint_observations, self.hfov, viewpoint_position, viewpoint_orientation) + return viewpoint_observations + + def __getitem__(self, useless_idx): + ref_position, ref_orientation, nav_point = self.sample_random_viewpoint() + ref_observations = self.render_viewpoint(ref_position, ref_orientation) + # Extract point cloud + ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov, + camera_position=ref_position, camera_rotation=ref_orientation) + + pixels_count = self.resolution[0] * self.resolution[1] + ref_valid_fraction = len(ref_pointcloud) / pixels_count + assert ref_valid_fraction <= 1.0 and ref_valid_fraction >= 0.0 + if ref_valid_fraction < self.minimum_valid_fraction: + # This should produce a recursion error at some point when something is very wrong. + return self[0] + # Pick an reference observed point in the point cloud + observed_point = np.mean(ref_pointcloud, axis=0) + + # Add the first image as reference + viewpoints_observations = [ref_observations] + viewpoints_covisibility = [ref_valid_fraction] + viewpoints_positions = [ref_position] + viewpoints_orientations = [quaternion.as_float_array(ref_orientation)] + viewpoints_clouds = [ref_pointcloud] + viewpoints_valid_fractions = [ref_valid_fraction] + + for _ in range(self.views_count - 1): + # Generate an other viewpoint using some dummy random walk + successful_sampling = False + for sampling_attempt in range(self.max_attempts_count): + position, rotation, _ = self.sample_other_random_viewpoint(observed_point, nav_point) + # Observation + other_viewpoint_observations = self.render_viewpoint(position, rotation) + other_pointcloud = compute_pointcloud(other_viewpoint_observations['depth'], self.hfov, position, rotation) + + is_valid, valid_fraction, covisibility = self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud) + if is_valid: + successful_sampling = True + break + if not successful_sampling: + print("WARNING: Maximum number of attempts reached.") + # Dirty hack, try using a novel original viewpoint + return self[0] + viewpoints_observations.append(other_viewpoint_observations) + viewpoints_covisibility.append(covisibility) + viewpoints_positions.append(position) + viewpoints_orientations.append(quaternion.as_float_array(rotation)) # WXYZ convention for the quaternion encoding. + viewpoints_clouds.append(other_pointcloud) + viewpoints_valid_fractions.append(valid_fraction) + + # Estimate relations between all pairs of images + pairwise_visibility_ratios = np.ones((len(viewpoints_observations), len(viewpoints_observations))) + for i in range(len(viewpoints_observations)): + pairwise_visibility_ratios[i,i] = viewpoints_valid_fractions[i] + for j in range(i+1, len(viewpoints_observations)): + overlap = compute_pointcloud_overlaps_scikit(viewpoints_clouds[i], viewpoints_clouds[j], self.distance_threshold, compute_symmetric=True) + pairwise_visibility_ratios[i,j] = overlap['intersection1'] / pixels_count + pairwise_visibility_ratios[j,i] = overlap['intersection2'] / pixels_count + + # IoU is relative to the image 0 + data = {"observations": viewpoints_observations, + "positions": np.asarray(viewpoints_positions), + "orientations": np.asarray(viewpoints_orientations), + "covisibility_ratios": np.asarray(viewpoints_covisibility), + "valid_fractions": np.asarray(viewpoints_valid_fractions, dtype=float), + "pairwise_visibility_ratios": np.asarray(pairwise_visibility_ratios, dtype=float), + } + + if self.transform is not None: + data = self.transform(data) + return data + + def generate_random_spiral_trajectory(self, images_count = 100, max_radius=0.5, half_turns=5, use_constant_orientation=False): + """ + Return a list of images corresponding to a spiral trajectory from a random starting point. + Useful to generate nice visualisations. + Use an even number of half turns to get a nice "C1-continuous" loop effect + """ + ref_position, ref_orientation, navpoint = self.sample_random_viewpoint() + ref_observations = self.render_viewpoint(ref_position, ref_orientation) + ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov, + camera_position=ref_position, camera_rotation=ref_orientation) + pixels_count = self.resolution[0] * self.resolution[1] + if len(ref_pointcloud) / pixels_count < self.minimum_valid_fraction: + # Dirty hack: ensure that the valid part of the image is significant + return self.generate_random_spiral_trajectory(images_count, max_radius, half_turns, use_constant_orientation) + + # Pick an observed point in the point cloud + observed_point = np.mean(ref_pointcloud, axis=0) + ref_R, ref_t = compute_camera_pose_opencv_convention(ref_position, ref_orientation) + + images = [] + is_valid = [] + # Spiral trajectory, use_constant orientation + for i, alpha in enumerate(np.linspace(0, 1, images_count)): + r = max_radius * np.abs(np.sin(alpha * np.pi)) # Increase then decrease the radius + theta = alpha * half_turns * np.pi + x = r * np.cos(theta) + y = r * np.sin(theta) + z = 0.0 + position = ref_position + (ref_R @ np.asarray([x, y, z]).reshape(3,1)).flatten() + if use_constant_orientation: + orientation = ref_orientation + else: + # trajectory looking at a mean point in front of the ref observation + orientation, position = look_at_for_habitat(eye=position, center=observed_point, up=habitat_sim.geo.UP) + observations = self.render_viewpoint(position, orientation) + images.append(observations['color'][...,:3]) + _is_valid, valid_fraction, iou = self.is_other_viewpoint_overlapping(ref_pointcloud, observations, position, orientation) + is_valid.append(_is_valid) + return images, np.all(is_valid) \ No newline at end of file diff --git a/modules/croco/datasets/habitat_sim/pack_metadata_files.py b/modules/croco/datasets/habitat_sim/pack_metadata_files.py new file mode 100644 index 0000000000000000000000000000000000000000..10672a01f7dd615d3b4df37781f7f6f97e753ba6 --- /dev/null +++ b/modules/croco/datasets/habitat_sim/pack_metadata_files.py @@ -0,0 +1,69 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +""" +Utility script to pack metadata files of the dataset in order to be able to re-generate it elsewhere. +""" +import os +import glob +from tqdm import tqdm +import shutil +import json +from datasets.habitat_sim.paths import * +import argparse +import collections + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("input_dir") + parser.add_argument("output_dir") + args = parser.parse_args() + + input_dirname = args.input_dir + output_dirname = args.output_dir + + input_metadata_filenames = glob.iglob(f"{input_dirname}/**/metadata.json", recursive=True) + + images_count = collections.defaultdict(lambda : 0) + + os.makedirs(output_dirname) + for input_filename in tqdm(input_metadata_filenames): + # Ignore empty files + with open(input_filename, "r") as f: + original_metadata = json.load(f) + if "multiviews" not in original_metadata or len(original_metadata["multiviews"]) == 0: + print("No views in", input_filename) + continue + + relpath = os.path.relpath(input_filename, input_dirname) + print(relpath) + + # Copy metadata, while replacing scene paths by generic keys depending on the dataset, for portability. + # Data paths are sorted by decreasing length to avoid potential bugs due to paths starting by the same string pattern. + scenes_dataset_paths = dict(sorted(SCENES_DATASET.items(), key=lambda x: len(x[1]), reverse=True)) + metadata = dict() + for key, value in original_metadata.items(): + if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "": + known_path = False + for dataset, dataset_path in scenes_dataset_paths.items(): + if value.startswith(dataset_path): + value = os.path.join(dataset, os.path.relpath(value, dataset_path)) + known_path = True + break + if not known_path: + raise KeyError("Unknown path:" + value) + metadata[key] = value + + # Compile some general statistics while packing data + scene_split = metadata["scene"].split("/") + upper_level = "/".join(scene_split[:2]) if scene_split[0] == "hm3d" else scene_split[0] + images_count[upper_level] += len(metadata["multiviews"]) + + output_filename = os.path.join(output_dirname, relpath) + os.makedirs(os.path.dirname(output_filename), exist_ok=True) + with open(output_filename, "w") as f: + json.dump(metadata, f) + + # Print statistics + print("Images count:") + for upper_level, count in images_count.items(): + print(f"- {upper_level}: {count}") \ No newline at end of file diff --git a/modules/croco/datasets/habitat_sim/paths.py b/modules/croco/datasets/habitat_sim/paths.py new file mode 100644 index 0000000000000000000000000000000000000000..4d63b5fa29c274ddfeae084734a35ba66d7edee8 --- /dev/null +++ b/modules/croco/datasets/habitat_sim/paths.py @@ -0,0 +1,129 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +""" +Paths to Habitat-Sim scenes +""" + +import os +import json +import collections +from tqdm import tqdm + + +# Hardcoded path to the different scene datasets +SCENES_DATASET = { + "hm3d": "./data/habitat-sim-data/scene_datasets/hm3d/", + "gibson": "./data/habitat-sim-data/scene_datasets/gibson/", + "habitat-test-scenes": "./data/habitat-sim/scene_datasets/habitat-test-scenes/", + "replica_cad_baked_lighting": "./data/habitat-sim/scene_datasets/replica_cad_baked_lighting/", + "replica_cad": "./data/habitat-sim/scene_datasets/replica_cad/", + "replica": "./data/habitat-sim/scene_datasets/ReplicaDataset/", + "scannet": "./data/habitat-sim/scene_datasets/scannet/" +} + +SceneData = collections.namedtuple("SceneData", ["scene_dataset_config_file", "scene", "navmesh", "output_dir"]) + +def list_replicacad_scenes(base_output_dir, base_path=SCENES_DATASET["replica_cad"]): + scene_dataset_config_file = os.path.join(base_path, "replicaCAD.scene_dataset_config.json") + scenes = [f"apt_{i}" for i in range(6)] + ["empty_stage"] + navmeshes = [f"navmeshes/apt_{i}_static_furniture.navmesh" for i in range(6)] + ["empty_stage.navmesh"] + scenes_data = [] + for idx in range(len(scenes)): + output_dir = os.path.join(base_output_dir, "ReplicaCAD", scenes[idx]) + # Add scene + data = SceneData(scene_dataset_config_file=scene_dataset_config_file, + scene = scenes[idx] + ".scene_instance.json", + navmesh = os.path.join(base_path, navmeshes[idx]), + output_dir = output_dir) + scenes_data.append(data) + return scenes_data + +def list_replica_cad_baked_lighting_scenes(base_output_dir, base_path=SCENES_DATASET["replica_cad_baked_lighting"]): + scene_dataset_config_file = os.path.join(base_path, "replicaCAD_baked.scene_dataset_config.json") + scenes = sum([[f"Baked_sc{i}_staging_{j:02}" for i in range(5)] for j in range(21)], []) + navmeshes = ""#[f"navmeshes/apt_{i}_static_furniture.navmesh" for i in range(6)] + ["empty_stage.navmesh"] + scenes_data = [] + for idx in range(len(scenes)): + output_dir = os.path.join(base_output_dir, "replica_cad_baked_lighting", scenes[idx]) + data = SceneData(scene_dataset_config_file=scene_dataset_config_file, + scene = scenes[idx], + navmesh = "", + output_dir = output_dir) + scenes_data.append(data) + return scenes_data + +def list_replica_scenes(base_output_dir, base_path): + scenes_data = [] + for scene_id in os.listdir(base_path): + scene = os.path.join(base_path, scene_id, "mesh.ply") + navmesh = os.path.join(base_path, scene_id, "habitat/mesh_preseg_semantic.navmesh") # Not sure if I should use it + scene_dataset_config_file = "" + output_dir = os.path.join(base_output_dir, scene_id) + # Add scene only if it does not exist already, or if exist_ok + data = SceneData(scene_dataset_config_file = scene_dataset_config_file, + scene = scene, + navmesh = navmesh, + output_dir = output_dir) + scenes_data.append(data) + return scenes_data + + +def list_scenes(base_output_dir, base_path): + """ + Generic method iterating through a base_path folder to find scenes. + """ + scenes_data = [] + for root, dirs, files in os.walk(base_path, followlinks=True): + folder_scenes_data = [] + for file in files: + name, ext = os.path.splitext(file) + if ext == ".glb": + scene = os.path.join(root, name + ".glb") + navmesh = os.path.join(root, name + ".navmesh") + if not os.path.exists(navmesh): + navmesh = "" + relpath = os.path.relpath(root, base_path) + output_dir = os.path.abspath(os.path.join(base_output_dir, relpath, name)) + data = SceneData(scene_dataset_config_file="", + scene = scene, + navmesh = navmesh, + output_dir = output_dir) + folder_scenes_data.append(data) + + # Specific check for HM3D: + # When two meshesxxxx.basis.glb and xxxx.glb are present, use the 'basis' version. + basis_scenes = [data.scene[:-len(".basis.glb")] for data in folder_scenes_data if data.scene.endswith(".basis.glb")] + if len(basis_scenes) != 0: + folder_scenes_data = [data for data in folder_scenes_data if not (data.scene[:-len(".glb")] in basis_scenes)] + + scenes_data.extend(folder_scenes_data) + return scenes_data + +def list_scenes_available(base_output_dir, scenes_dataset_paths=SCENES_DATASET): + scenes_data = [] + + # HM3D + for split in ("minival", "train", "val", "examples"): + scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, f"hm3d/{split}/"), + base_path=f"{scenes_dataset_paths['hm3d']}/{split}") + + # Gibson + scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, "gibson"), + base_path=scenes_dataset_paths["gibson"]) + + # Habitat test scenes (just a few) + scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, "habitat-test-scenes"), + base_path=scenes_dataset_paths["habitat-test-scenes"]) + + # ReplicaCAD (baked lightning) + scenes_data += list_replica_cad_baked_lighting_scenes(base_output_dir=base_output_dir) + + # ScanNet + scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, "scannet"), + base_path=scenes_dataset_paths["scannet"]) + + # Replica + list_replica_scenes(base_output_dir=os.path.join(base_output_dir, "replica"), + base_path=scenes_dataset_paths["replica"]) + return scenes_data diff --git a/modules/croco/datasets/pairs_dataset.py b/modules/croco/datasets/pairs_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..9f107526b34e154d9013a9a7a0bde3d5ff6f581c --- /dev/null +++ b/modules/croco/datasets/pairs_dataset.py @@ -0,0 +1,109 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import os +from torch.utils.data import Dataset +from PIL import Image + +from datasets.transforms import get_pair_transforms + +def load_image(impath): + return Image.open(impath) + +def load_pairs_from_cache_file(fname, root=''): + assert os.path.isfile(fname), "cannot parse pairs from {:s}, file does not exist".format(fname) + with open(fname, 'r') as fid: + lines = fid.read().strip().splitlines() + pairs = [ (os.path.join(root,l.split()[0]), os.path.join(root,l.split()[1])) for l in lines] + return pairs + +def load_pairs_from_list_file(fname, root=''): + assert os.path.isfile(fname), "cannot parse pairs from {:s}, file does not exist".format(fname) + with open(fname, 'r') as fid: + lines = fid.read().strip().splitlines() + pairs = [ (os.path.join(root,l+'_1.jpg'), os.path.join(root,l+'_2.jpg')) for l in lines if not l.startswith('#')] + return pairs + + +def write_cache_file(fname, pairs, root=''): + if len(root)>0: + if not root.endswith('/'): root+='/' + assert os.path.isdir(root) + s = '' + for im1, im2 in pairs: + if len(root)>0: + assert im1.startswith(root), im1 + assert im2.startswith(root), im2 + s += '{:s} {:s}\n'.format(im1[len(root):], im2[len(root):]) + with open(fname, 'w') as fid: + fid.write(s[:-1]) + +def parse_and_cache_all_pairs(dname, data_dir='./data/'): + if dname=='habitat_release': + dirname = os.path.join(data_dir, 'habitat_release') + assert os.path.isdir(dirname), "cannot find folder for habitat_release pairs: "+dirname + cache_file = os.path.join(dirname, 'pairs.txt') + assert not os.path.isfile(cache_file), "cache file already exists: "+cache_file + + print('Parsing pairs for dataset: '+dname) + pairs = [] + for root, dirs, files in os.walk(dirname): + if 'val' in root: continue + dirs.sort() + pairs += [ (os.path.join(root,f), os.path.join(root,f[:-len('_1.jpeg')]+'_2.jpeg')) for f in sorted(files) if f.endswith('_1.jpeg')] + print('Found {:,} pairs'.format(len(pairs))) + print('Writing cache to: '+cache_file) + write_cache_file(cache_file, pairs, root=dirname) + + else: + raise NotImplementedError('Unknown dataset: '+dname) + +def dnames_to_image_pairs(dnames, data_dir='./data/'): + """ + dnames: list of datasets with image pairs, separated by + + """ + all_pairs = [] + for dname in dnames.split('+'): + if dname=='habitat_release': + dirname = os.path.join(data_dir, 'habitat_release') + assert os.path.isdir(dirname), "cannot find folder for habitat_release pairs: "+dirname + cache_file = os.path.join(dirname, 'pairs.txt') + assert os.path.isfile(cache_file), "cannot find cache file for habitat_release pairs, please first create the cache file, see instructions. "+cache_file + pairs = load_pairs_from_cache_file(cache_file, root=dirname) + elif dname in ['ARKitScenes', 'MegaDepth', '3DStreetView', 'IndoorVL']: + dirname = os.path.join(data_dir, dname+'_crops') + assert os.path.isdir(dirname), "cannot find folder for {:s} pairs: {:s}".format(dname, dirname) + list_file = os.path.join(dirname, 'listing.txt') + assert os.path.isfile(list_file), "cannot find list file for {:s} pairs, see instructions. {:s}".format(dname, list_file) + pairs = load_pairs_from_list_file(list_file, root=dirname) + print(' {:s}: {:,} pairs'.format(dname, len(pairs))) + all_pairs += pairs + if '+' in dnames: print(' Total: {:,} pairs'.format(len(all_pairs))) + return all_pairs + + +class PairsDataset(Dataset): + + def __init__(self, dnames, trfs='', totensor=True, normalize=True, data_dir='./data/'): + super().__init__() + self.image_pairs = dnames_to_image_pairs(dnames, data_dir=data_dir) + self.transforms = get_pair_transforms(transform_str=trfs, totensor=totensor, normalize=normalize) + + def __len__(self): + return len(self.image_pairs) + + def __getitem__(self, index): + im1path, im2path = self.image_pairs[index] + im1 = load_image(im1path) + im2 = load_image(im2path) + if self.transforms is not None: im1, im2 = self.transforms(im1, im2) + return im1, im2 + + +if __name__=="__main__": + import argparse + parser = argparse.ArgumentParser(prog="Computing and caching list of pairs for a given dataset") + parser.add_argument('--data_dir', default='./data/', type=str, help="path where data are stored") + parser.add_argument('--dataset', default='habitat_release', type=str, help="name of the dataset") + args = parser.parse_args() + parse_and_cache_all_pairs(dname=args.dataset, data_dir=args.data_dir) diff --git a/modules/croco/datasets/transforms.py b/modules/croco/datasets/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..216bac61f8254fd50e7f269ee80301f250a2d11e --- /dev/null +++ b/modules/croco/datasets/transforms.py @@ -0,0 +1,95 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import torch +import torchvision.transforms +import torchvision.transforms.functional as F + +# "Pair": apply a transform on a pair +# "Both": apply the exact same transform to both images + +class ComposePair(torchvision.transforms.Compose): + def __call__(self, img1, img2): + for t in self.transforms: + img1, img2 = t(img1, img2) + return img1, img2 + +class NormalizeBoth(torchvision.transforms.Normalize): + def forward(self, img1, img2): + img1 = super().forward(img1) + img2 = super().forward(img2) + return img1, img2 + +class ToTensorBoth(torchvision.transforms.ToTensor): + def __call__(self, img1, img2): + img1 = super().__call__(img1) + img2 = super().__call__(img2) + return img1, img2 + +class RandomCropPair(torchvision.transforms.RandomCrop): + # the crop will be intentionally different for the two images with this class + def forward(self, img1, img2): + img1 = super().forward(img1) + img2 = super().forward(img2) + return img1, img2 + +class ColorJitterPair(torchvision.transforms.ColorJitter): + # can be symmetric (same for both images) or assymetric (different jitter params for each image) depending on assymetric_prob + def __init__(self, assymetric_prob, **kwargs): + super().__init__(**kwargs) + self.assymetric_prob = assymetric_prob + def jitter_one(self, img, fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor): + for fn_id in fn_idx: + if fn_id == 0 and brightness_factor is not None: + img = F.adjust_brightness(img, brightness_factor) + elif fn_id == 1 and contrast_factor is not None: + img = F.adjust_contrast(img, contrast_factor) + elif fn_id == 2 and saturation_factor is not None: + img = F.adjust_saturation(img, saturation_factor) + elif fn_id == 3 and hue_factor is not None: + img = F.adjust_hue(img, hue_factor) + return img + + def forward(self, img1, img2): + + fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params( + self.brightness, self.contrast, self.saturation, self.hue + ) + img1 = self.jitter_one(img1, fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor) + if torch.rand(1) < self.assymetric_prob: # assymetric: + fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params( + self.brightness, self.contrast, self.saturation, self.hue + ) + img2 = self.jitter_one(img2, fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor) + return img1, img2 + +def get_pair_transforms(transform_str, totensor=True, normalize=True): + # transform_str is eg crop224+color + trfs = [] + for s in transform_str.split('+'): + if s.startswith('crop'): + size = int(s[len('crop'):]) + trfs.append(RandomCropPair(size)) + elif s=='acolor': + trfs.append(ColorJitterPair(assymetric_prob=1.0, brightness=(0.6, 1.4), contrast=(0.6, 1.4), saturation=(0.6, 1.4), hue=0.0)) + elif s=='': # if transform_str was "" + pass + else: + raise NotImplementedError('Unknown augmentation: '+s) + + if totensor: + trfs.append( ToTensorBoth() ) + if normalize: + trfs.append( NormalizeBoth(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ) + + if len(trfs)==0: + return None + elif len(trfs)==1: + return trfs + else: + return ComposePair(trfs) + + + + + diff --git a/modules/croco/demo.py b/modules/croco/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..91b80ccc5c98c18e20d1ce782511aa824ef28f77 --- /dev/null +++ b/modules/croco/demo.py @@ -0,0 +1,55 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import torch +from models.croco import CroCoNet +from PIL import Image +import torchvision.transforms +from torchvision.transforms import ToTensor, Normalize, Compose + +def main(): + device = torch.device('cuda:0' if torch.cuda.is_available() and torch.cuda.device_count()>0 else 'cpu') + + # load 224x224 images and transform them to tensor + imagenet_mean = [0.485, 0.456, 0.406] + imagenet_mean_tensor = torch.tensor(imagenet_mean).view(1,3,1,1).to(device, non_blocking=True) + imagenet_std = [0.229, 0.224, 0.225] + imagenet_std_tensor = torch.tensor(imagenet_std).view(1,3,1,1).to(device, non_blocking=True) + trfs = Compose([ToTensor(), Normalize(mean=imagenet_mean, std=imagenet_std)]) + image1 = trfs(Image.open('assets/Chateau1.png').convert('RGB')).to(device, non_blocking=True).unsqueeze(0) + image2 = trfs(Image.open('assets/Chateau2.png').convert('RGB')).to(device, non_blocking=True).unsqueeze(0) + + # load model + ckpt = torch.load('pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth', 'cpu') + model = CroCoNet( **ckpt.get('croco_kwargs',{})).to(device) + model.eval() + msg = model.load_state_dict(ckpt['model'], strict=True) + + # forward + with torch.inference_mode(): + out, mask, target = model(image1, image2) + + # the output is normalized, thus use the mean/std of the actual image to go back to RGB space + patchified = model.patchify(image1) + mean = patchified.mean(dim=-1, keepdim=True) + var = patchified.var(dim=-1, keepdim=True) + decoded_image = model.unpatchify(out * (var + 1.e-6)**.5 + mean) + # undo imagenet normalization, prepare masked image + decoded_image = decoded_image * imagenet_std_tensor + imagenet_mean_tensor + input_image = image1 * imagenet_std_tensor + imagenet_mean_tensor + ref_image = image2 * imagenet_std_tensor + imagenet_mean_tensor + image_masks = model.unpatchify(model.patchify(torch.ones_like(ref_image)) * mask[:,:,None]) + masked_input_image = ((1 - image_masks) * input_image) + + # make visualization + visualization = torch.cat((ref_image, masked_input_image, decoded_image, input_image), dim=3) # 4*(B, 3, H, W) -> B, 3, H, W*4 + B, C, H, W = visualization.shape + visualization = visualization.permute(1, 0, 2, 3).reshape(C, B*H, W) + visualization = torchvision.transforms.functional.to_pil_image(torch.clamp(visualization, 0, 1)) + fname = "demo_output.png" + visualization.save(fname) + print('Visualization save in '+fname) + + +if __name__=="__main__": + main() diff --git a/modules/croco/interactive_demo.ipynb b/modules/croco/interactive_demo.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..6cfc960af5baac9a69029c29a16eea4e24123a71 --- /dev/null +++ b/modules/croco/interactive_demo.ipynb @@ -0,0 +1,271 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Interactive demo of Cross-view Completion." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n", + "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import numpy as np\n", + "from models.croco import CroCoNet\n", + "from ipywidgets import interact, interactive, fixed, interact_manual\n", + "import ipywidgets as widgets\n", + "import matplotlib.pyplot as plt\n", + "import quaternion\n", + "import models.masking" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load CroCo model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ckpt = torch.load('pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth', 'cpu')\n", + "model = CroCoNet( **ckpt.get('croco_kwargs',{}))\n", + "msg = model.load_state_dict(ckpt['model'], strict=True)\n", + "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n", + "device = torch.device('cuda:0' if use_gpu else 'cpu')\n", + "model = model.eval()\n", + "model = model.to(device=device)\n", + "print(msg)\n", + "\n", + "def process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches=False):\n", + " \"\"\"\n", + " Perform Cross-View completion using two input images, specified using Numpy arrays.\n", + " \"\"\"\n", + " # Replace the mask generator\n", + " model.mask_generator = models.masking.RandomMask(model.patch_embed.num_patches, masking_ratio)\n", + "\n", + " # ImageNet-1k color normalization\n", + " imagenet_mean = torch.as_tensor([0.485, 0.456, 0.406]).reshape(1,3,1,1).to(device)\n", + " imagenet_std = torch.as_tensor([0.229, 0.224, 0.225]).reshape(1,3,1,1).to(device)\n", + "\n", + " normalize_input_colors = True\n", + " is_output_normalized = True\n", + " with torch.no_grad():\n", + " # Cast data to torch\n", + " target_image = (torch.as_tensor(target_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n", + " ref_image = (torch.as_tensor(ref_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n", + "\n", + " if normalize_input_colors:\n", + " ref_image = (ref_image - imagenet_mean) / imagenet_std\n", + " target_image = (target_image - imagenet_mean) / imagenet_std\n", + "\n", + " out, mask, _ = model(target_image, ref_image)\n", + " # # get target\n", + " if not is_output_normalized:\n", + " predicted_image = model.unpatchify(out)\n", + " else:\n", + " # The output only contains higher order information,\n", + " # we retrieve mean and standard deviation from the actual target image\n", + " patchified = model.patchify(target_image)\n", + " mean = patchified.mean(dim=-1, keepdim=True)\n", + " var = patchified.var(dim=-1, keepdim=True)\n", + " pred_renorm = out * (var + 1.e-6)**.5 + mean\n", + " predicted_image = model.unpatchify(pred_renorm)\n", + "\n", + " image_masks = model.unpatchify(model.patchify(torch.ones_like(ref_image)) * mask[:,:,None])\n", + " masked_target_image = (1 - image_masks) * target_image\n", + " \n", + " if not reconstruct_unmasked_patches:\n", + " # Replace unmasked patches by their actual values\n", + " predicted_image = predicted_image * image_masks + masked_target_image\n", + "\n", + " # Unapply color normalization\n", + " if normalize_input_colors:\n", + " predicted_image = predicted_image * imagenet_std + imagenet_mean\n", + " masked_target_image = masked_target_image * imagenet_std + imagenet_mean\n", + " \n", + " # Cast to Numpy\n", + " masked_target_image = np.asarray(torch.clamp(masked_target_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n", + " predicted_image = np.asarray(torch.clamp(predicted_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n", + " return masked_target_image, predicted_image" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Use the Habitat simulator to render images from arbitrary viewpoints (requires habitat_sim to be installed)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"MAGNUM_LOG\"]=\"quiet\"\n", + "os.environ[\"HABITAT_SIM_LOG\"]=\"quiet\"\n", + "import habitat_sim\n", + "\n", + "scene = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.glb\"\n", + "navmesh = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.navmesh\"\n", + "\n", + "sim_cfg = habitat_sim.SimulatorConfiguration()\n", + "if use_gpu: sim_cfg.gpu_device_id = 0\n", + "sim_cfg.scene_id = scene\n", + "sim_cfg.load_semantic_mesh = False\n", + "rgb_sensor_spec = habitat_sim.CameraSensorSpec()\n", + "rgb_sensor_spec.uuid = \"color\"\n", + "rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR\n", + "rgb_sensor_spec.resolution = (224,224)\n", + "rgb_sensor_spec.hfov = 56.56\n", + "rgb_sensor_spec.position = [0.0, 0.0, 0.0]\n", + "rgb_sensor_spec.orientation = [0, 0, 0]\n", + "agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec])\n", + "\n", + "\n", + "cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg])\n", + "sim = habitat_sim.Simulator(cfg)\n", + "if navmesh is not None:\n", + " sim.pathfinder.load_nav_mesh(navmesh)\n", + "agent = sim.initialize_agent(agent_id=0)\n", + "\n", + "def sample_random_viewpoint():\n", + " \"\"\" Sample a random viewpoint using the navmesh \"\"\"\n", + " nav_point = sim.pathfinder.get_random_navigable_point()\n", + " # Sample a random viewpoint height\n", + " viewpoint_height = np.random.uniform(1.0, 1.6)\n", + " viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP\n", + " viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(-np.pi, np.pi) * habitat_sim.geo.UP)\n", + " return viewpoint_position, viewpoint_orientation\n", + "\n", + "def render_viewpoint(position, orientation):\n", + " agent_state = habitat_sim.AgentState()\n", + " agent_state.position = position\n", + " agent_state.rotation = orientation\n", + " agent.set_state(agent_state)\n", + " viewpoint_observations = sim.get_sensor_observations(agent_ids=0)\n", + " image = viewpoint_observations['color'][:,:,:3]\n", + " image = np.asarray(np.clip(1.5 * np.asarray(image, dtype=float), 0, 255), dtype=np.uint8)\n", + " return image" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sample a random reference view" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ref_position, ref_orientation = sample_random_viewpoint()\n", + "ref_image = render_viewpoint(ref_position, ref_orientation)\n", + "plt.clf()\n", + "fig, axes = plt.subplots(1,1, squeeze=False, num=1)\n", + "axes[0,0].imshow(ref_image)\n", + "for ax in axes.flatten():\n", + " ax.set_xticks([])\n", + " ax.set_yticks([])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interactive cross-view completion using CroCo" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "reconstruct_unmasked_patches = False\n", + "\n", + "def show_demo(masking_ratio, x, y, z, panorama, elevation):\n", + " R = quaternion.as_rotation_matrix(ref_orientation)\n", + " target_position = ref_position + x * R[:,0] + y * R[:,1] + z * R[:,2]\n", + " target_orientation = (ref_orientation\n", + " * quaternion.from_rotation_vector(-elevation * np.pi/180 * habitat_sim.geo.LEFT) \n", + " * quaternion.from_rotation_vector(-panorama * np.pi/180 * habitat_sim.geo.UP))\n", + " \n", + " ref_image = render_viewpoint(ref_position, ref_orientation)\n", + " target_image = render_viewpoint(target_position, target_orientation)\n", + "\n", + " masked_target_image, predicted_image = process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches)\n", + "\n", + " fig, axes = plt.subplots(1,4, squeeze=True, dpi=300)\n", + " axes[0].imshow(ref_image)\n", + " axes[0].set_xlabel(\"Reference\")\n", + " axes[1].imshow(masked_target_image)\n", + " axes[1].set_xlabel(\"Masked target\")\n", + " axes[2].imshow(predicted_image)\n", + " axes[2].set_xlabel(\"Reconstruction\") \n", + " axes[3].imshow(target_image)\n", + " axes[3].set_xlabel(\"Target\")\n", + " for ax in axes.flatten():\n", + " ax.set_xticks([])\n", + " ax.set_yticks([])\n", + "\n", + "interact(show_demo,\n", + " masking_ratio=widgets.FloatSlider(description='masking', value=0.9, min=0.0, max=1.0),\n", + " x=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n", + " y=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n", + " z=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n", + " panorama=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5),\n", + " elevation=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5));" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.13" + }, + "vscode": { + "interpreter": { + "hash": "f9237820cd248d7e07cb4fb9f0e4508a85d642f19d831560c0a4b61f3e907e67" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/modules/croco/models/__pycache__/blocks.cpython-312.pyc b/modules/croco/models/__pycache__/blocks.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..20570477a08ee916ce92a576bfb4de03162b6117 Binary files /dev/null and b/modules/croco/models/__pycache__/blocks.cpython-312.pyc differ diff --git a/modules/croco/models/__pycache__/croco.cpython-312.pyc b/modules/croco/models/__pycache__/croco.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..72f6761ed6f638335c2ce012ec55d79d25f0343e Binary files /dev/null and b/modules/croco/models/__pycache__/croco.cpython-312.pyc differ diff --git a/modules/croco/models/__pycache__/dpt_block.cpython-312.pyc b/modules/croco/models/__pycache__/dpt_block.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8d046a7f8bce06092e7b9992c98f210a2f1064ef Binary files /dev/null and b/modules/croco/models/__pycache__/dpt_block.cpython-312.pyc differ diff --git a/modules/croco/models/__pycache__/masking.cpython-312.pyc b/modules/croco/models/__pycache__/masking.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..38b2c85def664d30eb4bd32de6e6e5a5375d7c1c Binary files /dev/null and b/modules/croco/models/__pycache__/masking.cpython-312.pyc differ diff --git a/modules/croco/models/__pycache__/pos_embed.cpython-312.pyc b/modules/croco/models/__pycache__/pos_embed.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fce2bd40712d9d8385722d103aaee1537868782 Binary files /dev/null and b/modules/croco/models/__pycache__/pos_embed.cpython-312.pyc differ diff --git a/modules/croco/models/blocks.py b/modules/croco/models/blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..18133524f0ae265b0bd8d062d7c9eeaa63858a9b --- /dev/null +++ b/modules/croco/models/blocks.py @@ -0,0 +1,241 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + + +# -------------------------------------------------------- +# Main encoder/decoder blocks +# -------------------------------------------------------- +# References: +# timm +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/helpers.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/patch_embed.py + + +import torch +import torch.nn as nn + +from itertools import repeat +import collections.abc + + +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): + return x + return tuple(repeat(x, n)) + return parse +to_2tuple = _ntuple(2) + +def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + if drop_prob == 0. or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + self.scale_by_keep = scale_by_keep + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) + + def extra_repr(self): + return f'drop_prob={round(self.drop_prob,3):0.3f}' + +class Mlp(nn.Module): + """ MLP as used in Vision Transformer, MLP-Mixer and related networks""" + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + + self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.fc2(x) + x = self.drop2(x) + return x + +class Attention(nn.Module): + + def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.rope = rope + + def forward(self, x, xpos): + B, N, C = x.shape + + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).transpose(1,3) + q, k, v = [qkv[:,:,i] for i in range(3)] + # q,k,v = qkv.unbind(2) # make torchscript happy (cannot use tensor as tuple) + + if self.rope is not None: + q = self.rope(q, xpos) + k = self.rope(k, xpos) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., + drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rope=None): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + def forward(self, x, xpos): + x = x + self.drop_path(self.attn(self.norm1(x), xpos)) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + +class CrossAttention(nn.Module): + + def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + + self.projq = nn.Linear(dim, dim, bias=qkv_bias) + self.projk = nn.Linear(dim, dim, bias=qkv_bias) + self.projv = nn.Linear(dim, dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + self.rope = rope + + def forward(self, query, key, value, qpos, kpos): + B, Nq, C = query.shape + Nk = key.shape[1] + Nv = value.shape[1] + + q = self.projq(query).reshape(B,Nq,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) + k = self.projk(key).reshape(B,Nk,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) + v = self.projv(value).reshape(B,Nv,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) + + if self.rope is not None: + q = self.rope(q, qpos) + k = self.rope(k, kpos) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, Nq, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class DecoderBlock(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., + drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_mem=True, rope=None): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) + self.cross_attn = CrossAttention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + self.norm3 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + self.norm_y = norm_layer(dim) if norm_mem else nn.Identity() + + def forward(self, x, y, xpos, ypos): + x = x + self.drop_path(self.attn(self.norm1(x), xpos)) + y_ = self.norm_y(y) + x = x + self.drop_path(self.cross_attn(self.norm2(x), y_, y_, xpos, ypos)) + x = x + self.drop_path(self.mlp(self.norm3(x))) + return x, y + + +# patch embedding +class PositionGetter(object): + """ return positions of patches """ + + def __init__(self): + self.cache_positions = {} + + def __call__(self, b, h, w, device): + if not (h,w) in self.cache_positions: + x = torch.arange(w, device=device) + y = torch.arange(h, device=device) + self.cache_positions[h,w] = torch.cartesian_prod(y, x) # (h, w, 2) + pos = self.cache_positions[h,w].view(1, h*w, 2).expand(b, -1, 2).clone() + return pos + +class PatchEmbed(nn.Module): + """ just adding _init_weights + position getter compared to timm.models.layers.patch_embed.PatchEmbed""" + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + self.img_size = img_size + self.patch_size = patch_size + self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + self.flatten = flatten + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + self.position_getter = PositionGetter() + + def forward(self, x): + B, C, H, W = x.shape + torch._assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") + torch._assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") + x = self.proj(x) + pos = self.position_getter(B, x.size(2), x.size(3), x.device) + if self.flatten: + x = x.flatten(2).transpose(1, 2) # BCHW -> BNC + x = self.norm(x) + return x, pos + + def _init_weights(self): + w = self.proj.weight.data + torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) + diff --git a/modules/croco/models/criterion.py b/modules/croco/models/criterion.py new file mode 100644 index 0000000000000000000000000000000000000000..11696c40865344490f23796ea45e8fbd5e654731 --- /dev/null +++ b/modules/croco/models/criterion.py @@ -0,0 +1,37 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Criterion to train CroCo +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# -------------------------------------------------------- + +import torch + +class MaskedMSE(torch.nn.Module): + + def __init__(self, norm_pix_loss=False, masked=True): + """ + norm_pix_loss: normalize each patch by their pixel mean and variance + masked: compute loss over the masked patches only + """ + super().__init__() + self.norm_pix_loss = norm_pix_loss + self.masked = masked + + def forward(self, pred, mask, target): + + if self.norm_pix_loss: + mean = target.mean(dim=-1, keepdim=True) + var = target.var(dim=-1, keepdim=True) + target = (target - mean) / (var + 1.e-6)**.5 + + loss = (pred - target) ** 2 + loss = loss.mean(dim=-1) # [N, L], mean loss per patch + if self.masked: + loss = (loss * mask).sum() / mask.sum() # mean loss on masked patches + else: + loss = loss.mean() # mean loss + return loss diff --git a/modules/croco/models/croco.py b/modules/croco/models/croco.py new file mode 100644 index 0000000000000000000000000000000000000000..14c68634152d75555b4c35c25af268394c5821fe --- /dev/null +++ b/modules/croco/models/croco.py @@ -0,0 +1,249 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + + +# -------------------------------------------------------- +# CroCo model during pretraining +# -------------------------------------------------------- + + + +import torch +import torch.nn as nn +torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 +from functools import partial + +from models.blocks import Block, DecoderBlock, PatchEmbed +from models.pos_embed import get_2d_sincos_pos_embed, RoPE2D +from models.masking import RandomMask + + +class CroCoNet(nn.Module): + + def __init__(self, + img_size=224, # input image size + patch_size=16, # patch_size + mask_ratio=0.9, # ratios of masked tokens + enc_embed_dim=768, # encoder feature dimension + enc_depth=12, # encoder depth + enc_num_heads=12, # encoder number of heads in the transformer block + dec_embed_dim=512, # decoder feature dimension + dec_depth=8, # decoder depth + dec_num_heads=16, # decoder number of heads in the transformer block + mlp_ratio=4, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + norm_im2_in_dec=True, # whether to apply normalization of the 'memory' = (second image) in the decoder + pos_embed='cosine', # positional embedding (either cosine or RoPE100) + ): + + super(CroCoNet, self).__init__() + + # patch embeddings (with initialization done as in MAE) + self._set_patch_embed(img_size, patch_size, enc_embed_dim) + + # mask generations + self._set_mask_generator(self.patch_embed.num_patches, mask_ratio) + + self.pos_embed = pos_embed + if pos_embed=='cosine': + # positional embedding of the encoder + enc_pos_embed = get_2d_sincos_pos_embed(enc_embed_dim, int(self.patch_embed.num_patches**.5), n_cls_token=0) + self.register_buffer('enc_pos_embed', torch.from_numpy(enc_pos_embed).float()) + # positional embedding of the decoder + dec_pos_embed = get_2d_sincos_pos_embed(dec_embed_dim, int(self.patch_embed.num_patches**.5), n_cls_token=0) + self.register_buffer('dec_pos_embed', torch.from_numpy(dec_pos_embed).float()) + # pos embedding in each block + self.rope = None # nothing for cosine + elif pos_embed.startswith('RoPE'): # eg RoPE100 + self.enc_pos_embed = None # nothing to add in the encoder with RoPE + self.dec_pos_embed = None # nothing to add in the decoder with RoPE + if RoPE2D is None: raise ImportError("Cannot find cuRoPE2D, please install it following the README instructions") + freq = float(pos_embed[len('RoPE'):]) + self.rope = RoPE2D(freq=freq) + else: + raise NotImplementedError('Unknown pos_embed '+pos_embed) + + # transformer for the encoder + self.enc_depth = enc_depth + self.enc_embed_dim = enc_embed_dim + self.enc_blocks = nn.ModuleList([ + Block(enc_embed_dim, enc_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, rope=self.rope) + for i in range(enc_depth)]) + self.enc_norm = norm_layer(enc_embed_dim) + + # masked tokens + self._set_mask_token(dec_embed_dim) + + # decoder + self._set_decoder(enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec) + + # prediction head + self._set_prediction_head(dec_embed_dim, patch_size) + + # initializer weights + self.initialize_weights() + + def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768): + self.patch_embed = PatchEmbed(img_size, patch_size, 3, enc_embed_dim) + + def _set_mask_generator(self, num_patches, mask_ratio): + self.mask_generator = RandomMask(num_patches, mask_ratio) + + def _set_mask_token(self, dec_embed_dim): + self.mask_token = nn.Parameter(torch.zeros(1, 1, dec_embed_dim)) + + def _set_decoder(self, enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec): + self.dec_depth = dec_depth + self.dec_embed_dim = dec_embed_dim + # transfer from encoder to decoder + self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True) + # transformer for the decoder + self.dec_blocks = nn.ModuleList([ + DecoderBlock(dec_embed_dim, dec_num_heads, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=norm_layer, norm_mem=norm_im2_in_dec, rope=self.rope) + for i in range(dec_depth)]) + # final norm layer + self.dec_norm = norm_layer(dec_embed_dim) + + def _set_prediction_head(self, dec_embed_dim, patch_size): + self.prediction_head = nn.Linear(dec_embed_dim, patch_size**2 * 3, bias=True) + + + def initialize_weights(self): + # patch embed + self.patch_embed._init_weights() + # mask tokens + if self.mask_token is not None: torch.nn.init.normal_(self.mask_token, std=.02) + # linears and layer norms + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + # we use xavier_uniform following official JAX ViT: + torch.nn.init.xavier_uniform_(m.weight) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def _encode_image(self, image, do_mask=False, return_all_blocks=False): + """ + image has B x 3 x img_size x img_size + do_mask: whether to perform masking or not + return_all_blocks: if True, return the features at the end of every block + instead of just the features from the last block (eg for some prediction heads) + """ + # embed the image into patches (x has size B x Npatches x C) + # and get position if each return patch (pos has size B x Npatches x 2) + x, pos = self.patch_embed(image) + # add positional embedding without cls token + if self.enc_pos_embed is not None: + x = x + self.enc_pos_embed[None,...] + # apply masking + B,N,C = x.size() + if do_mask: + masks = self.mask_generator(x) + x = x[~masks].view(B, -1, C) + posvis = pos[~masks].view(B, -1, 2) + else: + B,N,C = x.size() + masks = torch.zeros((B,N), dtype=bool) + posvis = pos + # now apply the transformer encoder and normalization + if return_all_blocks: + out = [] + for blk in self.enc_blocks: + x = blk(x, posvis) + out.append(x) + out[-1] = self.enc_norm(out[-1]) + return out, pos, masks + else: + for blk in self.enc_blocks: + x = blk(x, posvis) + x = self.enc_norm(x) + return x, pos, masks + + def _decoder(self, feat1, pos1, masks1, feat2, pos2, return_all_blocks=False): + """ + return_all_blocks: if True, return the features at the end of every block + instead of just the features from the last block (eg for some prediction heads) + + masks1 can be None => assume image1 fully visible + """ + # encoder to decoder layer + visf1 = self.decoder_embed(feat1) + f2 = self.decoder_embed(feat2) + # append masked tokens to the sequence + B,Nenc,C = visf1.size() + if masks1 is None: # downstreams + f1_ = visf1 + else: # pretraining + Ntotal = masks1.size(1) + f1_ = self.mask_token.repeat(B, Ntotal, 1).to(dtype=visf1.dtype) + f1_[~masks1] = visf1.view(B * Nenc, C) + # add positional embedding + if self.dec_pos_embed is not None: + f1_ = f1_ + self.dec_pos_embed + f2 = f2 + self.dec_pos_embed + # apply Transformer blocks + out = f1_ + out2 = f2 + if return_all_blocks: + _out, out = out, [] + for blk in self.dec_blocks: + _out, out2 = blk(_out, out2, pos1, pos2) + out.append(_out) + out[-1] = self.dec_norm(out[-1]) + else: + for blk in self.dec_blocks: + out, out2 = blk(out, out2, pos1, pos2) + out = self.dec_norm(out) + return out + + def patchify(self, imgs): + """ + imgs: (B, 3, H, W) + x: (B, L, patch_size**2 *3) + """ + p = self.patch_embed.patch_size[0] + assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0 + + h = w = imgs.shape[2] // p + x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p)) + x = torch.einsum('nchpwq->nhwpqc', x) + x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3)) + + return x + + def unpatchify(self, x, channels=3): + """ + x: (N, L, patch_size**2 *channels) + imgs: (N, 3, H, W) + """ + patch_size = self.patch_embed.patch_size[0] + h = w = int(x.shape[1]**.5) + assert h * w == x.shape[1] + x = x.reshape(shape=(x.shape[0], h, w, patch_size, patch_size, channels)) + x = torch.einsum('nhwpqc->nchpwq', x) + imgs = x.reshape(shape=(x.shape[0], channels, h * patch_size, h * patch_size)) + return imgs + + def forward(self, img1, img2): + """ + img1: tensor of size B x 3 x img_size x img_size + img2: tensor of size B x 3 x img_size x img_size + + out will be B x N x (3*patch_size*patch_size) + masks are also returned as B x N just in case + """ + # encoder of the masked first image + feat1, pos1, mask1 = self._encode_image(img1, do_mask=True) + # encoder of the second image + feat2, pos2, _ = self._encode_image(img2, do_mask=False) + # decoder + decfeat = self._decoder(feat1, pos1, mask1, feat2, pos2) + # prediction head + out = self.prediction_head(decfeat) + # get target + target = self.patchify(img1) + return out, mask1, target diff --git a/modules/croco/models/croco_downstream.py b/modules/croco/models/croco_downstream.py new file mode 100644 index 0000000000000000000000000000000000000000..159dfff4d2c1461bc235e21441b57ce1e2088f76 --- /dev/null +++ b/modules/croco/models/croco_downstream.py @@ -0,0 +1,122 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# CroCo model for downstream tasks +# -------------------------------------------------------- + +import torch + +from .croco import CroCoNet + + +def croco_args_from_ckpt(ckpt): + if 'croco_kwargs' in ckpt: # CroCo v2 released models + return ckpt['croco_kwargs'] + elif 'args' in ckpt and hasattr(ckpt['args'], 'model'): # pretrained using the official code release + s = ckpt['args'].model # eg "CroCoNet(enc_embed_dim=1024, enc_num_heads=16, enc_depth=24)" + assert s.startswith('CroCoNet(') + return eval('dict'+s[len('CroCoNet'):]) # transform it into the string of a dictionary and evaluate it + else: # CroCo v1 released models + return dict() + +class CroCoDownstreamMonocularEncoder(CroCoNet): + + def __init__(self, + head, + **kwargs): + """ Build network for monocular downstream task, only using the encoder. + It takes an extra argument head, that is called with the features + and a dictionary img_info containing 'width' and 'height' keys + The head is setup with the croconet arguments in this init function + NOTE: It works by *calling super().__init__() but with redefined setters + + """ + super(CroCoDownstreamMonocularEncoder, self).__init__(**kwargs) + head.setup(self) + self.head = head + + def _set_mask_generator(self, *args, **kwargs): + """ No mask generator """ + return + + def _set_mask_token(self, *args, **kwargs): + """ No mask token """ + self.mask_token = None + return + + def _set_decoder(self, *args, **kwargs): + """ No decoder """ + return + + def _set_prediction_head(self, *args, **kwargs): + """ No 'prediction head' for downstream tasks.""" + return + + def forward(self, img): + """ + img if of size batch_size x 3 x h x w + """ + B, C, H, W = img.size() + img_info = {'height': H, 'width': W} + need_all_layers = hasattr(self.head, 'return_all_blocks') and self.head.return_all_blocks + out, _, _ = self._encode_image(img, do_mask=False, return_all_blocks=need_all_layers) + return self.head(out, img_info) + + +class CroCoDownstreamBinocular(CroCoNet): + + def __init__(self, + head, + **kwargs): + """ Build network for binocular downstream task + It takes an extra argument head, that is called with the features + and a dictionary img_info containing 'width' and 'height' keys + The head is setup with the croconet arguments in this init function + """ + super(CroCoDownstreamBinocular, self).__init__(**kwargs) + head.setup(self) + self.head = head + + def _set_mask_generator(self, *args, **kwargs): + """ No mask generator """ + return + + def _set_mask_token(self, *args, **kwargs): + """ No mask token """ + self.mask_token = None + return + + def _set_prediction_head(self, *args, **kwargs): + """ No prediction head for downstream tasks, define your own head """ + return + + def encode_image_pairs(self, img1, img2, return_all_blocks=False): + """ run encoder for a pair of images + it is actually ~5% faster to concatenate the images along the batch dimension + than to encode them separately + """ + ## the two commented lines below is the naive version with separate encoding + #out, pos, _ = self._encode_image(img1, do_mask=False, return_all_blocks=return_all_blocks) + #out2, pos2, _ = self._encode_image(img2, do_mask=False, return_all_blocks=False) + ## and now the faster version + out, pos, _ = self._encode_image( torch.cat( (img1,img2), dim=0), do_mask=False, return_all_blocks=return_all_blocks ) + if return_all_blocks: + out,out2 = list(map(list, zip(*[o.chunk(2, dim=0) for o in out]))) + out2 = out2[-1] + else: + out,out2 = out.chunk(2, dim=0) + pos,pos2 = pos.chunk(2, dim=0) + return out, out2, pos, pos2 + + def forward(self, img1, img2): + B, C, H, W = img1.size() + img_info = {'height': H, 'width': W} + return_all_blocks = hasattr(self.head, 'return_all_blocks') and self.head.return_all_blocks + out, out2, pos, pos2 = self.encode_image_pairs(img1, img2, return_all_blocks=return_all_blocks) + if return_all_blocks: + decout = self._decoder(out[-1], pos, None, out2, pos2, return_all_blocks=return_all_blocks) + decout = out+decout + else: + decout = self._decoder(out, pos, None, out2, pos2, return_all_blocks=return_all_blocks) + return self.head(decout, img_info) \ No newline at end of file diff --git a/modules/croco/models/curope/__init__.py b/modules/croco/models/curope/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..25e3d48a162760260826080f6366838e83e26878 --- /dev/null +++ b/modules/croco/models/curope/__init__.py @@ -0,0 +1,4 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +from .curope2d import cuRoPE2D diff --git a/modules/croco/models/curope/__pycache__/__init__.cpython-312.pyc b/modules/croco/models/curope/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a79cf32a3bb40840d5e7b9b42b8d269cb0f49ddb Binary files /dev/null and b/modules/croco/models/curope/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/croco/models/curope/__pycache__/curope2d.cpython-312.pyc b/modules/croco/models/curope/__pycache__/curope2d.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1aaab6b578b4df3ac2889c4ff4e0b24efc10066d Binary files /dev/null and b/modules/croco/models/curope/__pycache__/curope2d.cpython-312.pyc differ diff --git a/modules/croco/models/curope/curope.cpp b/modules/croco/models/curope/curope.cpp new file mode 100644 index 0000000000000000000000000000000000000000..8fe9058e05aa1bf3f37b0d970edc7312bc68455b --- /dev/null +++ b/modules/croco/models/curope/curope.cpp @@ -0,0 +1,69 @@ +/* + Copyright (C) 2022-present Naver Corporation. All rights reserved. + Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +*/ + +#include + +// forward declaration +void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd ); + +void rope_2d_cpu( torch::Tensor tokens, const torch::Tensor positions, const float base, const float fwd ) +{ + const int B = tokens.size(0); + const int N = tokens.size(1); + const int H = tokens.size(2); + const int D = tokens.size(3) / 4; + + auto tok = tokens.accessor(); + auto pos = positions.accessor(); + + for (int b = 0; b < B; b++) { + for (int x = 0; x < 2; x++) { // y and then x (2d) + for (int n = 0; n < N; n++) { + + // grab the token position + const int p = pos[b][n][x]; + + for (int h = 0; h < H; h++) { + for (int d = 0; d < D; d++) { + // grab the two values + float u = tok[b][n][h][d+0+x*2*D]; + float v = tok[b][n][h][d+D+x*2*D]; + + // grab the cos,sin + const float inv_freq = fwd * p / powf(base, d/float(D)); + float c = cosf(inv_freq); + float s = sinf(inv_freq); + + // write the result + tok[b][n][h][d+0+x*2*D] = u*c - v*s; + tok[b][n][h][d+D+x*2*D] = v*c + u*s; + } + } + } + } + } +} + +void rope_2d( torch::Tensor tokens, // B,N,H,D + const torch::Tensor positions, // B,N,2 + const float base, + const float fwd ) +{ + TORCH_CHECK(tokens.dim() == 4, "tokens must have 4 dimensions"); + TORCH_CHECK(positions.dim() == 3, "positions must have 3 dimensions"); + TORCH_CHECK(tokens.size(0) == positions.size(0), "batch size differs between tokens & positions"); + TORCH_CHECK(tokens.size(1) == positions.size(1), "seq_length differs between tokens & positions"); + TORCH_CHECK(positions.size(2) == 2, "positions.shape[2] must be equal to 2"); + TORCH_CHECK(tokens.is_cuda() == positions.is_cuda(), "tokens and positions are not on the same device" ); + + if (tokens.is_cuda()) + rope_2d_cuda( tokens, positions, base, fwd ); + else + rope_2d_cpu( tokens, positions, base, fwd ); +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("rope_2d", &rope_2d, "RoPE 2d forward/backward"); +} diff --git a/modules/croco/models/curope/curope2d.py b/modules/croco/models/curope/curope2d.py new file mode 100644 index 0000000000000000000000000000000000000000..a49c12f8c529e9a889b5ac20c5767158f238e17d --- /dev/null +++ b/modules/croco/models/curope/curope2d.py @@ -0,0 +1,40 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import torch + +try: + import curope as _kernels # run `python setup.py install` +except ModuleNotFoundError: + from . import curope as _kernels # run `python setup.py build_ext --inplace` + + +class cuRoPE2D_func (torch.autograd.Function): + + @staticmethod + def forward(ctx, tokens, positions, base, F0=1): + ctx.save_for_backward(positions) + ctx.saved_base = base + ctx.saved_F0 = F0 + # tokens = tokens.clone() # uncomment this if inplace doesn't work + _kernels.rope_2d( tokens, positions, base, F0 ) + ctx.mark_dirty(tokens) + return tokens + + @staticmethod + def backward(ctx, grad_res): + positions, base, F0 = ctx.saved_tensors[0], ctx.saved_base, ctx.saved_F0 + _kernels.rope_2d( grad_res, positions, base, -F0 ) + ctx.mark_dirty(grad_res) + return grad_res, None, None, None + + +class cuRoPE2D(torch.nn.Module): + def __init__(self, freq=100.0, F0=1.0): + super().__init__() + self.base = freq + self.F0 = F0 + + def forward(self, tokens, positions): + cuRoPE2D_func.apply( tokens.transpose(1,2), positions, self.base, self.F0 ) + return tokens \ No newline at end of file diff --git a/modules/croco/models/curope/kernels.cu b/modules/croco/models/curope/kernels.cu new file mode 100644 index 0000000000000000000000000000000000000000..7156cd1bb935cb1f0be45e58add53f9c21505c20 --- /dev/null +++ b/modules/croco/models/curope/kernels.cu @@ -0,0 +1,108 @@ +/* + Copyright (C) 2022-present Naver Corporation. All rights reserved. + Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +*/ + +#include +#include +#include +#include + +#define CHECK_CUDA(tensor) {\ + TORCH_CHECK((tensor).is_cuda(), #tensor " is not in cuda memory"); \ + TORCH_CHECK((tensor).is_contiguous(), #tensor " is not contiguous"); } +void CHECK_KERNEL() {auto error = cudaGetLastError(); TORCH_CHECK( error == cudaSuccess, cudaGetErrorString(error));} + + +template < typename scalar_t > +__global__ void rope_2d_cuda_kernel( + //scalar_t* __restrict__ tokens, + torch::PackedTensorAccessor32 tokens, + const int64_t* __restrict__ pos, + const float base, + const float fwd ) + // const int N, const int H, const int D ) +{ + // tokens shape = (B, N, H, D) + const int N = tokens.size(1); + const int H = tokens.size(2); + const int D = tokens.size(3); + + // each block update a single token, for all heads + // each thread takes care of a single output + extern __shared__ float shared[]; + float* shared_inv_freq = shared + D; + + const int b = blockIdx.x / N; + const int n = blockIdx.x % N; + + const int Q = D / 4; + // one token = [0..Q : Q..2Q : 2Q..3Q : 3Q..D] + // u_Y v_Y u_X v_X + + // shared memory: first, compute inv_freq + if (threadIdx.x < Q) + shared_inv_freq[threadIdx.x] = fwd / powf(base, threadIdx.x/float(Q)); + __syncthreads(); + + // start of X or Y part + const int X = threadIdx.x < D/2 ? 0 : 1; + const int m = (X*D/2) + (threadIdx.x % Q); // index of u_Y or u_X + + // grab the cos,sin appropriate for me + const float freq = pos[blockIdx.x*2+X] * shared_inv_freq[threadIdx.x % Q]; + const float cos = cosf(freq); + const float sin = sinf(freq); + /* + float* shared_cos_sin = shared + D + D/4; + if ((threadIdx.x % (D/2)) < Q) + shared_cos_sin[m+0] = cosf(freq); + else + shared_cos_sin[m+Q] = sinf(freq); + __syncthreads(); + const float cos = shared_cos_sin[m+0]; + const float sin = shared_cos_sin[m+Q]; + */ + + for (int h = 0; h < H; h++) + { + // then, load all the token for this head in shared memory + shared[threadIdx.x] = tokens[b][n][h][threadIdx.x]; + __syncthreads(); + + const float u = shared[m]; + const float v = shared[m+Q]; + + // write output + if ((threadIdx.x % (D/2)) < Q) + tokens[b][n][h][threadIdx.x] = u*cos - v*sin; + else + tokens[b][n][h][threadIdx.x] = v*cos + u*sin; + } +} + +void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd ) +{ + const int B = tokens.size(0); // batch size + const int N = tokens.size(1); // sequence length + const int H = tokens.size(2); // number of heads + const int D = tokens.size(3); // dimension per head + + TORCH_CHECK(tokens.stride(3) == 1 && tokens.stride(2) == D, "tokens are not contiguous"); + TORCH_CHECK(pos.is_contiguous(), "positions are not contiguous"); + TORCH_CHECK(pos.size(0) == B && pos.size(1) == N && pos.size(2) == 2, "bad pos.shape"); + TORCH_CHECK(D % 4 == 0, "token dim must be multiple of 4"); + + // one block for each layer, one thread per local-max + const int THREADS_PER_BLOCK = D; + const int N_BLOCKS = B * N; // each block takes care of H*D values + const int SHARED_MEM = sizeof(float) * (D + D/4); + + AT_DISPATCH_FLOATING_TYPES_AND_HALF(tokens.type(), "rope_2d_cuda", ([&] { + rope_2d_cuda_kernel <<>> ( + //tokens.data_ptr(), + tokens.packed_accessor32(), + pos.data_ptr(), + base, fwd); //, N, H, D ); + })); +} diff --git a/modules/croco/models/curope/setup.py b/modules/croco/models/curope/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..230632ed05e309200e8f93a3a852072333975009 --- /dev/null +++ b/modules/croco/models/curope/setup.py @@ -0,0 +1,34 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +from setuptools import setup +from torch import cuda +from torch.utils.cpp_extension import BuildExtension, CUDAExtension + +# compile for all possible CUDA architectures +all_cuda_archs = cuda.get_gencode_flags().replace('compute=','arch=').split() +# alternatively, you can list cuda archs that you want, eg: +# all_cuda_archs = [ + # '-gencode', 'arch=compute_70,code=sm_70', + # '-gencode', 'arch=compute_75,code=sm_75', + # '-gencode', 'arch=compute_80,code=sm_80', + # '-gencode', 'arch=compute_86,code=sm_86' +# ] + +setup( + name = 'curope', + ext_modules = [ + CUDAExtension( + name='curope', + sources=[ + "curope.cpp", + "kernels.cu", + ], + extra_compile_args = dict( + nvcc=['-O3','--ptxas-options=-v',"--use_fast_math"]+all_cuda_archs, + cxx=['-O3']) + ) + ], + cmdclass = { + 'build_ext': BuildExtension + }) diff --git a/modules/croco/models/dpt_block.py b/modules/croco/models/dpt_block.py new file mode 100644 index 0000000000000000000000000000000000000000..d4ddfb74e2769ceca88720d4c730e00afd71c763 --- /dev/null +++ b/modules/croco/models/dpt_block.py @@ -0,0 +1,450 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# DPT head for ViTs +# -------------------------------------------------------- +# References: +# https://github.com/isl-org/DPT +# https://github.com/EPFL-VILAB/MultiMAE/blob/main/multimae/output_adapters.py + +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange, repeat +from typing import Union, Tuple, Iterable, List, Optional, Dict + +def pair(t): + return t if isinstance(t, tuple) else (t, t) + +def make_scratch(in_shape, out_shape, groups=1, expand=False): + scratch = nn.Module() + + out_shape1 = out_shape + out_shape2 = out_shape + out_shape3 = out_shape + out_shape4 = out_shape + if expand == True: + out_shape1 = out_shape + out_shape2 = out_shape * 2 + out_shape3 = out_shape * 4 + out_shape4 = out_shape * 8 + + scratch.layer1_rn = nn.Conv2d( + in_shape[0], + out_shape1, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + scratch.layer2_rn = nn.Conv2d( + in_shape[1], + out_shape2, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + scratch.layer3_rn = nn.Conv2d( + in_shape[2], + out_shape3, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + scratch.layer4_rn = nn.Conv2d( + in_shape[3], + out_shape4, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + + scratch.layer_rn = nn.ModuleList([ + scratch.layer1_rn, + scratch.layer2_rn, + scratch.layer3_rn, + scratch.layer4_rn, + ]) + + return scratch + +class ResidualConvUnit_custom(nn.Module): + """Residual convolution module.""" + + def __init__(self, features, activation, bn): + """Init. + Args: + features (int): number of features + """ + super().__init__() + + self.bn = bn + + self.groups = 1 + + self.conv1 = nn.Conv2d( + features, + features, + kernel_size=3, + stride=1, + padding=1, + bias=not self.bn, + groups=self.groups, + ) + + self.conv2 = nn.Conv2d( + features, + features, + kernel_size=3, + stride=1, + padding=1, + bias=not self.bn, + groups=self.groups, + ) + + if self.bn == True: + self.bn1 = nn.BatchNorm2d(features) + self.bn2 = nn.BatchNorm2d(features) + + self.activation = activation + + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, x): + """Forward pass. + Args: + x (tensor): input + Returns: + tensor: output + """ + + out = self.activation(x) + out = self.conv1(out) + if self.bn == True: + out = self.bn1(out) + + out = self.activation(out) + out = self.conv2(out) + if self.bn == True: + out = self.bn2(out) + + if self.groups > 1: + out = self.conv_merge(out) + + return self.skip_add.add(out, x) + +class FeatureFusionBlock_custom(nn.Module): + """Feature fusion block.""" + + def __init__( + self, + features, + activation, + deconv=False, + bn=False, + expand=False, + align_corners=True, + width_ratio=1, + ): + """Init. + Args: + features (int): number of features + """ + super(FeatureFusionBlock_custom, self).__init__() + self.width_ratio = width_ratio + + self.deconv = deconv + self.align_corners = align_corners + + self.groups = 1 + + self.expand = expand + out_features = features + if self.expand == True: + out_features = features // 2 + + self.out_conv = nn.Conv2d( + features, + out_features, + kernel_size=1, + stride=1, + padding=0, + bias=True, + groups=1, + ) + + self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) + self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) + + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, *xs): + """Forward pass. + Returns: + tensor: output + """ + output = xs[0] + + if len(xs) == 2: + res = self.resConfUnit1(xs[1]) + if self.width_ratio != 1: + res = F.interpolate(res, size=(output.shape[2], output.shape[3]), mode='bilinear') + + output = self.skip_add.add(output, res) + # output += res + + output = self.resConfUnit2(output) + + if self.width_ratio != 1: + # and output.shape[3] < self.width_ratio * output.shape[2] + #size=(image.shape[]) + if (output.shape[3] / output.shape[2]) < (2 / 3) * self.width_ratio: + shape = 3 * output.shape[3] + else: + shape = int(self.width_ratio * 2 * output.shape[2]) + output = F.interpolate(output, size=(2* output.shape[2], shape), mode='bilinear') + else: + output = nn.functional.interpolate(output, scale_factor=2, + mode="bilinear", align_corners=self.align_corners) + output = self.out_conv(output) + return output + +def make_fusion_block(features, use_bn, width_ratio=1): + return FeatureFusionBlock_custom( + features, + nn.ReLU(False), + deconv=False, + bn=use_bn, + expand=False, + align_corners=True, + width_ratio=width_ratio, + ) + +class Interpolate(nn.Module): + """Interpolation module.""" + + def __init__(self, scale_factor, mode, align_corners=False): + """Init. + Args: + scale_factor (float): scaling + mode (str): interpolation mode + """ + super(Interpolate, self).__init__() + + self.interp = nn.functional.interpolate + self.scale_factor = scale_factor + self.mode = mode + self.align_corners = align_corners + + def forward(self, x): + """Forward pass. + Args: + x (tensor): input + Returns: + tensor: interpolated data + """ + + x = self.interp( + x, + scale_factor=self.scale_factor, + mode=self.mode, + align_corners=self.align_corners, + ) + + return x + +class DPTOutputAdapter(nn.Module): + """DPT output adapter. + + :param num_cahnnels: Number of output channels + :param stride_level: tride level compared to the full-sized image. + E.g. 4 for 1/4th the size of the image. + :param patch_size_full: Int or tuple of the patch size over the full image size. + Patch size for smaller inputs will be computed accordingly. + :param hooks: Index of intermediate layers + :param layer_dims: Dimension of intermediate layers + :param feature_dim: Feature dimension + :param last_dim: out_channels/in_channels for the last two Conv2d when head_type == regression + :param use_bn: If set to True, activates batch norm + :param dim_tokens_enc: Dimension of tokens coming from encoder + """ + + def __init__(self, + num_channels: int = 1, + stride_level: int = 1, + patch_size: Union[int, Tuple[int, int]] = 16, + main_tasks: Iterable[str] = ('rgb',), + hooks: List[int] = [2, 5, 8, 11], + layer_dims: List[int] = [96, 192, 384, 768], + feature_dim: int = 256, + last_dim: int = 32, + use_bn: bool = False, + dim_tokens_enc: Optional[int] = None, + head_type: str = 'regression', + output_width_ratio=1, + **kwargs): + super().__init__() + self.num_channels = num_channels + self.stride_level = stride_level + self.patch_size = pair(patch_size) + self.main_tasks = main_tasks + self.hooks = hooks + self.layer_dims = layer_dims + self.feature_dim = feature_dim + self.dim_tokens_enc = dim_tokens_enc * len(self.main_tasks) if dim_tokens_enc is not None else None + self.head_type = head_type + + # Actual patch height and width, taking into account stride of input + self.P_H = max(1, self.patch_size[0] // stride_level) + self.P_W = max(1, self.patch_size[1] // stride_level) + + self.scratch = make_scratch(layer_dims, feature_dim, groups=1, expand=False) + + self.scratch.refinenet1 = make_fusion_block(feature_dim, use_bn, output_width_ratio) + self.scratch.refinenet2 = make_fusion_block(feature_dim, use_bn, output_width_ratio) + self.scratch.refinenet3 = make_fusion_block(feature_dim, use_bn, output_width_ratio) + self.scratch.refinenet4 = make_fusion_block(feature_dim, use_bn, output_width_ratio) + + if self.head_type == 'regression': + # The "DPTDepthModel" head + self.head = nn.Sequential( + nn.Conv2d(feature_dim, feature_dim // 2, kernel_size=3, stride=1, padding=1), + Interpolate(scale_factor=2, mode="bilinear", align_corners=True), + nn.Conv2d(feature_dim // 2, last_dim, kernel_size=3, stride=1, padding=1), + nn.ReLU(True), + nn.Conv2d(last_dim, self.num_channels, kernel_size=1, stride=1, padding=0) + ) + elif self.head_type == 'semseg': + # The "DPTSegmentationModel" head + self.head = nn.Sequential( + nn.Conv2d(feature_dim, feature_dim, kernel_size=3, padding=1, bias=False), + nn.BatchNorm2d(feature_dim) if use_bn else nn.Identity(), + nn.ReLU(True), + nn.Dropout(0.1, False), + nn.Conv2d(feature_dim, self.num_channels, kernel_size=1), + Interpolate(scale_factor=2, mode="bilinear", align_corners=True), + ) + else: + raise ValueError('DPT head_type must be "regression" or "semseg".') + + if self.dim_tokens_enc is not None: + self.init(dim_tokens_enc=dim_tokens_enc) + + def init(self, dim_tokens_enc=768): + """ + Initialize parts of decoder that are dependent on dimension of encoder tokens. + Should be called when setting up MultiMAE. + + :param dim_tokens_enc: Dimension of tokens coming from encoder + """ + #print(dim_tokens_enc) + + # Set up activation postprocessing layers + if isinstance(dim_tokens_enc, int): + dim_tokens_enc = 4 * [dim_tokens_enc] + + self.dim_tokens_enc = [dt * len(self.main_tasks) for dt in dim_tokens_enc] + + self.act_1_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[0], + out_channels=self.layer_dims[0], + kernel_size=1, stride=1, padding=0, + ), + nn.ConvTranspose2d( + in_channels=self.layer_dims[0], + out_channels=self.layer_dims[0], + kernel_size=4, stride=4, padding=0, + bias=True, dilation=1, groups=1, + ) + ) + + self.act_2_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[1], + out_channels=self.layer_dims[1], + kernel_size=1, stride=1, padding=0, + ), + nn.ConvTranspose2d( + in_channels=self.layer_dims[1], + out_channels=self.layer_dims[1], + kernel_size=2, stride=2, padding=0, + bias=True, dilation=1, groups=1, + ) + ) + + self.act_3_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[2], + out_channels=self.layer_dims[2], + kernel_size=1, stride=1, padding=0, + ) + ) + + self.act_4_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[3], + out_channels=self.layer_dims[3], + kernel_size=1, stride=1, padding=0, + ), + nn.Conv2d( + in_channels=self.layer_dims[3], + out_channels=self.layer_dims[3], + kernel_size=3, stride=2, padding=1, + ) + ) + + self.act_postprocess = nn.ModuleList([ + self.act_1_postprocess, + self.act_2_postprocess, + self.act_3_postprocess, + self.act_4_postprocess + ]) + + def adapt_tokens(self, encoder_tokens): + # Adapt tokens + x = [] + x.append(encoder_tokens[:, :]) + x = torch.cat(x, dim=-1) + return x + + def forward(self, encoder_tokens: List[torch.Tensor], image_size): + #input_info: Dict): + assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first' + H, W = image_size + + # Number of patches in height and width + N_H = H // (self.stride_level * self.P_H) + N_W = W // (self.stride_level * self.P_W) + + # Hook decoder onto 4 layers from specified ViT layers + layers = [encoder_tokens[hook] for hook in self.hooks] + + # Extract only task-relevant tokens and ignore global tokens. + layers = [self.adapt_tokens(l) for l in layers] + + # Reshape tokens to spatial representation + layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers] + + layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] + # Project layers to chosen feature dim + layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] + + # Fuse layers using refinement stages + path_4 = self.scratch.refinenet4(layers[3]) + path_3 = self.scratch.refinenet3(path_4, layers[2]) + path_2 = self.scratch.refinenet2(path_3, layers[1]) + path_1 = self.scratch.refinenet1(path_2, layers[0]) + + # Output head + out = self.head(path_1) + + return out diff --git a/modules/croco/models/head_downstream.py b/modules/croco/models/head_downstream.py new file mode 100644 index 0000000000000000000000000000000000000000..bd40c91ba244d6c3522c6efd4ed4d724b7bdc650 --- /dev/null +++ b/modules/croco/models/head_downstream.py @@ -0,0 +1,58 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Heads for downstream tasks +# -------------------------------------------------------- + +""" +A head is a module where the __init__ defines only the head hyperparameters. +A method setup(croconet) takes a CroCoNet and set all layers according to the head and croconet attributes. +The forward takes the features as well as a dictionary img_info containing the keys 'width' and 'height' +""" + +import torch +import torch.nn as nn +from .dpt_block import DPTOutputAdapter + + +class PixelwiseTaskWithDPT(nn.Module): + """ DPT module for CroCo. + by default, hooks_idx will be equal to: + * for encoder-only: 4 equally spread layers + * for encoder+decoder: last encoder + 3 equally spread layers of the decoder + """ + + def __init__(self, *, hooks_idx=None, layer_dims=[96,192,384,768], + output_width_ratio=1, num_channels=1, postprocess=None, **kwargs): + super(PixelwiseTaskWithDPT, self).__init__() + self.return_all_blocks = True # backbone needs to return all layers + self.postprocess = postprocess + self.output_width_ratio = output_width_ratio + self.num_channels = num_channels + self.hooks_idx = hooks_idx + self.layer_dims = layer_dims + + def setup(self, croconet): + dpt_args = {'output_width_ratio': self.output_width_ratio, 'num_channels': self.num_channels} + if self.hooks_idx is None: + if hasattr(croconet, 'dec_blocks'): # encoder + decoder + step = {8: 3, 12: 4, 24: 8}[croconet.dec_depth] + hooks_idx = [croconet.dec_depth+croconet.enc_depth-1-i*step for i in range(3,-1,-1)] + else: # encoder only + step = croconet.enc_depth//4 + hooks_idx = [croconet.enc_depth-1-i*step for i in range(3,-1,-1)] + self.hooks_idx = hooks_idx + print(f' PixelwiseTaskWithDPT: automatically setting hook_idxs={self.hooks_idx}') + dpt_args['hooks'] = self.hooks_idx + dpt_args['layer_dims'] = self.layer_dims + self.dpt = DPTOutputAdapter(**dpt_args) + dim_tokens = [croconet.enc_embed_dim if hook0: + pos_embed = np.concatenate([np.zeros([n_cls_token, embed_dim]), pos_embed], axis=0) + return pos_embed + + +def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): + assert embed_dim % 2 == 0 + + # use half of dimensions to encode grid_h + emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) + emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) + + emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) + return emb + + +def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): + """ + embed_dim: output dimension for each position + pos: a list of positions to be encoded: size (M,) + out: (M, D) + """ + assert embed_dim % 2 == 0 + omega = np.arange(embed_dim // 2, dtype=float) + omega /= embed_dim / 2. + omega = 1. / 10000**omega # (D/2,) + + pos = pos.reshape(-1) # (M,) + out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product + + emb_sin = np.sin(out) # (M, D/2) + emb_cos = np.cos(out) # (M, D/2) + + emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) + return emb + + +# -------------------------------------------------------- +# Interpolate position embeddings for high-resolution +# References: +# MAE: https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py +# DeiT: https://github.com/facebookresearch/deit +# -------------------------------------------------------- +def interpolate_pos_embed(model, checkpoint_model): + if 'pos_embed' in checkpoint_model: + pos_embed_checkpoint = checkpoint_model['pos_embed'] + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = model.patch_embed.num_patches + num_extra_tokens = model.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches ** 0.5) + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + checkpoint_model['pos_embed'] = new_pos_embed + + +#---------------------------------------------------------- +# RoPE2D: RoPE implementation in 2D +#---------------------------------------------------------- + +try: + from models.curope import cuRoPE2D + RoPE2D = cuRoPE2D +except ImportError: + print('Warning, cannot find cuda-compiled version of RoPE2D, using a slow pytorch version instead') + + class RoPE2D(torch.nn.Module): + + def __init__(self, freq=100.0, F0=1.0): + super().__init__() + self.base = freq + self.F0 = F0 + self.cache = {} + + def get_cos_sin(self, D, seq_len, device, dtype): + if (D,seq_len,device,dtype) not in self.cache: + inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) + t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) + freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) + freqs = torch.cat((freqs, freqs), dim=-1) + cos = freqs.cos() # (Seq, Dim) + sin = freqs.sin() + self.cache[D,seq_len,device,dtype] = (cos,sin) + return self.cache[D,seq_len,device,dtype] + + @staticmethod + def rotate_half(x): + x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + def apply_rope1d(self, tokens, pos1d, cos, sin): + assert pos1d.ndim==2 + cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :] + sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :] + return (tokens * cos) + (self.rotate_half(tokens) * sin) + + def forward(self, tokens, positions): + """ + input: + * tokens: batch_size x nheads x ntokens x dim + * positions: batch_size x ntokens x 2 (y and x position of each token) + output: + * tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim) + """ + assert tokens.size(3)%2==0, "number of dimensions should be a multiple of two" + D = tokens.size(3) // 2 + assert positions.ndim==3 and positions.shape[-1] == 2 # Batch, Seq, 2 + cos, sin = self.get_cos_sin(D, int(positions.max())+1, tokens.device, tokens.dtype) + # split features into two along the feature dimension, and apply rope1d on each half + y, x = tokens.chunk(2, dim=-1) + y = self.apply_rope1d(y, positions[:,:,0], cos, sin) + x = self.apply_rope1d(x, positions[:,:,1], cos, sin) + tokens = torch.cat((y, x), dim=-1) + return tokens \ No newline at end of file diff --git a/modules/croco/pretrain.py b/modules/croco/pretrain.py new file mode 100644 index 0000000000000000000000000000000000000000..2c45e488015ef5380c71d0381ff453fdb860759e --- /dev/null +++ b/modules/croco/pretrain.py @@ -0,0 +1,254 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Pre-training CroCo +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- +import argparse +import datetime +import json +import numpy as np +import os +import sys +import time +import math +from pathlib import Path +from typing import Iterable + +import torch +import torch.distributed as dist +import torch.backends.cudnn as cudnn +from torch.utils.tensorboard import SummaryWriter +import torchvision.transforms as transforms +import torchvision.datasets as datasets + +import utils.misc as misc +from utils.misc import NativeScalerWithGradNormCount as NativeScaler +from models.croco import CroCoNet +from models.criterion import MaskedMSE +from datasets.pairs_dataset import PairsDataset + + +def get_args_parser(): + parser = argparse.ArgumentParser('CroCo pre-training', add_help=False) + # model and criterion + parser.add_argument('--model', default='CroCoNet()', type=str, help="string containing the model to build") + parser.add_argument('--norm_pix_loss', default=1, choices=[0,1], help="apply per-patch mean/std normalization before applying the loss") + # dataset + parser.add_argument('--dataset', default='habitat_release', type=str, help="training set") + parser.add_argument('--transforms', default='crop224+acolor', type=str, help="transforms to apply") # in the paper, we also use some homography and rotation, but find later that they were not useful or even harmful + # training + parser.add_argument('--seed', default=0, type=int, help="Random seed") + parser.add_argument('--batch_size', default=64, type=int, help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus") + parser.add_argument('--epochs', default=800, type=int, help="Maximum number of epochs for the scheduler") + parser.add_argument('--max_epoch', default=400, type=int, help="Stop training at this epoch") + parser.add_argument('--accum_iter', default=1, type=int, help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)") + parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)") + parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') + parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR', help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') + parser.add_argument('--min_lr', type=float, default=0., metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') + parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR') + parser.add_argument('--amp', type=int, default=1, choices=[0,1], help="Use Automatic Mixed Precision for pretraining") + # others + parser.add_argument('--num_workers', default=8, type=int) + parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') + parser.add_argument('--local_rank', default=-1, type=int) + parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') + parser.add_argument('--save_freq', default=1, type=int, help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth') + parser.add_argument('--keep_freq', default=20, type=int, help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth') + parser.add_argument('--print_freq', default=20, type=int, help='frequence (number of iterations) to print infos while training') + # paths + parser.add_argument('--output_dir', default='./output/', type=str, help="path where to save the output") + parser.add_argument('--data_dir', default='./data/', type=str, help="path where data are stored") + return parser + + + + +def main(args): + misc.init_distributed_mode(args) + global_rank = misc.get_rank() + world_size = misc.get_world_size() + + print("output_dir: "+args.output_dir) + if args.output_dir: + Path(args.output_dir).mkdir(parents=True, exist_ok=True) + + # auto resume + last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth') + args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None + + print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) + print("{}".format(args).replace(', ', ',\n')) + + device = "cuda" if torch.cuda.is_available() else "cpu" + device = torch.device(device) + + # fix the seed + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + + cudnn.benchmark = True + + ## training dataset and loader + print('Building dataset for {:s} with transforms {:s}'.format(args.dataset, args.transforms)) + dataset = PairsDataset(args.dataset, trfs=args.transforms, data_dir=args.data_dir) + if world_size>1: + sampler_train = torch.utils.data.DistributedSampler( + dataset, num_replicas=world_size, rank=global_rank, shuffle=True + ) + print("Sampler_train = %s" % str(sampler_train)) + else: + sampler_train = torch.utils.data.RandomSampler(dataset) + data_loader_train = torch.utils.data.DataLoader( + dataset, sampler=sampler_train, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=True, + drop_last=True, + ) + + ## model + print('Loading model: {:s}'.format(args.model)) + model = eval(args.model) + print('Loading criterion: MaskedMSE(norm_pix_loss={:s})'.format(str(bool(args.norm_pix_loss)))) + criterion = MaskedMSE(norm_pix_loss=bool(args.norm_pix_loss)) + + model.to(device) + model_without_ddp = model + print("Model = %s" % str(model_without_ddp)) + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + if args.lr is None: # only base_lr is specified + args.lr = args.blr * eff_batch_size / 256 + print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) + print("actual lr: %.2e" % args.lr) + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True) + model_without_ddp = model.module + + param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) # following timm: set wd as 0 for bias and norm layers + optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) + print(optimizer) + loss_scaler = NativeScaler() + + misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) + + if global_rank == 0 and args.output_dir is not None: + log_writer = SummaryWriter(log_dir=args.output_dir) + else: + log_writer = None + + print(f"Start training until {args.max_epoch} epochs") + start_time = time.time() + for epoch in range(args.start_epoch, args.max_epoch): + if world_size>1: + data_loader_train.sampler.set_epoch(epoch) + + train_stats = train_one_epoch( + model, criterion, data_loader_train, + optimizer, device, epoch, loss_scaler, + log_writer=log_writer, + args=args + ) + + if args.output_dir and epoch % args.save_freq == 0 : + misc.save_model( + args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch, fname='last') + + if args.output_dir and (epoch % args.keep_freq == 0 or epoch + 1 == args.max_epoch) and (epoch>0 or args.max_epoch==1): + misc.save_model( + args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch) + + log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, + 'epoch': epoch,} + + if args.output_dir and misc.is_main_process(): + if log_writer is not None: + log_writer.flush() + with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: + f.write(json.dumps(log_stats) + "\n") + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('Training time {}'.format(total_time_str)) + + + + +def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, + data_loader: Iterable, optimizer: torch.optim.Optimizer, + device: torch.device, epoch: int, loss_scaler, + log_writer=None, + args=None): + model.train(True) + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) + header = 'Epoch: [{}]'.format(epoch) + accum_iter = args.accum_iter + + optimizer.zero_grad() + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + for data_iter_step, (image1, image2) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)): + + # we use a per iteration lr scheduler + if data_iter_step % accum_iter == 0: + misc.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) + + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + with torch.cuda.amp.autocast(enabled=bool(args.amp)): + out, mask, target = model(image1, image2) + loss = criterion(out, mask, target) + + loss_value = loss.item() + + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value)) + sys.exit(1) + + loss /= accum_iter + loss_scaler(loss, optimizer, parameters=model.parameters(), + update_grad=(data_iter_step + 1) % accum_iter == 0) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + torch.cuda.synchronize() + + metric_logger.update(loss=loss_value) + + lr = optimizer.param_groups[0]["lr"] + metric_logger.update(lr=lr) + + loss_value_reduce = misc.all_reduce_mean(loss_value) + if log_writer is not None and ((data_iter_step + 1) % (accum_iter*args.print_freq)) == 0: + # x-axis is based on epoch_1000x in the tensorboard, calibrating differences curves when batch size changes + epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) + log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x) + log_writer.add_scalar('lr', lr, epoch_1000x) + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} + + + +if __name__ == '__main__': + args = get_args_parser() + args = args.parse_args() + main(args) diff --git a/modules/croco/stereoflow/README.MD b/modules/croco/stereoflow/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..81595380fadd274b523e0cf77921b1b65cbedb34 --- /dev/null +++ b/modules/croco/stereoflow/README.MD @@ -0,0 +1,318 @@ +## CroCo-Stereo and CroCo-Flow + +This README explains how to use CroCo-Stereo and CroCo-Flow as well as how they were trained. +All commands should be launched from the root directory. + +### Simple inference example + +We provide a simple inference exemple for CroCo-Stereo and CroCo-Flow in the Totebook `croco-stereo-flow-demo.ipynb`. +Before running it, please download the trained models with: +``` +bash stereoflow/download_model.sh crocostereo.pth +bash stereoflow/download_model.sh crocoflow.pth +``` + +### Prepare data for training or evaluation + +Put the datasets used for training/evaluation in `./data/stereoflow` (or update the paths at the top of `stereoflow/datasets_stereo.py` and `stereoflow/datasets_flow.py`). +Please find below on the file structure should look for each dataset: +
+FlyingChairs + +``` +./data/stereoflow/FlyingChairs/ +└───chairs_split.txt +└───data/ + └─── ... +``` +
+ +
+MPI-Sintel + +``` +./data/stereoflow/MPI-Sintel/ +└───training/ +│ └───clean/ +│ └───final/ +│ └───flow/ +└───test/ + └───clean/ + └───final/ +``` +
+ +
+SceneFlow (including FlyingThings) + +``` +./data/stereoflow/SceneFlow/ +└───Driving/ +│ └───disparity/ +│ └───frames_cleanpass/ +│ └───frames_finalpass/ +└───FlyingThings/ +│ └───disparity/ +│ └───frames_cleanpass/ +│ └───frames_finalpass/ +│ └───optical_flow/ +└───Monkaa/ + └───disparity/ + └───frames_cleanpass/ + └───frames_finalpass/ +``` +
+ +
+TartanAir + +``` +./data/stereoflow/TartanAir/ +└───abandonedfactory/ +│ └───.../ +└───abandonedfactory_night/ +│ └───.../ +└───.../ +``` +
+ +
+Booster + +``` +./data/stereoflow/booster_gt/ +└───train/ + └───balanced/ + └───Bathroom/ + └───Bedroom/ + └───... +``` +
+ +
+CREStereo + +``` +./data/stereoflow/crenet_stereo_trainset/ +└───stereo_trainset/ + └───crestereo/ + └───hole/ + └───reflective/ + └───shapenet/ + └───tree/ +``` +
+ +
+ETH3D Two-view Low-res + +``` +./data/stereoflow/eth3d_lowres/ +└───test/ +│ └───lakeside_1l/ +│ └───... +└───train/ +│ └───delivery_area_1l/ +│ └───... +└───train_gt/ + └───delivery_area_1l/ + └───... +``` +
+ +
+KITTI 2012 + +``` +./data/stereoflow/kitti-stereo-2012/ +└───testing/ +│ └───colored_0/ +│ └───colored_1/ +└───training/ + └───colored_0/ + └───colored_1/ + └───disp_occ/ + └───flow_occ/ +``` +
+ +
+KITTI 2015 + +``` +./data/stereoflow/kitti-stereo-2015/ +└───testing/ +│ └───image_2/ +│ └───image_3/ +└───training/ + └───image_2/ + └───image_3/ + └───disp_occ_0/ + └───flow_occ/ +``` +
+ +
+Middlebury + +``` +./data/stereoflow/middlebury +└───2005/ +│ └───train/ +│ └───Art/ +│ └───... +└───2006/ +│ └───Aloe/ +│ └───Baby1/ +│ └───... +└───2014/ +│ └───Adirondack-imperfect/ +│ └───Adirondack-perfect/ +│ └───... +└───2021/ +│ └───data/ +│ └───artroom1/ +│ └───artroom2/ +│ └───... +└───MiddEval3_F/ + └───test/ + │ └───Australia/ + │ └───... + └───train/ + └───Adirondack/ + └───... +``` +
+ +
+Spring + +``` +./data/stereoflow/spring/ +└───test/ +│ └───0003/ +│ └───... +└───train/ + └───0001/ + └───... +``` +
+ + +### CroCo-Stereo + +##### Main model + +The main training of CroCo-Stereo was performed on a series of datasets, and it was used as it for Middlebury v3 benchmark. + +``` +# Download the model +bash stereoflow/download_model.sh crocostereo.pth +# Middlebury v3 submission +python stereoflow/test.py --model stereoflow_models/crocostereo.pth --dataset "MdEval3('all_full')" --save submission --tile_overlap 0.9 +# Training command that was used, using checkpoint-last.pth +python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ +# or it can be launched on multiple gpus (while maintaining the effective batch size), e.g. on 3 gpus: +torchrun --nproc_per_node 3 stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 2 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ +``` + +For evaluation of validation set, we also provide the model trained on the `subtrain` subset of the training sets. + +``` +# Download the model +bash stereoflow/download_model.sh crocostereo_subtrain.pth +# Evaluation on validation sets +python stereoflow/test.py --model stereoflow_models/crocostereo_subtrain.pth --dataset "MdEval3('subval_full')+ETH3DLowRes('subval')+SceneFlow('test_finalpass')+SceneFlow('test_cleanpass')" --save metrics --tile_overlap 0.9 +# Training command that was used (same as above but on subtrain, using checkpoint-best.pth), can also be launched on multiple gpus +python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('subtrain')+50*Md05('subtrain')+50*Md06('subtrain')+50*Md14('subtrain')+50*Md21('subtrain')+50*MdEval3('subtrain_full')+Booster('subtrain_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_subtrain/ +``` + +##### Other models + +
+ Model for ETH3D + The model used for the submission on ETH3D is trained with the same command but using an unbounded Laplacian loss. + + # Download the model + bash stereoflow/download_model.sh crocostereo_eth3d.pth + # ETH3D submission + python stereoflow/test.py --model stereoflow_models/crocostereo_eth3d.pth --dataset "ETH3DLowRes('all')" --save submission --tile_overlap 0.9 + # Training command that was used + python -u stereoflow/train.py stereo --criterion "LaplacianLoss()" --tile_conf_mode conf_expbeta3 --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_eth3d/ + +
+ +
+ Main model finetuned on Kitti + + # Download the model + bash stereoflow/download_model.sh crocostereo_finetune_kitti.pth + # Kitti submission + python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.9 + # Training that was used + python -u stereoflow/train.py stereo --crop 352 1216 --criterion "LaplacianLossBounded2()" --dataset "Kitti12('train')+Kitti15('train')" --lr 3e-5 --batch_size 1 --accum_iter 6 --epochs 20 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_kitti/ --save_every 5 +
+ +
+ Main model finetuned on Spring + + # Download the model + bash stereoflow/download_model.sh crocostereo_finetune_spring.pth + # Spring submission + python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 + # Training command that was used + python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "Spring('train')" --lr 3e-5 --batch_size 6 --epochs 8 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_spring/ +
+ +
+ Smaller models + To train CroCo-Stereo with smaller CroCo pretrained models, simply replace the --pretrained argument. To download the smaller CroCo-Stereo models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use bash stereoflow/download_model.sh crocostereo_subtrain_vitb_smalldecoder.pth, and for the model with a ViT-Base encoder and a Base decoder, use bash stereoflow/download_model.sh crocostereo_subtrain_vitb_basedecoder.pth. +
+ + +### CroCo-Flow + +##### Main model + +The main training of CroCo-Flow was performed on the FlyingThings, FlyingChairs, MPI-Sintel and TartanAir datasets. +It was used for our submission to the MPI-Sintel benchmark. + +``` +# Download the model +bash stereoflow/download_model.sh crocoflow.pth +# Evaluation +python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --save metrics --tile_overlap 0.9 +# Sintel submission +python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('test_allpass')" --save submission --tile_overlap 0.9 +# Training command that was used, with checkpoint-best.pth +python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "40*MPISintel('subtrain_cleanpass')+40*MPISintel('subtrain_finalpass')+4*FlyingThings('train_allpass')+4*FlyingChairs('train')+TartanAir('train')" --val_dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --lr 2e-5 --batch_size 8 --epochs 240 --img_per_epoch 30000 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocoflow/main/ +``` + +##### Other models + +
+ Main model finetuned on Kitti + + # Download the model + bash stereoflow/download_model.sh crocoflow_finetune_kitti.pth + # Kitti submission + python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.99 + # Training that was used, with checkpoint-last.pth + python -u stereoflow/train.py flow --crop 352 1216 --criterion "LaplacianLossBounded()" --dataset "Kitti15('train')+Kitti12('train')" --lr 2e-5 --batch_size 1 --accum_iter 8 --epochs 150 --save_every 5 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_kitti/ +
+ +
+ Main model finetuned on Spring + + # Download the model + bash stereoflow/download_model.sh crocoflow_finetune_spring.pth + # Spring submission + python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 + # Training command that was used, with checkpoint-last.pth + python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "Spring('train')" --lr 2e-5 --batch_size 8 --epochs 12 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_spring/ +
+ +
+ Smaller models + To train CroCo-Flow with smaller CroCo pretrained models, simply replace the --pretrained argument. To download the smaller CroCo-Flow models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use bash stereoflow/download_model.sh crocoflow_vitb_smalldecoder.pth, and for the model with a ViT-Base encoder and a Base decoder, use bash stereoflow/download_model.sh crocoflow_vitb_basedecoder.pth. +
diff --git a/modules/croco/stereoflow/augmentor.py b/modules/croco/stereoflow/augmentor.py new file mode 100644 index 0000000000000000000000000000000000000000..69e6117151988d94cbc4b385e0d88e982133bf10 --- /dev/null +++ b/modules/croco/stereoflow/augmentor.py @@ -0,0 +1,290 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Data augmentation for training stereo and flow +# -------------------------------------------------------- + +# References +# https://github.com/autonomousvision/unimatch/blob/master/dataloader/stereo/transforms.py +# https://github.com/autonomousvision/unimatch/blob/master/dataloader/flow/transforms.py + + +import numpy as np +import random +from PIL import Image + +import cv2 +cv2.setNumThreads(0) +cv2.ocl.setUseOpenCL(False) + +import torch +from torchvision.transforms import ColorJitter +import torchvision.transforms.functional as FF + +class StereoAugmentor(object): + + def __init__(self, crop_size, scale_prob=0.5, scale_xonly=True, lhth=800., lminscale=0.0, lmaxscale=1.0, hminscale=-0.2, hmaxscale=0.4, scale_interp_nearest=True, rightjitterprob=0.5, v_flip_prob=0.5, color_aug_asym=True, color_choice_prob=0.5): + self.crop_size = crop_size + self.scale_prob = scale_prob + self.scale_xonly = scale_xonly + self.lhth = lhth + self.lminscale = lminscale + self.lmaxscale = lmaxscale + self.hminscale = hminscale + self.hmaxscale = hmaxscale + self.scale_interp_nearest = scale_interp_nearest + self.rightjitterprob = rightjitterprob + self.v_flip_prob = v_flip_prob + self.color_aug_asym = color_aug_asym + self.color_choice_prob = color_choice_prob + + def _random_scale(self, img1, img2, disp): + ch,cw = self.crop_size + h,w = img1.shape[:2] + if self.scale_prob>0. and np.random.rand()1.: + scale_x = clip_scale + scale_y = scale_x if not self.scale_xonly else 1.0 + img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + disp = cv2.resize(disp, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR if not self.scale_interp_nearest else cv2.INTER_NEAREST) * scale_x + return img1, img2, disp + + def _random_crop(self, img1, img2, disp): + h,w = img1.shape[:2] + ch,cw = self.crop_size + assert ch<=h and cw<=w, (img1.shape, h,w,ch,cw) + offset_x = np.random.randint(w - cw + 1) + offset_y = np.random.randint(h - ch + 1) + img1 = img1[offset_y:offset_y+ch,offset_x:offset_x+cw] + img2 = img2[offset_y:offset_y+ch,offset_x:offset_x+cw] + disp = disp[offset_y:offset_y+ch,offset_x:offset_x+cw] + return img1, img2, disp + + def _random_vflip(self, img1, img2, disp): + # vertical flip + if self.v_flip_prob>0 and np.random.rand() < self.v_flip_prob: + img1 = np.copy(np.flipud(img1)) + img2 = np.copy(np.flipud(img2)) + disp = np.copy(np.flipud(disp)) + return img1, img2, disp + + def _random_rotate_shift_right(self, img2): + if self.rightjitterprob>0. and np.random.rand() 0) & (xx < wd1) & (yy > 0) & (yy < ht1) + xx = xx[v] + yy = yy[v] + flow1 = flow1[v] + + flow = np.inf * np.ones([ht1, wd1, 2], dtype=np.float32) # invalid value every where, before we fill it with the correct ones + flow[yy, xx] = flow1 + return flow + + def spatial_transform(self, img1, img2, flow, dname): + + if np.random.rand() < self.spatial_aug_prob: + # randomly sample scale + ht, wd = img1.shape[:2] + clip_min_scale = np.maximum( + (self.crop_size[0] + 8) / float(ht), + (self.crop_size[1] + 8) / float(wd)) + min_scale, max_scale = self.min_scale, self.max_scale + scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) + scale_x = scale + scale_y = scale + if np.random.rand() < self.stretch_prob: + scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + scale_x = np.clip(scale_x, clip_min_scale, None) + scale_y = np.clip(scale_y, clip_min_scale, None) + # rescale the images + img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) + flow = self._resize_flow(flow, scale_x, scale_y, factor=2.0 if dname=='Spring' else 1.0) + elif dname=="Spring": + flow = self._resize_flow(flow, 1.0, 1.0, factor=2.0) + + if self.h_flip_prob>0. and np.random.rand() < self.h_flip_prob: # h-flip + img1 = img1[:, ::-1] + img2 = img2[:, ::-1] + flow = flow[:, ::-1] * [-1.0, 1.0] + + if self.v_flip_prob>0. and np.random.rand() < self.v_flip_prob: # v-flip + img1 = img1[::-1, :] + img2 = img2[::-1, :] + flow = flow[::-1, :] * [1.0, -1.0] + + # In case no cropping + if img1.shape[0] - self.crop_size[0] > 0: + y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0]) + else: + y0 = 0 + if img1.shape[1] - self.crop_size[1] > 0: + x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1]) + else: + x0 = 0 + + img1 = img1[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + img2 = img2[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + flow = flow[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]] + + return img1, img2, flow + + def __call__(self, img1, img2, flow, dname): + img1, img2, flow = self.spatial_transform(img1, img2, flow, dname) + img1, img2 = self.color_transform(img1, img2) + img1 = np.ascontiguousarray(img1) + img2 = np.ascontiguousarray(img2) + flow = np.ascontiguousarray(flow) + return img1, img2, flow \ No newline at end of file diff --git a/modules/croco/stereoflow/criterion.py b/modules/croco/stereoflow/criterion.py new file mode 100644 index 0000000000000000000000000000000000000000..57792ebeeee34827b317a4d32b7445837bb33f17 --- /dev/null +++ b/modules/croco/stereoflow/criterion.py @@ -0,0 +1,251 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Losses, metrics per batch, metrics per dataset +# -------------------------------------------------------- + +import torch +from torch import nn +import torch.nn.functional as F + +def _get_gtnorm(gt): + if gt.size(1)==1: # stereo + return gt + # flow + return torch.sqrt(torch.sum(gt**2, dim=1, keepdims=True)) # Bx1xHxW + +############ losses without confidence + +class L1Loss(nn.Module): + + def __init__(self, max_gtnorm=None): + super().__init__() + self.max_gtnorm = max_gtnorm + self.with_conf = False + + def _error(self, gt, predictions): + return torch.abs(gt-predictions) + + def forward(self, predictions, gt, inspect=False): + mask = torch.isfinite(gt) + if self.max_gtnorm is not None: + mask *= _get_gtnorm(gt).expand(-1,gt.size(1),-1,-1) which is a constant + + +class LaplacianLossBounded(nn.Module): # used for CroCo-Flow ; in the equation of the paper, we have a=1/b + def __init__(self, max_gtnorm=10000., a=0.25, b=4.): + super().__init__() + self.max_gtnorm = max_gtnorm + self.with_conf = True + self.a, self.b = a, b + + def forward(self, predictions, gt, conf): + mask = torch.isfinite(gt) + mask = mask[:,0,:,:] + if self.max_gtnorm is not None: mask *= _get_gtnorm(gt)[:,0,:,:] which is a constant + +class LaplacianLossBounded2(nn.Module): # used for CroCo-Stereo (except for ETH3D) ; in the equation of the paper, we have a=b + def __init__(self, max_gtnorm=None, a=3.0, b=3.0): + super().__init__() + self.max_gtnorm = max_gtnorm + self.with_conf = True + self.a, self.b = a, b + + def forward(self, predictions, gt, conf): + mask = torch.isfinite(gt) + mask = mask[:,0,:,:] + if self.max_gtnorm is not None: mask *= _get_gtnorm(gt)[:,0,:,:] which is a constant + +############## metrics per batch + +class StereoMetrics(nn.Module): + + def __init__(self, do_quantile=False): + super().__init__() + self.bad_ths = [0.5,1,2,3] + self.do_quantile = do_quantile + + def forward(self, predictions, gt): + B = predictions.size(0) + metrics = {} + gtcopy = gt.clone() + mask = torch.isfinite(gtcopy) + gtcopy[~mask] = 999999.0 # we make a copy and put a non-infinite value, such that it does not become nan once multiplied by the mask value 0 + Npx = mask.view(B,-1).sum(dim=1) + L1error = (torch.abs(gtcopy-predictions)*mask).view(B,-1) + L2error = (torch.square(gtcopy-predictions)*mask).view(B,-1) + # avgerr + metrics['avgerr'] = torch.mean(L1error.sum(dim=1)/Npx ) + # rmse + metrics['rmse'] = torch.sqrt(L2error.sum(dim=1)/Npx).mean(dim=0) + # err > t for t in [0.5,1,2,3] + for ths in self.bad_ths: + metrics['bad@{:.1f}'.format(ths)] = (((L1error>ths)* mask.view(B,-1)).sum(dim=1)/Npx).mean(dim=0) * 100 + return metrics + +class FlowMetrics(nn.Module): + def __init__(self): + super().__init__() + self.bad_ths = [1,3,5] + + def forward(self, predictions, gt): + B = predictions.size(0) + metrics = {} + mask = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite + Npx = mask.view(B,-1).sum(dim=1) + gtcopy = gt.clone() # to compute L1/L2 error, we need to have non-infinite value, the error computed at this locations will be ignored + gtcopy[:,0,:,:][~mask] = 999999.0 + gtcopy[:,1,:,:][~mask] = 999999.0 + L1error = (torch.abs(gtcopy-predictions).sum(dim=1)*mask).view(B,-1) + L2error = (torch.sqrt(torch.sum(torch.square(gtcopy-predictions),dim=1))*mask).view(B,-1) + metrics['L1err'] = torch.mean(L1error.sum(dim=1)/Npx ) + metrics['EPE'] = torch.mean(L2error.sum(dim=1)/Npx ) + for ths in self.bad_ths: + metrics['bad@{:.1f}'.format(ths)] = (((L2error>ths)* mask.view(B,-1)).sum(dim=1)/Npx).mean(dim=0) * 100 + return metrics + +############## metrics per dataset +## we update the average and maintain the number of pixels while adding data batch per batch +## at the beggining, call reset() +## after each batch, call add_batch(...) +## at the end: call get_results() + +class StereoDatasetMetrics(nn.Module): + + def __init__(self): + super().__init__() + self.bad_ths = [0.5,1,2,3] + + def reset(self): + self.agg_N = 0 # number of pixels so far + self.agg_L1err = torch.tensor(0.0) # L1 error so far + self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels + self._metrics = None + + def add_batch(self, predictions, gt): + assert predictions.size(1)==1, predictions.size() + assert gt.size(1)==1, gt.size() + if gt.size(2)==predictions.size(2)*2 and gt.size(3)==predictions.size(3)*2: # special case for Spring ... + L1err = torch.minimum( torch.minimum( torch.minimum( + torch.sum(torch.abs(gt[:,:,0::2,0::2]-predictions),dim=1), + torch.sum(torch.abs(gt[:,:,1::2,0::2]-predictions),dim=1)), + torch.sum(torch.abs(gt[:,:,0::2,1::2]-predictions),dim=1)), + torch.sum(torch.abs(gt[:,:,1::2,1::2]-predictions),dim=1)) + valid = torch.isfinite(L1err) + else: + valid = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite + L1err = torch.sum(torch.abs(gt-predictions),dim=1) + N = valid.sum() + Nnew = self.agg_N + N + self.agg_L1err = float(self.agg_N)/Nnew * self.agg_L1err + L1err[valid].mean().cpu() * float(N)/Nnew + self.agg_N = Nnew + for i,th in enumerate(self.bad_ths): + self.agg_Nbad[i] += (L1err[valid]>th).sum().cpu() + + def _compute_metrics(self): + if self._metrics is not None: return + out = {} + out['L1err'] = self.agg_L1err.item() + for i,th in enumerate(self.bad_ths): + out['bad@{:.1f}'.format(th)] = (float(self.agg_Nbad[i]) / self.agg_N).item() * 100.0 + self._metrics = out + + def get_results(self): + self._compute_metrics() # to avoid recompute them multiple times + return self._metrics + +class FlowDatasetMetrics(nn.Module): + + def __init__(self): + super().__init__() + self.bad_ths = [0.5,1,3,5] + self.speed_ths = [(0,10),(10,40),(40,torch.inf)] + + def reset(self): + self.agg_N = 0 # number of pixels so far + self.agg_L1err = torch.tensor(0.0) # L1 error so far + self.agg_L2err = torch.tensor(0.0) # L2 (=EPE) error so far + self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels + self.agg_EPEspeed = [torch.tensor(0.0) for _ in self.speed_ths] # EPE per speed bin so far + self.agg_Nspeed = [0 for _ in self.speed_ths] # N pixels per speed bin so far + self._metrics = None + self.pairname_results = {} + + def add_batch(self, predictions, gt): + assert predictions.size(1)==2, predictions.size() + assert gt.size(1)==2, gt.size() + if gt.size(2)==predictions.size(2)*2 and gt.size(3)==predictions.size(3)*2: # special case for Spring ... + L1err = torch.minimum( torch.minimum( torch.minimum( + torch.sum(torch.abs(gt[:,:,0::2,0::2]-predictions),dim=1), + torch.sum(torch.abs(gt[:,:,1::2,0::2]-predictions),dim=1)), + torch.sum(torch.abs(gt[:,:,0::2,1::2]-predictions),dim=1)), + torch.sum(torch.abs(gt[:,:,1::2,1::2]-predictions),dim=1)) + L2err = torch.minimum( torch.minimum( torch.minimum( + torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,0::2]-predictions),dim=1)), + torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,0::2]-predictions),dim=1))), + torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,1::2]-predictions),dim=1))), + torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,1::2]-predictions),dim=1))) + valid = torch.isfinite(L1err) + gtspeed = (torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,0::2]),dim=1)) + torch.sqrt(torch.sum(torch.square(gt[:,:,0::2,1::2]),dim=1)) +\ + torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,0::2]),dim=1)) + torch.sqrt(torch.sum(torch.square(gt[:,:,1::2,1::2]),dim=1)) ) / 4.0 # let's just average them + else: + valid = torch.isfinite(gt[:,0,:,:]) # both x and y would be infinite + L1err = torch.sum(torch.abs(gt-predictions),dim=1) + L2err = torch.sqrt(torch.sum(torch.square(gt-predictions),dim=1)) + gtspeed = torch.sqrt(torch.sum(torch.square(gt),dim=1)) + N = valid.sum() + Nnew = self.agg_N + N + self.agg_L1err = float(self.agg_N)/Nnew * self.agg_L1err + L1err[valid].mean().cpu() * float(N)/Nnew + self.agg_L2err = float(self.agg_N)/Nnew * self.agg_L2err + L2err[valid].mean().cpu() * float(N)/Nnew + self.agg_N = Nnew + for i,th in enumerate(self.bad_ths): + self.agg_Nbad[i] += (L2err[valid]>th).sum().cpu() + for i,(th1,th2) in enumerate(self.speed_ths): + vv = (gtspeed[valid]>=th1) * (gtspeed[valid] don't use batch_size>1 at test time) + self._prepare_data() + self._load_or_build_cache() + + def prepare_data(self): + """ + to be defined for each dataset + """ + raise NotImplementedError + + def __len__(self): + return len(self.pairnames) # each pairname is typically of the form (str, int1, int2) + + def __getitem__(self, index): + pairname = self.pairnames[index] + + # get filenames + img1name = self.pairname_to_img1name(pairname) + img2name = self.pairname_to_img2name(pairname) + flowname = self.pairname_to_flowname(pairname) if self.pairname_to_flowname is not None else None + + # load images and disparities + img1 = _read_img(img1name) + img2 = _read_img(img2name) + flow = self.load_flow(flowname) if flowname is not None else None + + # apply augmentations + if self.augmentor is not None: + img1, img2, flow = self.augmentor(img1, img2, flow, self.name) + + if self.totensor: + img1 = img_to_tensor(img1) + img2 = img_to_tensor(img2) + if flow is not None: + flow = flow_to_tensor(flow) + else: + flow = torch.tensor([]) # to allow dataloader batching with default collate_gn + pairname = str(pairname) # transform potential tuple to str to be able to batch it + + return img1, img2, flow, pairname + + def __rmul__(self, v): + self.rmul *= v + self.pairnames = v * self.pairnames + return self + + def __str__(self): + return f'{self.__class__.__name__}_{self.split}' + + def __repr__(self): + s = f'{self.__class__.__name__}(split={self.split}, augmentor={self.augmentor_str}, crop_size={str(self.crop_size)}, totensor={self.totensor})' + if self.rmul==1: + s+=f'\n\tnum pairs: {len(self.pairnames)}' + else: + s+=f'\n\tnum pairs: {len(self.pairnames)} ({len(self.pairnames)//self.rmul}x{self.rmul})' + return s + + def _set_root(self): + self.root = dataset_to_root[self.name] + assert os.path.isdir(self.root), f"could not find root directory for dataset {self.name}: {self.root}" + + def _load_or_build_cache(self): + cache_file = osp.join(cache_dir, self.name+'.pkl') + if osp.isfile(cache_file): + with open(cache_file, 'rb') as fid: + self.pairnames = pickle.load(fid)[self.split] + else: + tosave = self._build_cache() + os.makedirs(cache_dir, exist_ok=True) + with open(cache_file, 'wb') as fid: + pickle.dump(tosave, fid) + self.pairnames = tosave[self.split] + +class TartanAirDataset(FlowDataset): + + def _prepare_data(self): + self.name = "TartanAir" + self._set_root() + assert self.split in ['train'] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, pairname[0], 'image_left/{:06d}_left.png'.format(pairname[1])) + self.pairname_to_img2name = lambda pairname: osp.join(self.root, pairname[0], 'image_left/{:06d}_left.png'.format(pairname[2])) + self.pairname_to_flowname = lambda pairname: osp.join(self.root, pairname[0], 'flow/{:06d}_{:06d}_flow.npy'.format(pairname[1],pairname[2])) + self.pairname_to_str = lambda pairname: os.path.join(pairname[0][pairname[0].find('/')+1:], '{:06d}_{:06d}'.format(pairname[1], pairname[2])) + self.load_flow = _read_numpy_flow + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + pairs = [(osp.join(s,s,difficulty,Pxxx),int(a[:6]),int(a[:6])+1) for s in seqs for difficulty in ['Easy','Hard'] for Pxxx in sorted(os.listdir(osp.join(self.root,s,s,difficulty))) for a in sorted(os.listdir(osp.join(self.root,s,s,difficulty,Pxxx,'image_left/')))[:-1]] + assert len(pairs)==306268, "incorrect parsing of pairs in TartanAir" + tosave = {'train': pairs} + return tosave + +class FlyingChairsDataset(FlowDataset): + + def _prepare_data(self): + self.name = "FlyingChairs" + self._set_root() + assert self.split in ['train','val'] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, 'data', pairname+'_img1.ppm') + self.pairname_to_img2name = lambda pairname: osp.join(self.root, 'data', pairname+'_img2.ppm') + self.pairname_to_flowname = lambda pairname: osp.join(self.root, 'data', pairname+'_flow.flo') + self.pairname_to_str = lambda pairname: pairname + self.load_flow = _read_flo_file + + def _build_cache(self): + split_file = osp.join(self.root, 'chairs_split.txt') + split_list = np.loadtxt(split_file, dtype=np.int32) + trainpairs = ['{:05d}'.format(i) for i in np.where(split_list==1)[0]+1] + valpairs = ['{:05d}'.format(i) for i in np.where(split_list==2)[0]+1] + assert len(trainpairs)==22232 and len(valpairs)==640, "incorrect parsing of pairs in MPI-Sintel" + tosave = {'train': trainpairs, 'val': valpairs} + return tosave + +class FlyingThingsDataset(FlowDataset): + + def _prepare_data(self): + self.name = "FlyingThings" + self._set_root() + assert self.split in [f'{set_}_{pass_}pass{camstr}' for set_ in ['train','test','test1024'] for camstr in ['','_rightcam'] for pass_ in ['clean','final','all']] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, f'frames_{pairname[3]}pass', pairname[0].replace('into_future','').replace('into_past',''), '{:04d}.png'.format(pairname[1])) + self.pairname_to_img2name = lambda pairname: osp.join(self.root, f'frames_{pairname[3]}pass', pairname[0].replace('into_future','').replace('into_past',''), '{:04d}.png'.format(pairname[2])) + self.pairname_to_flowname = lambda pairname: osp.join(self.root, 'optical_flow', pairname[0], 'OpticalFlowInto{f:s}_{i:04d}_{c:s}.pfm'.format(f='Future' if 'future' in pairname[0] else 'Past', i=pairname[1], c='L' if 'left' in pairname[0] else 'R' )) + self.pairname_to_str = lambda pairname: os.path.join(pairname[3]+'pass', pairname[0], 'Into{f:s}_{i:04d}_{c:s}'.format(f='Future' if 'future' in pairname[0] else 'Past', i=pairname[1], c='L' if 'left' in pairname[0] else 'R' )) + self.load_flow = _read_pfm_flow + + def _build_cache(self): + tosave = {} + # train and test splits for the different passes + for set_ in ['train', 'test']: + sroot = osp.join(self.root, 'optical_flow', set_.upper()) + fname_to_i = lambda f: int(f[len('OpticalFlowIntoFuture_'):-len('_L.pfm')]) + pp = [(osp.join(set_.upper(), d, s, 'into_future/left'),fname_to_i(fname)) for d in sorted(os.listdir(sroot)) for s in sorted(os.listdir(osp.join(sroot,d))) for fname in sorted(os.listdir(osp.join(sroot,d, s, 'into_future/left')))[:-1]] + pairs = [(a,i,i+1) for a,i in pp] + pairs += [(a.replace('into_future','into_past'),i+1,i) for a,i in pp] + assert len(pairs)=={'train': 40302, 'test': 7866}[set_], "incorrect parsing of pairs Flying Things" + for cam in ['left','right']: + camstr = '' if cam=='left' else f'_{cam}cam' + for pass_ in ['final', 'clean']: + tosave[f'{set_}_{pass_}pass{camstr}'] = [(a.replace('left',cam),i,j,pass_) for a,i,j in pairs] + tosave[f'{set_}_allpass{camstr}'] = tosave[f'{set_}_cleanpass{camstr}'] + tosave[f'{set_}_finalpass{camstr}'] + # test1024: this is the same split as unimatch 'validation' split + # see https://github.com/autonomousvision/unimatch/blob/master/dataloader/flow/datasets.py#L229 + test1024_nsamples = 1024 + alltest_nsamples = len(tosave['test_cleanpass']) # 7866 + stride = alltest_nsamples // test1024_nsamples + remove = alltest_nsamples % test1024_nsamples + for cam in ['left','right']: + camstr = '' if cam=='left' else f'_{cam}cam' + for pass_ in ['final','clean']: + tosave[f'test1024_{pass_}pass{camstr}'] = sorted(tosave[f'test_{pass_}pass{camstr}'])[:-remove][::stride] # warning, it was not sorted before + assert len(tosave['test1024_cleanpass'])==1024, "incorrect parsing of pairs in Flying Things" + tosave[f'test1024_allpass{camstr}'] = tosave[f'test1024_cleanpass{camstr}'] + tosave[f'test1024_finalpass{camstr}'] + return tosave + + +class MPISintelDataset(FlowDataset): + + def _prepare_data(self): + self.name = "MPISintel" + self._set_root() + assert self.split in [s+'_'+p for s in ['train','test','subval','subtrain'] for p in ['cleanpass','finalpass','allpass']] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, pairname[0], 'frame_{:04d}.png'.format(pairname[1])) + self.pairname_to_img2name = lambda pairname: osp.join(self.root, pairname[0], 'frame_{:04d}.png'.format(pairname[1]+1)) + self.pairname_to_flowname = lambda pairname: None if pairname[0].startswith('test/') else osp.join(self.root, pairname[0].replace('/clean/','/flow/').replace('/final/','/flow/'), 'frame_{:04d}.flo'.format(pairname[1])) + self.pairname_to_str = lambda pairname: osp.join(pairname[0], 'frame_{:04d}'.format(pairname[1])) + self.load_flow = _read_flo_file + + def _build_cache(self): + trainseqs = sorted(os.listdir(self.root+'training/clean')) + trainpairs = [ (osp.join('training/clean', s),i) for s in trainseqs for i in range(1, len(os.listdir(self.root+'training/clean/'+s)))] + subvalseqs = ['temple_2','temple_3'] + subtrainseqs = [s for s in trainseqs if s not in subvalseqs] + subvalpairs = [ (p,i) for p,i in trainpairs if any(s in p for s in subvalseqs)] + subtrainpairs = [ (p,i) for p,i in trainpairs if any(s in p for s in subtrainseqs)] + testseqs = sorted(os.listdir(self.root+'test/clean')) + testpairs = [ (osp.join('test/clean', s),i) for s in testseqs for i in range(1, len(os.listdir(self.root+'test/clean/'+s)))] + assert len(trainpairs)==1041 and len(testpairs)==552 and len(subvalpairs)==98 and len(subtrainpairs)==943, "incorrect parsing of pairs in MPI-Sintel" + tosave = {} + tosave['train_cleanpass'] = trainpairs + tosave['test_cleanpass'] = testpairs + tosave['subval_cleanpass'] = subvalpairs + tosave['subtrain_cleanpass'] = subtrainpairs + for t in ['train','test','subval','subtrain']: + tosave[t+'_finalpass'] = [(p.replace('/clean/','/final/'),i) for p,i in tosave[t+'_cleanpass']] + tosave[t+'_allpass'] = tosave[t+'_cleanpass'] + tosave[t+'_finalpass'] + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, _time): + assert prediction.shape[2]==2 + outfile = os.path.join(outdir, 'submission', self.pairname_to_str(pairname)+'.flo') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writeFlowFile(prediction, outfile) + + def finalize_submission(self, outdir): + assert self.split == 'test_allpass' + bundle_exe = "/nfs/data/ffs-3d/datasets/StereoFlow/MPI-Sintel/bundler/linux-x64/bundler" # eg + if os.path.isfile(bundle_exe): + cmd = f'{bundle_exe} "{outdir}/submission/test/clean/" "{outdir}/submission/test/final" "{outdir}/submission/bundled.lzma"' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at: "{outdir}/submission/bundled.lzma"') + else: + print('Could not find bundler executable for submission.') + print('Please download it and run:') + print(f' "{outdir}/submission/test/clean/" "{outdir}/submission/test/final" "{outdir}/submission/bundled.lzma"') + +class SpringDataset(FlowDataset): + + def _prepare_data(self): + self.name = "Spring" + self._set_root() + assert self.split in ['train','test','subtrain','subval'] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, pairname[0], pairname[1], 'frame_'+pairname[3], 'frame_{:s}_{:04d}.png'.format(pairname[3], pairname[4])) + self.pairname_to_img2name = lambda pairname: osp.join(self.root, pairname[0], pairname[1], 'frame_'+pairname[3], 'frame_{:s}_{:04d}.png'.format(pairname[3], pairname[4]+(1 if pairname[2]=='FW' else -1))) + self.pairname_to_flowname = lambda pairname: None if pairname[0]=='test' else osp.join(self.root, pairname[0], pairname[1], f'flow_{pairname[2]}_{pairname[3]}', f'flow_{pairname[2]}_{pairname[3]}_{pairname[4]:04d}.flo5') + self.pairname_to_str = lambda pairname: osp.join(pairname[0], pairname[1], f'flow_{pairname[2]}_{pairname[3]}', f'flow_{pairname[2]}_{pairname[3]}_{pairname[4]:04d}') + self.load_flow = _read_hdf5_flow + + def _build_cache(self): + # train + trainseqs = sorted(os.listdir( osp.join(self.root,'train'))) + trainpairs = [] + for leftright in ['left','right']: + for fwbw in ['FW','BW']: + trainpairs += [('train',s,fwbw,leftright,int(f[len(f'flow_{fwbw}_{leftright}_'):-len('.flo5')])) for s in trainseqs for f in sorted(os.listdir(osp.join(self.root,'train',s,f'flow_{fwbw}_{leftright}')))] + # test + testseqs = sorted(os.listdir( osp.join(self.root,'test'))) + testpairs = [] + for leftright in ['left','right']: + testpairs += [('test',s,'FW',leftright,int(f[len(f'frame_{leftright}_'):-len('.png')])) for s in testseqs for f in sorted(os.listdir(osp.join(self.root,'test',s,f'frame_{leftright}')))[:-1]] + testpairs += [('test',s,'BW',leftright,int(f[len(f'frame_{leftright}_'):-len('.png')])+1) for s in testseqs for f in sorted(os.listdir(osp.join(self.root,'test',s,f'frame_{leftright}')))[:-1]] + # subtrain / subval + subtrainpairs = [p for p in trainpairs if p[1]!='0041'] + subvalpairs = [p for p in trainpairs if p[1]=='0041'] + assert len(trainpairs)==19852 and len(testpairs)==3960 and len(subtrainpairs)==19472 and len(subvalpairs)==380, "incorrect parsing of pairs in Spring" + tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==3 + assert prediction.shape[2]==2 + assert prediction.dtype==np.float32 + outfile = osp.join(outdir, pairname[0], pairname[1], f'flow_{pairname[2]}_{pairname[3]}', f'flow_{pairname[2]}_{pairname[3]}_{pairname[4]:04d}.flo5') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writeFlo5File(prediction, outfile) + + def finalize_submission(self, outdir): + assert self.split=='test' + exe = "{self.root}/flow_subsampling" + if os.path.isfile(exe): + cmd = f'cd "{outdir}/test"; {exe} .' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/test/flow_submission.hdf5') + else: + print('Could not find flow_subsampling executable for submission.') + print('Please download it and run:') + print(f'cd "{outdir}/test"; .') + + +class Kitti12Dataset(FlowDataset): + + def _prepare_data(self): + self.name = "Kitti12" + self._set_root() + assert self.split in ['train','test'] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, pairname+'_10.png') + self.pairname_to_img2name = lambda pairname: osp.join(self.root, pairname+'_11.png') + self.pairname_to_flowname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/flow_occ/')+'_10.png') + self.pairname_to_str = lambda pairname: pairname.replace('/colored_0/','/') + self.load_flow = _read_kitti_flow + + def _build_cache(self): + trainseqs = ["training/colored_0/%06d"%(i) for i in range(194)] + testseqs = ["testing/colored_0/%06d"%(i) for i in range(195)] + assert len(trainseqs)==194 and len(testseqs)==195, "incorrect parsing of pairs in Kitti12" + tosave = {'train': trainseqs, 'test': testseqs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==3 + assert prediction.shape[2]==2 + outfile = os.path.join(outdir, pairname.split('/')[-1]+'_10.png') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writeFlowKitti(outfile, prediction) + + def finalize_submission(self, outdir): + assert self.split=='test' + cmd = f'cd {outdir}/; zip -r "kitti12_flow_results.zip" .' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/kitti12_flow_results.zip') + + +class Kitti15Dataset(FlowDataset): + + def _prepare_data(self): + self.name = "Kitti15" + self._set_root() + assert self.split in ['train','subtrain','subval','test'] + self.pairname_to_img1name = lambda pairname: osp.join(self.root, pairname+'_10.png') + self.pairname_to_img2name = lambda pairname: osp.join(self.root, pairname+'_11.png') + self.pairname_to_flowname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/flow_occ/')+'_10.png') + self.pairname_to_str = lambda pairname: pairname.replace('/image_2/','/') + self.load_flow = _read_kitti_flow + + def _build_cache(self): + trainseqs = ["training/image_2/%06d"%(i) for i in range(200)] + subtrainseqs = trainseqs[:-10] + subvalseqs = trainseqs[-10:] + testseqs = ["testing/image_2/%06d"%(i) for i in range(200)] + assert len(trainseqs)==200 and len(subtrainseqs)==190 and len(subvalseqs)==10 and len(testseqs)==200, "incorrect parsing of pairs in Kitti15" + tosave = {'train': trainseqs, 'subtrain': subtrainseqs, 'subval': subvalseqs, 'test': testseqs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==3 + assert prediction.shape[2]==2 + outfile = os.path.join(outdir, 'flow', pairname.split('/')[-1]+'_10.png') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writeFlowKitti(outfile, prediction) + + def finalize_submission(self, outdir): + assert self.split=='test' + cmd = f'cd {outdir}/; zip -r "kitti15_flow_results.zip" flow' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/kitti15_flow_results.zip') + + +import cv2 +def _read_numpy_flow(filename): + return np.load(filename) + +def _read_pfm_flow(filename): + f, _ = _read_pfm(filename) + assert np.all(f[:,:,2]==0.0) + return np.ascontiguousarray(f[:,:,:2]) + +TAG_FLOAT = 202021.25 # tag to check the sanity of the file +TAG_STRING = 'PIEH' # string containing the tag +MIN_WIDTH = 1 +MAX_WIDTH = 99999 +MIN_HEIGHT = 1 +MAX_HEIGHT = 99999 +def readFlowFile(filename): + """ + readFlowFile() reads a flow file into a 2-band np.array. + if does not exist, an IOError is raised. + if does not finish by '.flo' or the tag, the width, the height or the file's size is illegal, an Expcetion is raised. + ---- PARAMETERS ---- + filename: string containg the name of the file to read a flow + ---- OUTPUTS ---- + a np.array of dimension (height x width x 2) containing the flow of type 'float32' + """ + + # check filename + if not filename.endswith(".flo"): + raise Exception("readFlowFile({:s}): filename must finish with '.flo'".format(filename)) + + # open the file and read it + with open(filename,'rb') as f: + # check tag + tag = struct.unpack('f',f.read(4))[0] + if tag != TAG_FLOAT: + raise Exception("flow_utils.readFlowFile({:s}): wrong tag".format(filename)) + # read dimension + w,h = struct.unpack('ii',f.read(8)) + if w < MIN_WIDTH or w > MAX_WIDTH: + raise Exception("flow_utils.readFlowFile({:s}: illegal width {:d}".format(filename,w)) + if h < MIN_HEIGHT or h > MAX_HEIGHT: + raise Exception("flow_utils.readFlowFile({:s}: illegal height {:d}".format(filename,h)) + flow = np.fromfile(f,'float32') + if not flow.shape == (h*w*2,): + raise Exception("flow_utils.readFlowFile({:s}: illegal size of the file".format(filename)) + flow.shape = (h,w,2) + return flow + +def writeFlowFile(flow,filename): + """ + writeFlowFile(flow,) write flow to the file . + if does not exist, an IOError is raised. + if does not finish with '.flo' or the flow has not 2 bands, an Exception is raised. + ---- PARAMETERS ---- + flow: np.array of dimension (height x width x 2) containing the flow to write + filename: string containg the name of the file to write a flow + """ + + # check filename + if not filename.endswith(".flo"): + raise Exception("flow_utils.writeFlowFile(,{:s}): filename must finish with '.flo'".format(filename)) + + if not flow.shape[2:] == (2,): + raise Exception("flow_utils.writeFlowFile(,{:s}): must have 2 bands".format(filename)) + + + # open the file and write it + with open(filename,'wb') as f: + # write TAG + f.write( TAG_STRING.encode('utf-8') ) + # write dimension + f.write( struct.pack('ii',flow.shape[1],flow.shape[0]) ) + # write the flow + + flow.astype(np.float32).tofile(f) + +_read_flo_file = readFlowFile + +def _read_kitti_flow(filename): + flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR) + flow = flow[:, :, ::-1].astype(np.float32) + valid = flow[:, :, 2]>0 + flow = flow[:, :, :2] + flow = (flow - 2 ** 15) / 64.0 + flow[~valid,0] = np.inf + flow[~valid,1] = np.inf + return flow +_read_hd1k_flow = _read_kitti_flow + + +def writeFlowKitti(filename, uv): + uv = 64.0 * uv + 2 ** 15 + valid = np.ones([uv.shape[0], uv.shape[1], 1]) + uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) + cv2.imwrite(filename, uv[..., ::-1]) + +def writeFlo5File(flow, filename): + with h5py.File(filename, "w") as f: + f.create_dataset("flow", data=flow, compression="gzip", compression_opts=5) + +def _read_hdf5_flow(filename): + flow = np.asarray(h5py.File(filename)['flow']) + flow[np.isnan(flow)] = np.inf # make invalid values as +inf + return flow.astype(np.float32) + +# flow visualization +RY = 15 +YG = 6 +GC = 4 +CB = 11 +BM = 13 +MR = 6 +UNKNOWN_THRESH = 1e9 + +def colorTest(): + """ + flow_utils.colorTest(): display an example of image showing the color encoding scheme + """ + import matplotlib.pylab as plt + truerange = 1 + h,w = 151,151 + trange = truerange*1.04 + s2 = round(h/2) + x,y = np.meshgrid(range(w),range(h)) + u = x*trange/s2-trange + v = y*trange/s2-trange + img = _computeColor(np.concatenate((u[:,:,np.newaxis],v[:,:,np.newaxis]),2)/trange/np.sqrt(2)) + plt.imshow(img) + plt.axis('off') + plt.axhline(round(h/2),color='k') + plt.axvline(round(w/2),color='k') + +def flowToColor(flow, maxflow=None, maxmaxflow=None, saturate=False): + """ + flow_utils.flowToColor(flow): return a color code flow field, normalized based on the maximum l2-norm of the flow + flow_utils.flowToColor(flow,maxflow): return a color code flow field, normalized by maxflow + ---- PARAMETERS ---- + flow: flow to display of shape (height x width x 2) + maxflow (default:None): if given, normalize the flow by its value, otherwise by the flow norm + maxmaxflow (default:None): if given, normalize the flow by the max of its value and the flow norm + ---- OUTPUT ---- + an np.array of shape (height x width x 3) of type uint8 containing a color code of the flow + """ + h,w,n = flow.shape + # check size of flow + assert n == 2, "flow_utils.flowToColor(flow): flow must have 2 bands" + # fix unknown flow + unknown_idx = np.max(np.abs(flow),2)>UNKNOWN_THRESH + flow[unknown_idx] = 0.0 + # compute max flow if needed + if maxflow is None: + maxflow = flowMaxNorm(flow) + if maxmaxflow is not None: + maxflow = min(maxmaxflow, maxflow) + # normalize flow + eps = np.spacing(1) # minimum positive float value to avoid division by 0 + # compute the flow + img = _computeColor(flow/(maxflow+eps), saturate=saturate) + # put black pixels in unknown location + img[ np.tile( unknown_idx[:,:,np.newaxis],[1,1,3]) ] = 0.0 + return img + +def flowMaxNorm(flow): + """ + flow_utils.flowMaxNorm(flow): return the maximum of the l2-norm of the given flow + ---- PARAMETERS ---- + flow: the flow + + ---- OUTPUT ---- + a float containing the maximum of the l2-norm of the flow + """ + return np.max( np.sqrt( np.sum( np.square( flow ) , 2) ) ) + +def _computeColor(flow, saturate=True): + """ + flow_utils._computeColor(flow): compute color codes for the flow field flow + + ---- PARAMETERS ---- + flow: np.array of dimension (height x width x 2) containing the flow to display + ---- OUTPUTS ---- + an np.array of dimension (height x width x 3) containing the color conversion of the flow + """ + # set nan to 0 + nanidx = np.isnan(flow[:,:,0]) + flow[nanidx] = 0.0 + + # colorwheel + ncols = RY + YG + GC + CB + BM + MR + nchans = 3 + colorwheel = np.zeros((ncols,nchans),'uint8') + col = 0; + #RY + colorwheel[:RY,0] = 255 + colorwheel[:RY,1] = [(255*i) // RY for i in range(RY)] + col += RY + # YG + colorwheel[col:col+YG,0] = [255 - (255*i) // YG for i in range(YG)] + colorwheel[col:col+YG,1] = 255 + col += YG + # GC + colorwheel[col:col+GC,1] = 255 + colorwheel[col:col+GC,2] = [(255*i) // GC for i in range(GC)] + col += GC + # CB + colorwheel[col:col+CB,1] = [255 - (255*i) // CB for i in range(CB)] + colorwheel[col:col+CB,2] = 255 + col += CB + # BM + colorwheel[col:col+BM,0] = [(255*i) // BM for i in range(BM)] + colorwheel[col:col+BM,2] = 255 + col += BM + # MR + colorwheel[col:col+MR,0] = 255 + colorwheel[col:col+MR,2] = [255 - (255*i) // MR for i in range(MR)] + + # compute utility variables + rad = np.sqrt( np.sum( np.square(flow) , 2) ) # magnitude + a = np.arctan2( -flow[:,:,1] , -flow[:,:,0]) / np.pi # angle + fk = (a+1)/2 * (ncols-1) # map [-1,1] to [0,ncols-1] + k0 = np.floor(fk).astype('int') + k1 = k0+1 + k1[k1==ncols] = 0 + f = fk-k0 + + if not saturate: + rad = np.minimum(rad,1) + + # compute the image + img = np.zeros( (flow.shape[0],flow.shape[1],nchans), 'uint8' ) + for i in range(nchans): + tmp = colorwheel[:,i].astype('float') + col0 = tmp[k0]/255 + col1 = tmp[k1]/255 + col = (1-f)*col0 + f*col1 + idx = (rad <= 1) + col[idx] = 1-rad[idx]*(1-col[idx]) # increase saturation with radius + col[~idx] *= 0.75 # out of range + img[:,:,i] = (255*col*(1-nanidx.astype('float'))).astype('uint8') + + return img + +# flow dataset getter + +def get_train_dataset_flow(dataset_str, augmentor=True, crop_size=None): + dataset_str = dataset_str.replace('(','Dataset(') + if augmentor: + dataset_str = dataset_str.replace(')',', augmentor=True)') + if crop_size is not None: + dataset_str = dataset_str.replace(')',', crop_size={:s})'.format(str(crop_size))) + return eval(dataset_str) + +def get_test_datasets_flow(dataset_str): + dataset_str = dataset_str.replace('(','Dataset(') + return [eval(s) for s in dataset_str.split('+')] \ No newline at end of file diff --git a/modules/croco/stereoflow/datasets_stereo.py b/modules/croco/stereoflow/datasets_stereo.py new file mode 100644 index 0000000000000000000000000000000000000000..dbdf841a6650afa71ae5782702902c79eba31a5c --- /dev/null +++ b/modules/croco/stereoflow/datasets_stereo.py @@ -0,0 +1,674 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Dataset structure for stereo +# -------------------------------------------------------- + +import sys, os +import os.path as osp +import pickle +import numpy as np +from PIL import Image +import json +import h5py +from glob import glob +import cv2 + +import torch +from torch.utils import data + +from .augmentor import StereoAugmentor + + + +dataset_to_root = { + 'CREStereo': './data/stereoflow//crenet_stereo_trainset/stereo_trainset/crestereo/', + 'SceneFlow': './data/stereoflow//SceneFlow/', + 'ETH3DLowRes': './data/stereoflow/eth3d_lowres/', + 'Booster': './data/stereoflow/booster_gt/', + 'Middlebury2021': './data/stereoflow/middlebury/2021/data/', + 'Middlebury2014': './data/stereoflow/middlebury/2014/', + 'Middlebury2006': './data/stereoflow/middlebury/2006/', + 'Middlebury2005': './data/stereoflow/middlebury/2005/train/', + 'MiddleburyEval3': './data/stereoflow/middlebury/MiddEval3/', + 'Spring': './data/stereoflow/spring/', + 'Kitti15': './data/stereoflow/kitti-stereo-2015/', + 'Kitti12': './data/stereoflow/kitti-stereo-2012/', +} +cache_dir = "./data/stereoflow/datasets_stereo_cache/" + + +in1k_mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1) +in1k_std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1) +def img_to_tensor(img): + img = torch.from_numpy(img).permute(2, 0, 1).float() / 255. + img = (img-in1k_mean)/in1k_std + return img +def disp_to_tensor(disp): + return torch.from_numpy(disp)[None,:,:] + +class StereoDataset(data.Dataset): + + def __init__(self, split, augmentor=False, crop_size=None, totensor=True): + self.split = split + if not augmentor: assert crop_size is None + if crop_size: assert augmentor + self.crop_size = crop_size + self.augmentor_str = augmentor + self.augmentor = StereoAugmentor(crop_size) if augmentor else None + self.totensor = totensor + self.rmul = 1 # keep track of rmul + self.has_constant_resolution = True # whether the dataset has constant resolution or not (=> don't use batch_size>1 at test time) + self._prepare_data() + self._load_or_build_cache() + + def prepare_data(self): + """ + to be defined for each dataset + """ + raise NotImplementedError + + def __len__(self): + return len(self.pairnames) + + def __getitem__(self, index): + pairname = self.pairnames[index] + + # get filenames + Limgname = self.pairname_to_Limgname(pairname) + Rimgname = self.pairname_to_Rimgname(pairname) + Ldispname = self.pairname_to_Ldispname(pairname) if self.pairname_to_Ldispname is not None else None + + # load images and disparities + Limg = _read_img(Limgname) + Rimg = _read_img(Rimgname) + disp = self.load_disparity(Ldispname) if Ldispname is not None else None + + # sanity check + if disp is not None: assert np.all(disp>0) or self.name=="Spring", (self.name, pairname, Ldispname) + + # apply augmentations + if self.augmentor is not None: + Limg, Rimg, disp = self.augmentor(Limg, Rimg, disp, self.name) + + if self.totensor: + Limg = img_to_tensor(Limg) + Rimg = img_to_tensor(Rimg) + if disp is None: + disp = torch.tensor([]) # to allow dataloader batching with default collate_gn + else: + disp = disp_to_tensor(disp) + + return Limg, Rimg, disp, str(pairname) + + def __rmul__(self, v): + self.rmul *= v + self.pairnames = v * self.pairnames + return self + + def __str__(self): + return f'{self.__class__.__name__}_{self.split}' + + def __repr__(self): + s = f'{self.__class__.__name__}(split={self.split}, augmentor={self.augmentor_str}, crop_size={str(self.crop_size)}, totensor={self.totensor})' + if self.rmul==1: + s+=f'\n\tnum pairs: {len(self.pairnames)}' + else: + s+=f'\n\tnum pairs: {len(self.pairnames)} ({len(self.pairnames)//self.rmul}x{self.rmul})' + return s + + def _set_root(self): + self.root = dataset_to_root[self.name] + assert os.path.isdir(self.root), f"could not find root directory for dataset {self.name}: {self.root}" + + def _load_or_build_cache(self): + cache_file = osp.join(cache_dir, self.name+'.pkl') + if osp.isfile(cache_file): + with open(cache_file, 'rb') as fid: + self.pairnames = pickle.load(fid)[self.split] + else: + tosave = self._build_cache() + os.makedirs(cache_dir, exist_ok=True) + with open(cache_file, 'wb') as fid: + pickle.dump(tosave, fid) + self.pairnames = tosave[self.split] + +class CREStereoDataset(StereoDataset): + + def _prepare_data(self): + self.name = 'CREStereo' + self._set_root() + assert self.split in ['train'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_left.jpg') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname+'_right.jpg') + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname+'_left.disp.png') + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_crestereo_disp + + + def _build_cache(self): + allpairs = [s+'/'+f[:-len('_left.jpg')] for s in sorted(os.listdir(self.root)) for f in sorted(os.listdir(self.root+'/'+s)) if f.endswith('_left.jpg')] + assert len(allpairs)==200000, "incorrect parsing of pairs in CreStereo" + tosave = {'train': allpairs} + return tosave + +class SceneFlowDataset(StereoDataset): + + def _prepare_data(self): + self.name = "SceneFlow" + self._set_root() + assert self.split in ['train_finalpass','train_cleanpass','train_allpass','test_finalpass','test_cleanpass','test_allpass','test1of100_cleanpass','test1of100_finalpass'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname).replace('/left/','/right/') + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname).replace('/frames_finalpass/','/disparity/').replace('/frames_cleanpass/','/disparity/')[:-4]+'.pfm' + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_sceneflow_disp + + def _build_cache(self): + trainpairs = [] + # driving + pairs = sorted(glob(self.root+'Driving/frames_finalpass/*/*/*/left/*.png')) + pairs = list(map(lambda x: x[len(self.root):], pairs)) + assert len(pairs) == 4400, "incorrect parsing of pairs in SceneFlow" + trainpairs += pairs + # monkaa + pairs = sorted(glob(self.root+'Monkaa/frames_finalpass/*/left/*.png')) + pairs = list(map(lambda x: x[len(self.root):], pairs)) + assert len(pairs) == 8664, "incorrect parsing of pairs in SceneFlow" + trainpairs += pairs + # flyingthings + pairs = sorted(glob(self.root+'FlyingThings/frames_finalpass/TRAIN/*/*/left/*.png')) + pairs = list(map(lambda x: x[len(self.root):], pairs)) + assert len(pairs) == 22390, "incorrect parsing of pairs in SceneFlow" + trainpairs += pairs + assert len(trainpairs) == 35454, "incorrect parsing of pairs in SceneFlow" + testpairs = sorted(glob(self.root+'FlyingThings/frames_finalpass/TEST/*/*/left/*.png')) + testpairs = list(map(lambda x: x[len(self.root):], testpairs)) + assert len(testpairs) == 4370, "incorrect parsing of pairs in SceneFlow" + test1of100pairs = testpairs[::100] + assert len(test1of100pairs) == 44, "incorrect parsing of pairs in SceneFlow" + # all + tosave = {'train_finalpass': trainpairs, + 'train_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), trainpairs)), + 'test_finalpass': testpairs, + 'test_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), testpairs)), + 'test1of100_finalpass': test1of100pairs, + 'test1of100_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), test1of100pairs)), + } + tosave['train_allpass'] = tosave['train_finalpass']+tosave['train_cleanpass'] + tosave['test_allpass'] = tosave['test_finalpass']+tosave['test_cleanpass'] + return tosave + +class Md21Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Middlebury2021" + self._set_root() + assert self.split in ['train','subtrain','subval'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/im0','/im1')) + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp0.pfm') + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_middlebury_disp + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + #trainpairs += [s+'/im0.png'] # we should remove it, it is included as such in other lightings + trainpairs += [s+'/ambient/'+b+'/'+a for b in sorted(os.listdir(osp.join(self.root,s,'ambient'))) for a in sorted(os.listdir(osp.join(self.root,s,'ambient',b))) if a.startswith('im0')] + assert len(trainpairs)==355 + subtrainpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in seqs[:-2])] + subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in seqs[-2:])] + assert len(subtrainpairs)==335 and len(subvalpairs)==20, "incorrect parsing of pairs in Middlebury 2021" + tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + +class Md14Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Middlebury2014" + self._set_root() + assert self.split in ['train','subtrain','subval'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'im0.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'disp0.pfm') + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_middlebury_disp + self.has_constant_resolution = False + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + trainpairs += [s+'/im1.png',s+'/im1E.png',s+'/im1L.png'] + assert len(trainpairs)==138 + valseqs = ['Umbrella-imperfect','Vintage-perfect'] + assert all(s in seqs for s in valseqs) + subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)] + subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)] + assert len(subtrainpairs)==132 and len(subvalpairs)==6, "incorrect parsing of pairs in Middlebury 2014" + tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + +class Md06Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Middlebury2006" + self._set_root() + assert self.split in ['train','subtrain','subval'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'view5.png') + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp1.png') + self.load_disparity = _read_middlebury20052006_disp + self.has_constant_resolution = False + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + for i in ['Illum1','Illum2','Illum3']: + for e in ['Exp0','Exp1','Exp2']: + trainpairs.append(osp.join(s,i,e,'view1.png')) + assert len(trainpairs)==189 + valseqs = ['Rocks1','Wood2'] + assert all(s in seqs for s in valseqs) + subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)] + subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)] + assert len(subtrainpairs)==171 and len(subvalpairs)==18, "incorrect parsing of pairs in Middlebury 2006" + tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + +class Md05Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Middlebury2005" + self._set_root() + assert self.split in ['train','subtrain','subval'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'view5.png') + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp1.png') + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_middlebury20052006_disp + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + for i in ['Illum1','Illum2','Illum3']: + for e in ['Exp0','Exp1','Exp2']: + trainpairs.append(osp.join(s,i,e,'view1.png')) + assert len(trainpairs)==54, "incorrect parsing of pairs in Middlebury 2005" + valseqs = ['Reindeer'] + assert all(s in seqs for s in valseqs) + subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)] + subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)] + assert len(subtrainpairs)==45 and len(subvalpairs)==9, "incorrect parsing of pairs in Middlebury 2005" + tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + +class MdEval3Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "MiddleburyEval3" + self._set_root() + assert self.split in [s+'_'+r for s in ['train','subtrain','subval','test','all'] for r in ['full','half','quarter']] + if self.split.endswith('_full'): + self.root = self.root.replace('/MiddEval3','/MiddEval3_F') + elif self.split.endswith('_half'): + self.root = self.root.replace('/MiddEval3','/MiddEval3_H') + else: + assert self.split.endswith('_quarter') + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname, 'im0.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname, 'im1.png') + self.pairname_to_Ldispname = lambda pairname: None if pairname.startswith('test') else osp.join(self.root, pairname, 'disp0GT.pfm') + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_middlebury_disp + # for submission only + self.submission_methodname = "CroCo-Stereo" + self.submission_sresolution = 'F' if self.split.endswith('_full') else ('H' if self.split.endswith('_half') else 'Q') + + def _build_cache(self): + trainpairs = ['train/'+s for s in sorted(os.listdir(self.root+'train/'))] + testpairs = ['test/'+s for s in sorted(os.listdir(self.root+'test/'))] + subvalpairs = trainpairs[-1:] + subtrainpairs = trainpairs[:-1] + allpairs = trainpairs+testpairs + assert len(trainpairs)==15 and len(testpairs)==15 and len(subvalpairs)==1 and len(subtrainpairs)==14 and len(allpairs)==30, "incorrect parsing of pairs in Middlebury Eval v3" + tosave = {} + for r in ['full','half','quarter']: + tosave.update(**{'train_'+r: trainpairs, 'subtrain_'+r: subtrainpairs, 'subval_'+r: subvalpairs, 'test_'+r: testpairs, 'all_'+r: allpairs}) + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==2 + assert prediction.dtype==np.float32 + outfile = os.path.join(outdir, pairname.split('/')[0].replace('train','training')+self.submission_sresolution, pairname.split('/')[1], 'disp0'+self.submission_methodname+'.pfm') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writePFM(outfile, prediction) + timefile = os.path.join( os.path.dirname(outfile), "time"+self.submission_methodname+'.txt') + with open(timefile, 'w') as fid: + fid.write(str(time)) + + def finalize_submission(self, outdir): + cmd = f'cd {outdir}/; zip -r "{self.submission_methodname}.zip" .' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/{self.submission_methodname}.zip') + +class ETH3DLowResDataset(StereoDataset): + + def _prepare_data(self): + self.name = "ETH3DLowRes" + self._set_root() + assert self.split in ['train','test','subtrain','subval','all'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname, 'im0.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname, 'im1.png') + self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: None if pairname.startswith('test/') else osp.join(self.root, pairname.replace('train/','train_gt/'), 'disp0GT.pfm') + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_eth3d_disp + self.has_constant_resolution = False + + def _build_cache(self): + trainpairs = ['train/' + s for s in sorted(os.listdir(self.root+'train/'))] + testpairs = ['test/' + s for s in sorted(os.listdir(self.root+'test/'))] + assert len(trainpairs) == 27 and len(testpairs) == 20, "incorrect parsing of pairs in ETH3D Low Res" + subvalpairs = ['train/delivery_area_3s','train/electro_3l','train/playground_3l'] + assert all(p in trainpairs for p in subvalpairs) + subtrainpairs = [p for p in trainpairs if not p in subvalpairs] + assert len(subvalpairs)==3 and len(subtrainpairs)==24, "incorrect parsing of pairs in ETH3D Low Res" + tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs, 'all': trainpairs+testpairs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==2 + assert prediction.dtype==np.float32 + outfile = os.path.join(outdir, 'low_res_two_view', pairname.split('/')[1]+'.pfm') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writePFM(outfile, prediction) + timefile = outfile[:-4]+'.txt' + with open(timefile, 'w') as fid: + fid.write('runtime '+str(time)) + + def finalize_submission(self, outdir): + cmd = f'cd {outdir}/; zip -r "eth3d_low_res_two_view_results.zip" low_res_two_view' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/eth3d_low_res_two_view_results.zip') + +class BoosterDataset(StereoDataset): + + def _prepare_data(self): + self.name = "Booster" + self._set_root() + assert self.split in ['train_balanced','test_balanced','subtrain_balanced','subval_balanced'] # we use only the balanced version + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname).replace('/camera_00/','/camera_02/') + self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, osp.dirname(pairname), '../disp_00.npy') # same images with different colors, same gt per sequence + self.pairname_to_str = lambda pairname: pairname[:-4].replace('/camera_00/','/') + self.load_disparity = _read_booster_disp + + + def _build_cache(self): + trainseqs = sorted(os.listdir(self.root+'train/balanced')) + trainpairs = ['train/balanced/'+s+'/camera_00/'+imname for s in trainseqs for imname in sorted(os.listdir(self.root+'train/balanced/'+s+'/camera_00/'))] + testpairs = ['test/balanced/'+s+'/camera_00/'+imname for s in sorted(os.listdir(self.root+'test/balanced')) for imname in sorted(os.listdir(self.root+'test/balanced/'+s+'/camera_00/'))] + assert len(trainpairs) == 228 and len(testpairs) == 191 + subtrainpairs = [p for p in trainpairs if any(s in p for s in trainseqs[:-2])] + subvalpairs = [p for p in trainpairs if any(s in p for s in trainseqs[-2:])] + # warning: if we do validation split, we should split scenes!!! + tosave = {'train_balanced': trainpairs, 'test_balanced': testpairs, 'subtrain_balanced': subtrainpairs, 'subval_balanced': subvalpairs,} + return tosave + +class SpringDataset(StereoDataset): + + def _prepare_data(self): + self.name = "Spring" + self._set_root() + assert self.split in ['train', 'test', 'subtrain', 'subval'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname+'.png').replace('frame_right','').replace('frame_left','frame_right').replace('','frame_left') + self.pairname_to_Ldispname = lambda pairname: None if pairname.startswith('test') else osp.join(self.root, pairname+'.dsp5').replace('frame_left','disp1_left').replace('frame_right','disp1_right') + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_hdf5_disp + + def _build_cache(self): + trainseqs = sorted(os.listdir( osp.join(self.root,'train'))) + trainpairs = [osp.join('train',s,'frame_left',f[:-4]) for s in trainseqs for f in sorted(os.listdir(osp.join(self.root,'train',s,'frame_left')))] + testseqs = sorted(os.listdir( osp.join(self.root,'test'))) + testpairs = [osp.join('test',s,'frame_left',f[:-4]) for s in testseqs for f in sorted(os.listdir(osp.join(self.root,'test',s,'frame_left')))] + testpairs += [p.replace('frame_left','frame_right') for p in testpairs] + """maxnorm = {'0001': 32.88, '0002': 228.5, '0004': 298.2, '0005': 142.5, '0006': 113.6, '0007': 27.3, '0008': 554.5, '0009': 155.6, '0010': 126.1, '0011': 87.6, '0012': 303.2, '0013': 24.14, '0014': 82.56, '0015': 98.44, '0016': 156.9, '0017': 28.17, '0018': 21.03, '0020': 178.0, '0021': 58.06, '0022': 354.2, '0023': 8.79, '0024': 97.06, '0025': 55.16, '0026': 91.9, '0027': 156.6, '0030': 200.4, '0032': 58.66, '0033': 373.5, '0036': 149.4, '0037': 5.625, '0038': 37.0, '0039': 12.2, '0041': 453.5, '0043': 457.0, '0044': 379.5, '0045': 161.8, '0047': 105.44} # => let'use 0041""" + subtrainpairs = [p for p in trainpairs if p.split('/')[1]!='0041'] + subvalpairs = [p for p in trainpairs if p.split('/')[1]=='0041'] + assert len(trainpairs)==5000 and len(testpairs)==2000 and len(subtrainpairs)==4904 and len(subvalpairs)==96, "incorrect parsing of pairs in Spring" + tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==2 + assert prediction.dtype==np.float32 + outfile = os.path.join(outdir, pairname+'.dsp5').replace('frame_left','disp1_left').replace('frame_right','disp1_right') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + writeDsp5File(prediction, outfile) + + def finalize_submission(self, outdir): + assert self.split=='test' + exe = "{self.root}/disp1_subsampling" + if os.path.isfile(exe): + cmd = f'cd "{outdir}/test"; {exe} .' + print(cmd) + os.system(cmd) + else: + print('Could not find disp1_subsampling executable for submission.') + print('Please download it and run:') + print(f'cd "{outdir}/test"; .') + +class Kitti12Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Kitti12" + self._set_root() + assert self.split in ['train','test'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_10.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/colored_1/')+'_10.png') + self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/disp_occ/')+'_10.png') + self.pairname_to_str = lambda pairname: pairname.replace('/colored_0/','/') + self.load_disparity = _read_kitti_disp + + def _build_cache(self): + trainseqs = ["training/colored_0/%06d"%(i) for i in range(194)] + testseqs = ["testing/colored_0/%06d"%(i) for i in range(195)] + assert len(trainseqs)==194 and len(testseqs)==195, "incorrect parsing of pairs in Kitti12" + tosave = {'train': trainseqs, 'test': testseqs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==2 + assert prediction.dtype==np.float32 + outfile = os.path.join(outdir, pairname.split('/')[-1]+'_10.png') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + img = (prediction * 256).astype('uint16') + Image.fromarray(img).save(outfile) + + def finalize_submission(self, outdir): + assert self.split=='test' + cmd = f'cd {outdir}/; zip -r "kitti12_results.zip" .' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/kitti12_results.zip') + +class Kitti15Dataset(StereoDataset): + + def _prepare_data(self): + self.name = "Kitti15" + self._set_root() + assert self.split in ['train','subtrain','subval','test'] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_10.png') + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/image_3/')+'_10.png') + self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/disp_occ_0/')+'_10.png') + self.pairname_to_str = lambda pairname: pairname.replace('/image_2/','/') + self.load_disparity = _read_kitti_disp + + def _build_cache(self): + trainseqs = ["training/image_2/%06d"%(i) for i in range(200)] + subtrainseqs = trainseqs[:-5] + subvalseqs = trainseqs[-5:] + testseqs = ["testing/image_2/%06d"%(i) for i in range(200)] + assert len(trainseqs)==200 and len(subtrainseqs)==195 and len(subvalseqs)==5 and len(testseqs)==200, "incorrect parsing of pairs in Kitti15" + tosave = {'train': trainseqs, 'subtrain': subtrainseqs, 'subval': subvalseqs, 'test': testseqs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim==2 + assert prediction.dtype==np.float32 + outfile = os.path.join(outdir, 'disp_0', pairname.split('/')[-1]+'_10.png') + os.makedirs( os.path.dirname(outfile), exist_ok=True) + img = (prediction * 256).astype('uint16') + Image.fromarray(img).save(outfile) + + def finalize_submission(self, outdir): + assert self.split=='test' + cmd = f'cd {outdir}/; zip -r "kitti15_results.zip" disp_0' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at {outdir}/kitti15_results.zip') + + +### auxiliary functions + +def _read_img(filename): + # convert to RGB for scene flow finalpass data + img = np.asarray(Image.open(filename).convert('RGB')) + return img + +def _read_booster_disp(filename): + disp = np.load(filename) + disp[disp==0.0] = np.inf + return disp + +def _read_png_disp(filename, coef=1.0): + disp = np.asarray(Image.open(filename)) + disp = disp.astype(np.float32) / coef + disp[disp==0.0] = np.inf + return disp + +def _read_pfm_disp(filename): + disp = np.ascontiguousarray(_read_pfm(filename)[0]) + disp[disp<=0] = np.inf # eg /nfs/data/ffs-3d/datasets/middlebury/2014/Shopvac-imperfect/disp0.pfm + return disp + +def _read_npy_disp(filename): + return np.load(filename) + +def _read_crestereo_disp(filename): return _read_png_disp(filename, coef=32.0) +def _read_middlebury20052006_disp(filename): return _read_png_disp(filename, coef=1.0) +def _read_kitti_disp(filename): return _read_png_disp(filename, coef=256.0) +_read_sceneflow_disp = _read_pfm_disp +_read_eth3d_disp = _read_pfm_disp +_read_middlebury_disp = _read_pfm_disp +_read_carla_disp = _read_pfm_disp +_read_tartanair_disp = _read_npy_disp + +def _read_hdf5_disp(filename): + disp = np.asarray(h5py.File(filename)['disparity']) + disp[np.isnan(disp)] = np.inf # make invalid values as +inf + #disp[disp==0.0] = np.inf # make invalid values as +inf + return disp.astype(np.float32) + +import re +def _read_pfm(file): + file = open(file, 'rb') + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header.decode("ascii") == 'PF': + color = True + elif header.decode("ascii") == 'Pf': + color = False + else: + raise Exception('Not a PFM file.') + + dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii")) + if dim_match: + width, height = list(map(int, dim_match.groups())) + else: + raise Exception('Malformed PFM header.') + + scale = float(file.readline().decode("ascii").rstrip()) + if scale < 0: # little-endian + endian = '<' + scale = -scale + else: + endian = '>' # big-endian + + data = np.fromfile(file, endian + 'f') + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data, scale + +def writePFM(file, image, scale=1): + file = open(file, 'wb') + + color = None + + if image.dtype.name != 'float32': + raise Exception('Image dtype must be float32.') + + image = np.flipud(image) + + if len(image.shape) == 3 and image.shape[2] == 3: # color image + color = True + elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale + color = False + else: + raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') + + file.write('PF\n' if color else 'Pf\n'.encode()) + file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0])) + + endian = image.dtype.byteorder + + if endian == '<' or endian == '=' and sys.byteorder == 'little': + scale = -scale + + file.write('%f\n'.encode() % scale) + + image.tofile(file) + +def writeDsp5File(disp, filename): + with h5py.File(filename, "w") as f: + f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5) + + +# disp visualization + +def vis_disparity(disp, m=None, M=None): + if m is None: m = disp.min() + if M is None: M = disp.max() + disp_vis = (disp - m) / (M-m) * 255.0 + disp_vis = disp_vis.astype("uint8") + disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO) + return disp_vis + +# dataset getter + +def get_train_dataset_stereo(dataset_str, augmentor=True, crop_size=None): + dataset_str = dataset_str.replace('(','Dataset(') + if augmentor: + dataset_str = dataset_str.replace(')',', augmentor=True)') + if crop_size is not None: + dataset_str = dataset_str.replace(')',', crop_size={:s})'.format(str(crop_size))) + return eval(dataset_str) + +def get_test_datasets_stereo(dataset_str): + dataset_str = dataset_str.replace('(','Dataset(') + return [eval(s) for s in dataset_str.split('+')] \ No newline at end of file diff --git a/modules/croco/stereoflow/download_model.sh b/modules/croco/stereoflow/download_model.sh new file mode 100644 index 0000000000000000000000000000000000000000..533119609108c5ec3c22ff79b10e9215c1ac5098 --- /dev/null +++ b/modules/croco/stereoflow/download_model.sh @@ -0,0 +1,12 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +model=$1 +outfile="stereoflow_models/${model}" +if [[ ! -f $outfile ]] +then + mkdir -p stereoflow_models/; + wget https://download.europe.naverlabs.com/ComputerVision/CroCo/StereoFlow_models/$1 -P stereoflow_models/; +else + echo "Model ${model} already downloaded in ${outfile}." +fi \ No newline at end of file diff --git a/modules/croco/stereoflow/engine.py b/modules/croco/stereoflow/engine.py new file mode 100644 index 0000000000000000000000000000000000000000..c057346b99143bf6b9c4666a58215b2b91aca7a6 --- /dev/null +++ b/modules/croco/stereoflow/engine.py @@ -0,0 +1,280 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Main function for training one epoch or testing +# -------------------------------------------------------- + +import math +import sys +from typing import Iterable +import numpy as np +import torch +import torchvision + +from utils import misc as misc + + +def split_prediction_conf(predictions, with_conf=False): + if not with_conf: + return predictions, None + conf = predictions[:,-1:,:,:] + predictions = predictions[:,:-1,:,:] + return predictions, conf + +def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, metrics: torch.nn.Module, + data_loader: Iterable, optimizer: torch.optim.Optimizer, + device: torch.device, epoch: int, loss_scaler, + log_writer=None, print_freq = 20, + args=None): + model.train(True) + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) + header = 'Epoch: [{}]'.format(epoch) + + accum_iter = args.accum_iter + + optimizer.zero_grad() + + details = {} + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + if args.img_per_epoch: + iter_per_epoch = args.img_per_epoch // args.batch_size + int(args.img_per_epoch % args.batch_size > 0) + assert len(data_loader) >= iter_per_epoch, 'Dataset is too small for so many iterations' + len_data_loader = iter_per_epoch + else: + len_data_loader, iter_per_epoch = len(data_loader), None + + for data_iter_step, (image1, image2, gt, pairname) in enumerate(metric_logger.log_every(data_loader, print_freq, header, max_iter=iter_per_epoch)): + + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + gt = gt.to(device, non_blocking=True) + + # we use a per iteration (instead of per epoch) lr scheduler + if data_iter_step % accum_iter == 0: + misc.adjust_learning_rate(optimizer, data_iter_step / len_data_loader + epoch, args) + + with torch.cuda.amp.autocast(enabled=bool(args.amp)): + prediction = model(image1, image2) + prediction, conf = split_prediction_conf(prediction, criterion.with_conf) + batch_metrics = metrics(prediction.detach(), gt) + loss = criterion(prediction, gt) if conf is None else criterion(prediction, gt, conf) + + loss_value = loss.item() + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value)) + sys.exit(1) + + loss /= accum_iter + loss_scaler(loss, optimizer, parameters=model.parameters(), + update_grad=(data_iter_step + 1) % accum_iter == 0) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + torch.cuda.synchronize() + + metric_logger.update(loss=loss_value) + for k,v in batch_metrics.items(): + metric_logger.update(**{k: v.item()}) + lr = optimizer.param_groups[0]["lr"] + metric_logger.update(lr=lr) + + #if args.dsitributed: loss_value_reduce = misc.all_reduce_mean(loss_value) + time_to_log = ((data_iter_step + 1) % (args.tboard_log_step * accum_iter) == 0 or data_iter_step == len_data_loader-1) + loss_value_reduce = misc.all_reduce_mean(loss_value) + if log_writer is not None and time_to_log: + epoch_1000x = int((data_iter_step / len_data_loader + epoch) * 1000) + # We use epoch_1000x as the x-axis in tensorboard. This calibrates different curves when batch size changes. + log_writer.add_scalar('train/loss', loss_value_reduce, epoch_1000x) + log_writer.add_scalar('lr', lr, epoch_1000x) + for k,v in batch_metrics.items(): + log_writer.add_scalar('train/'+k, v.item(), epoch_1000x) + + # gather the stats from all processes + #if args.distributed: metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} + + +@torch.no_grad() +def validate_one_epoch(model: torch.nn.Module, + criterion: torch.nn.Module, + metrics: torch.nn.Module, + data_loaders: list[Iterable], + device: torch.device, + epoch: int, + log_writer=None, + args=None): + + model.eval() + metric_loggers = [] + header = 'Epoch: [{}]'.format(epoch) + print_freq = 20 + + conf_mode = args.tile_conf_mode + crop = args.crop + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + results = {} + dnames = [] + image1, image2, gt, prediction = None, None, None, None + for didx, data_loader in enumerate(data_loaders): + dname = str(data_loader.dataset) + dnames.append(dname) + metric_loggers.append(misc.MetricLogger(delimiter=" ")) + for data_iter_step, (image1, image2, gt, pairname) in enumerate(metric_loggers[didx].log_every(data_loader, print_freq, header)): + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + gt = gt.to(device, non_blocking=True) + if dname.startswith('Spring'): + assert gt.size(2)==image1.size(2)*2 and gt.size(3)==image1.size(3)*2 + gt = (gt[:,:,0::2,0::2] + gt[:,:,0::2,1::2] + gt[:,:,1::2,0::2] + gt[:,:,1::2,1::2] ) / 4.0 # we approximate the gt based on the 2x upsampled ones + + with torch.inference_mode(): + prediction, tiled_loss, c = tiled_pred(model, criterion, image1, image2, gt, conf_mode=conf_mode, overlap=args.val_overlap, crop=crop, with_conf=criterion.with_conf) + batch_metrics = metrics(prediction.detach(), gt) + loss = criterion(prediction.detach(), gt) if not criterion.with_conf else criterion(prediction.detach(), gt, c) + loss_value = loss.item() + metric_loggers[didx].update(loss_tiled=tiled_loss.item()) + metric_loggers[didx].update(**{f'loss': loss_value}) + for k,v in batch_metrics.items(): + metric_loggers[didx].update(**{dname+'_' + k: v.item()}) + + results = {k: meter.global_avg for ml in metric_loggers for k, meter in ml.meters.items()} + if len(dnames)>1: + for k in batch_metrics.keys(): + results['AVG_'+k] = sum(results[dname+'_'+k] for dname in dnames) / len(dnames) + + if log_writer is not None : + epoch_1000x = int((1 + epoch) * 1000) + for k,v in results.items(): + log_writer.add_scalar('val/'+k, v, epoch_1000x) + + print("Averaged stats:", results) + return results + +import torch.nn.functional as F +def _resize_img(img, new_size): + return F.interpolate(img, size=new_size, mode='bicubic', align_corners=False) +def _resize_stereo_or_flow(data, new_size): + assert data.ndim==4 + assert data.size(1) in [1,2] + scale_x = new_size[1]/float(data.size(3)) + out = F.interpolate(data, size=new_size, mode='bicubic', align_corners=False) + out[:,0,:,:] *= scale_x + if out.size(1)==2: + scale_y = new_size[0]/float(data.size(2)) + out[:,1,:,:] *= scale_y + print(scale_x, new_size, data.shape) + return out + + +@torch.no_grad() +def tiled_pred(model, criterion, img1, img2, gt, + overlap=0.5, bad_crop_thr=0.05, + downscale=False, crop=512, ret='loss', + conf_mode='conf_expsigmoid_10_5', with_conf=False, + return_time=False): + + # for each image, we are going to run inference on many overlapping patches + # then, all predictions will be weighted-averaged + if gt is not None: + B, C, H, W = gt.shape + else: + B, _, H, W = img1.shape + C = model.head.num_channels-int(with_conf) + win_height, win_width = crop[0], crop[1] + + # upscale to be larger than the crop + do_change_scale = H= window and 0 <= overlap < 1, (total, window, overlap) + num_windows = 1 + int(np.ceil( (total - window) / ((1-overlap) * window) )) + offsets = np.linspace(0, total-window, num_windows).round().astype(int) + yield from (slice(x, x+window) for x in offsets) + +def _crop(img, sy, sx): + B, THREE, H, W = img.shape + if 0 <= sy.start and sy.stop <= H and 0 <= sx.start and sx.stop <= W: + return img[:,:,sy,sx] + l, r = max(0,-sx.start), max(0,sx.stop-W) + t, b = max(0,-sy.start), max(0,sy.stop-H) + img = torch.nn.functional.pad(img, (l,r,t,b), mode='constant') + return img[:, :, slice(sy.start+t,sy.stop+t), slice(sx.start+l,sx.stop+l)] \ No newline at end of file diff --git a/modules/croco/stereoflow/test.py b/modules/croco/stereoflow/test.py new file mode 100644 index 0000000000000000000000000000000000000000..0248e56664c769752595af251e1eadcfa3a479d9 --- /dev/null +++ b/modules/croco/stereoflow/test.py @@ -0,0 +1,216 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Main test function +# -------------------------------------------------------- + +import os +import argparse +import pickle +from PIL import Image +import numpy as np +from tqdm import tqdm + +import torch +from torch.utils.data import DataLoader + +import utils.misc as misc +from models.croco_downstream import CroCoDownstreamBinocular +from models.head_downstream import PixelwiseTaskWithDPT + +from stereoflow.criterion import * +from stereoflow.datasets_stereo import get_test_datasets_stereo +from stereoflow.datasets_flow import get_test_datasets_flow +from stereoflow.engine import tiled_pred + +from stereoflow.datasets_stereo import vis_disparity +from stereoflow.datasets_flow import flowToColor + +def get_args_parser(): + parser = argparse.ArgumentParser('Test CroCo models on stereo/flow', add_help=False) + # important argument + parser.add_argument('--model', required=True, type=str, help='Path to the model to evaluate') + parser.add_argument('--dataset', required=True, type=str, help="test dataset (there can be multiple dataset separated by a +)") + # tiling + parser.add_argument('--tile_conf_mode', type=str, default='', help='Weights for the tiling aggregation based on confidence (empty means use the formula from the loaded checkpoint') + parser.add_argument('--tile_overlap', type=float, default=0.7, help='overlap between tiles') + # save (it will automatically go to _/_) + parser.add_argument('--save', type=str, nargs='+', default=[], + help='what to save: \ + metrics (pickle file), \ + pred (raw prediction save as torch tensor), \ + visu (visualization in png of each prediction), \ + err10 (visualization in png of the error clamp at 10 for each prediction), \ + submission (submission file)') + # other (no impact) + parser.add_argument('--num_workers', default=4, type=int) + return parser + + +def _load_model_and_criterion(model_path, do_load_metrics, device): + print('loading model from', model_path) + assert os.path.isfile(model_path) + ckpt = torch.load(model_path, 'cpu') + + ckpt_args = ckpt['args'] + task = ckpt_args.task + tile_conf_mode = ckpt_args.tile_conf_mode + num_channels = {'stereo': 1, 'flow': 2}[task] + with_conf = eval(ckpt_args.criterion).with_conf + if with_conf: num_channels += 1 + print('head: PixelwiseTaskWithDPT()') + head = PixelwiseTaskWithDPT() + head.num_channels = num_channels + print('croco_args:', ckpt_args.croco_args) + model = CroCoDownstreamBinocular(head, **ckpt_args.croco_args) + msg = model.load_state_dict(ckpt['model'], strict=True) + model.eval() + model = model.to(device) + + if do_load_metrics: + if task=='stereo': + metrics = StereoDatasetMetrics().to(device) + else: + metrics = FlowDatasetMetrics().to(device) + else: + metrics = None + + return model, metrics, ckpt_args.crop, with_conf, task, tile_conf_mode + + +def _save_batch(pred, gt, pairnames, dataset, task, save, outdir, time, submission_dir=None): + + for i in range(len(pairnames)): + + pairname = eval(pairnames[i]) if pairnames[i].startswith('(') else pairnames[i] # unbatch pairname + fname = os.path.join(outdir, dataset.pairname_to_str(pairname)) + os.makedirs(os.path.dirname(fname), exist_ok=True) + + predi = pred[i,...] + if gt is not None: gti = gt[i,...] + + if 'pred' in save: + torch.save(predi.squeeze(0).cpu(), fname+'_pred.pth') + + if 'visu' in save: + if task=='stereo': + disparity = predi.permute((1,2,0)).squeeze(2).cpu().numpy() + m,M = None + if gt is not None: + mask = torch.isfinite(gti) + m = gt[mask].min() + M = gt[mask].max() + img_disparity = vis_disparity(disparity, m=m, M=M) + Image.fromarray(img_disparity).save(fname+'_pred.png') + else: + # normalize flowToColor according to the maxnorm of gt (or prediction if not available) + flowNorm = torch.sqrt(torch.sum( (gti if gt is not None else predi)**2, dim=0)).max().item() + imgflow = flowToColor(predi.permute((1,2,0)).cpu().numpy(), maxflow=flowNorm) + Image.fromarray(imgflow).save(fname+'_pred.png') + + if 'err10' in save: + assert gt is not None + L2err = torch.sqrt(torch.sum( (gti-predi)**2, dim=0)) + valid = torch.isfinite(gti[0,:,:]) + L2err[~valid] = 0.0 + L2err = torch.clamp(L2err, max=10.0) + red = (L2err*255.0/10.0).to(dtype=torch.uint8)[:,:,None] + zer = torch.zeros_like(red) + imgerr = torch.cat( (red,zer,zer), dim=2).cpu().numpy() + Image.fromarray(imgerr).save(fname+'_err10.png') + + if 'submission' in save: + assert submission_dir is not None + predi_np = predi.permute(1,2,0).squeeze(2).cpu().numpy() # transform into HxWx2 for flow or HxW for stereo + dataset.submission_save_pairname(pairname, predi_np, submission_dir, time) + +def main(args): + + # load the pretrained model and metrics + device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') + model, metrics, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion(args.model, 'metrics' in args.save, device) + if args.tile_conf_mode=='': args.tile_conf_mode = tile_conf_mode + + # load the datasets + datasets = (get_test_datasets_stereo if task=='stereo' else get_test_datasets_flow)(args.dataset) + dataloaders = [DataLoader(dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=False) for dataset in datasets] + + # run + for i,dataloader in enumerate(dataloaders): + dataset = datasets[i] + dstr = args.dataset.split('+')[i] + + outdir = args.model+'_'+misc.filename(dstr) + if 'metrics' in args.save and len(args.save)==1: + fname = os.path.join(outdir, f'conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}.pkl') + if os.path.isfile(fname) and len(args.save)==1: + print(' metrics already compute in '+fname) + with open(fname, 'rb') as fid: + results = pickle.load(fid) + for k,v in results.items(): + print('{:s}: {:.3f}'.format(k, v)) + continue + + if 'submission' in args.save: + dirname = f'submission_conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}' + submission_dir = os.path.join(outdir, dirname) + else: + submission_dir = None + + print('') + print('saving {:s} in {:s}'.format('+'.join(args.save), outdir)) + print(repr(dataset)) + + if metrics is not None: + metrics.reset() + + for data_iter_step, (image1, image2, gt, pairnames) in enumerate(tqdm(dataloader)): + + do_flip = (task=='stereo' and dstr.startswith('Spring') and any("right" in p for p in pairnames)) # we flip the images and will flip the prediction after as we assume img1 is on the left + + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + gt = gt.to(device, non_blocking=True) if gt.numel()>0 else None # special case for test time + if do_flip: + assert all("right" in p for p in pairnames) + image1 = image1.flip(dims=[3]) # this is already the right frame, let's flip it + image2 = image2.flip(dims=[3]) + gt = gt # that is ok + + with torch.inference_mode(): + pred, _, _, time = tiled_pred(model, None, image1, image2, None if dataset.name=='Spring' else gt, conf_mode=args.tile_conf_mode, overlap=args.tile_overlap, crop=cropsize, with_conf=with_conf, return_time=True) + + if do_flip: + pred = pred.flip(dims=[3]) + + if metrics is not None: + metrics.add_batch(pred, gt) + + if any(k in args.save for k in ['pred','visu','err10','submission']): + _save_batch(pred, gt, pairnames, dataset, task, args.save, outdir, time, submission_dir=submission_dir) + + + # print + if metrics is not None: + results = metrics.get_results() + for k,v in results.items(): + print('{:s}: {:.3f}'.format(k, v)) + + # save if needed + if 'metrics' in args.save: + os.makedirs(os.path.dirname(fname), exist_ok=True) + with open(fname, 'wb') as fid: + pickle.dump(results, fid) + print('metrics saved in', fname) + + # finalize submission if needed + if 'submission' in args.save: + dataset.finalize_submission(submission_dir) + + + +if __name__ == '__main__': + args = get_args_parser() + args = args.parse_args() + main(args) \ No newline at end of file diff --git a/modules/croco/stereoflow/train.py b/modules/croco/stereoflow/train.py new file mode 100644 index 0000000000000000000000000000000000000000..91f2414ffbe5ecd547d31c0e2455478d402719d6 --- /dev/null +++ b/modules/croco/stereoflow/train.py @@ -0,0 +1,253 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Main training function +# -------------------------------------------------------- + +import argparse +import datetime +import json +import numpy as np +import os +import sys +import time + +import torch +import torch.distributed as dist +import torch.backends.cudnn as cudnn +from torch.utils.tensorboard import SummaryWriter +import torchvision.transforms as transforms +import torchvision.datasets as datasets +from torch.utils.data import DataLoader + +import utils +import utils.misc as misc +from utils.misc import NativeScalerWithGradNormCount as NativeScaler +from models.croco_downstream import CroCoDownstreamBinocular, croco_args_from_ckpt +from models.pos_embed import interpolate_pos_embed +from models.head_downstream import PixelwiseTaskWithDPT + +from stereoflow.datasets_stereo import get_train_dataset_stereo, get_test_datasets_stereo +from stereoflow.datasets_flow import get_train_dataset_flow, get_test_datasets_flow +from stereoflow.engine import train_one_epoch, validate_one_epoch +from stereoflow.criterion import * + + +def get_args_parser(): + # prepare subparsers + parser = argparse.ArgumentParser('Finetuning CroCo models on stereo or flow', add_help=False) + subparsers = parser.add_subparsers(title="Task (stereo or flow)", dest="task", required=True) + parser_stereo = subparsers.add_parser('stereo', help='Training stereo model') + parser_flow = subparsers.add_parser('flow', help='Training flow model') + def add_arg(name_or_flags, default=None, default_stereo=None, default_flow=None, **kwargs): + if default is not None: assert default_stereo is None and default_flow is None, "setting default makes default_stereo and default_flow disabled" + parser_stereo.add_argument(name_or_flags, default=default if default is not None else default_stereo, **kwargs) + parser_flow.add_argument(name_or_flags, default=default if default is not None else default_flow, **kwargs) + # output dir + add_arg('--output_dir', required=True, type=str, help='path where to save, if empty, automatically created') + # model + add_arg('--crop', type=int, nargs = '+', default_stereo=[352, 704], default_flow=[320, 384], help = "size of the random image crops used during training.") + add_arg('--pretrained', required=True, type=str, help="Load pretrained model (required as croco arguments come from there)") + # criterion + add_arg('--criterion', default_stereo='LaplacianLossBounded2()', default_flow='LaplacianLossBounded()', type=str, help='string to evaluate to get criterion') + add_arg('--bestmetric', default_stereo='avgerr', default_flow='EPE', type=str) + # dataset + add_arg('--dataset', type=str, required=True, help="training set") + # training + add_arg('--seed', default=0, type=int, help='seed') + add_arg('--batch_size', default_stereo=6, default_flow=8, type=int, help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') + add_arg('--epochs', default=32, type=int, help='number of training epochs') + add_arg('--img_per_epoch', type=int, default=None, help='Fix the number of images seen in an epoch (None means use all training pairs)') + add_arg('--accum_iter', default=1, type=int, help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') + add_arg('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') + add_arg('--lr', type=float, default_stereo=3e-5, default_flow=2e-5, metavar='LR', help='learning rate (absolute lr)') + add_arg('--min_lr', type=float, default=0., metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') + add_arg('--warmup_epochs', type=int, default=1, metavar='N', help='epochs to warmup LR') + add_arg('--optimizer', default='AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))', type=str, + help="Optimizer from torch.optim [ default: AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) ]") + add_arg('--amp', default=0, type=int, choices=[0,1], help='enable automatic mixed precision training') + # validation + add_arg('--val_dataset', type=str, default='', help="Validation sets, multiple separated by + (empty string means that no validation is performed)") + add_arg('--tile_conf_mode', type=str, default_stereo='conf_expsigmoid_15_3', default_flow='conf_expsigmoid_10_5', help='Weights for tile aggregation') + add_arg('--val_overlap', default=0.7, type=float, help='Overlap value for the tiling') + # others + add_arg('--num_workers', default=8, type=int) + add_arg('--eval_every', type=int, default=1, help='Val loss evaluation frequency') + add_arg('--save_every', type=int, default=1, help='Save checkpoint frequency') + add_arg('--start_from', type=str, default=None, help='Start training using weights from an other model (eg for finetuning)') + add_arg('--tboard_log_step', type=int, default=100, help='Log to tboard every so many steps') + add_arg('--dist_url', default='env://', help='url used to set up distributed training') + + return parser + + +def main(args): + misc.init_distributed_mode(args) + global_rank = misc.get_rank() + num_tasks = misc.get_world_size() + + assert os.path.isfile(args.pretrained) + print("output_dir: "+args.output_dir) + os.makedirs(args.output_dir, exist_ok=True) + + # fix the seed for reproducibility + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + cudnn.benchmark = True + + # Metrics / criterion + device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') + metrics = (StereoMetrics if args.task=='stereo' else FlowMetrics)().to(device) + criterion = eval(args.criterion).to(device) + print('Criterion: ', args.criterion) + + # Prepare model + assert os.path.isfile(args.pretrained) + ckpt = torch.load(args.pretrained, 'cpu') + croco_args = croco_args_from_ckpt(ckpt) + croco_args['img_size'] = (args.crop[0], args.crop[1]) + print('Croco args: '+str(croco_args)) + args.croco_args = croco_args # saved for test time + # prepare head + num_channels = {'stereo': 1, 'flow': 2}[args.task] + if criterion.with_conf: num_channels += 1 + print(f'Building head PixelwiseTaskWithDPT() with {num_channels} channel(s)') + head = PixelwiseTaskWithDPT() + head.num_channels = num_channels + # build model and load pretrained weights + model = CroCoDownstreamBinocular(head, **croco_args) + interpolate_pos_embed(model, ckpt['model']) + msg = model.load_state_dict(ckpt['model'], strict=False) + print(msg) + + total_params = sum(p.numel() for p in model.parameters()) + total_params_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad) + print(f"Total params: {total_params}") + print(f"Total params trainable: {total_params_trainable}") + model_without_ddp = model.to(device) + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + print("lr: %.2e" % args.lr) + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], static_graph=True) + model_without_ddp = model.module + + # following timm: set wd as 0 for bias and norm layers + param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) + optimizer = eval(f"torch.optim.{args.optimizer}") + print(optimizer) + loss_scaler = NativeScaler() + + # automatic restart + last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth') + args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None + + if not args.resume and args.start_from: + print(f"Starting from an other model's weights: {args.start_from}") + best_so_far = None + args.start_epoch = 0 + ckpt = torch.load(args.start_from, 'cpu') + msg = model_without_ddp.load_state_dict(ckpt['model'], strict=False) + print(msg) + else: + best_so_far = misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) + + if best_so_far is None: best_so_far = np.inf + + # tensorboard + log_writer = None + if global_rank == 0 and args.output_dir is not None: + log_writer = SummaryWriter(log_dir=args.output_dir, purge_step=args.start_epoch*1000) + + # dataset and loader + print('Building Train Data loader for dataset: ', args.dataset) + train_dataset = (get_train_dataset_stereo if args.task=='stereo' else get_train_dataset_flow)(args.dataset, crop_size=args.crop) + def _print_repr_dataset(d): + if isinstance(d, torch.utils.data.dataset.ConcatDataset): + for dd in d.datasets: + _print_repr_dataset(dd) + else: + print(repr(d)) + _print_repr_dataset(train_dataset) + print(' total length:', len(train_dataset)) + if args.distributed: + sampler_train = torch.utils.data.DistributedSampler( + train_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True + ) + else: + sampler_train = torch.utils.data.RandomSampler(train_dataset) + data_loader_train = torch.utils.data.DataLoader( + train_dataset, sampler=sampler_train, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=True, + drop_last=True, + ) + if args.val_dataset=='': + data_loaders_val = None + else: + print('Building Val Data loader for datasets: ', args.val_dataset) + val_datasets = (get_test_datasets_stereo if args.task=='stereo' else get_test_datasets_flow)(args.val_dataset) + for val_dataset in val_datasets: print(repr(val_dataset)) + data_loaders_val = [DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=False) for val_dataset in val_datasets] + bestmetric = ("AVG_" if len(data_loaders_val)>1 else str(data_loaders_val[0].dataset)+'_')+args.bestmetric + + print(f"Start training for {args.epochs} epochs") + start_time = time.time() + # Training Loop + for epoch in range(args.start_epoch, args.epochs): + + if args.distributed: data_loader_train.sampler.set_epoch(epoch) + + # Train + epoch_start = time.time() + train_stats = train_one_epoch(model, criterion, metrics, data_loader_train, optimizer, device, epoch, loss_scaler, log_writer=log_writer, args=args) + epoch_time = time.time() - epoch_start + + if args.distributed: dist.barrier() + + # Validation (current naive implementation runs the validation on every gpu ... not smart ...) + if data_loaders_val is not None and args.eval_every > 0 and (epoch+1) % args.eval_every == 0: + val_epoch_start = time.time() + val_stats = validate_one_epoch(model, criterion, metrics, data_loaders_val, device, epoch, log_writer=log_writer, args=args) + val_epoch_time = time.time() - val_epoch_start + + val_best = val_stats[bestmetric] + + # Save best of all + if val_best <= best_so_far: + best_so_far = val_best + misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, best_so_far=best_so_far, fname='best') + + log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, + 'epoch': epoch, + **{f'val_{k}': v for k, v in val_stats.items()}} + else: + log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, + 'epoch': epoch,} + + if args.distributed: dist.barrier() + + # Save stuff + if args.output_dir and ((epoch+1) % args.save_every == 0 or epoch + 1 == args.epochs): + misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, best_so_far=best_so_far, fname='last') + + if args.output_dir: + if log_writer is not None: + log_writer.flush() + with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: + f.write(json.dumps(log_stats) + "\n") + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('Training time {}'.format(total_time_str)) + +if __name__ == '__main__': + args = get_args_parser() + args = args.parse_args() + main(args) \ No newline at end of file diff --git a/modules/croco/utils/misc.py b/modules/croco/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..132e102a662c987dce5282633cb8730b0e0d5c2d --- /dev/null +++ b/modules/croco/utils/misc.py @@ -0,0 +1,463 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for CroCo +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- + +import builtins +import datetime +import os +import time +import math +import json +from collections import defaultdict, deque +from pathlib import Path +import numpy as np + +import torch +import torch.distributed as dist +from torch import inf + +class SmoothedValue(object): + """Track a series of values and provide access to smoothed values over a + window or the global series average. + """ + + def __init__(self, window_size=20, fmt=None): + if fmt is None: + fmt = "{median:.4f} ({global_avg:.4f})" + self.deque = deque(maxlen=window_size) + self.total = 0.0 + self.count = 0 + self.fmt = fmt + + def update(self, value, n=1): + self.deque.append(value) + self.count += n + self.total += value * n + + def synchronize_between_processes(self): + """ + Warning: does not synchronize the deque! + """ + if not is_dist_avail_and_initialized(): + return + t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') + dist.barrier() + dist.all_reduce(t) + t = t.tolist() + self.count = int(t[0]) + self.total = t[1] + + @property + def median(self): + d = torch.tensor(list(self.deque)) + return d.median().item() + + @property + def avg(self): + d = torch.tensor(list(self.deque), dtype=torch.float32) + return d.mean().item() + + @property + def global_avg(self): + return self.total / self.count + + @property + def max(self): + return max(self.deque) + + @property + def value(self): + return self.deque[-1] + + def __str__(self): + return self.fmt.format( + median=self.median, + avg=self.avg, + global_avg=self.global_avg, + max=self.max, + value=self.value) + + +class MetricLogger(object): + def __init__(self, delimiter="\t"): + self.meters = defaultdict(SmoothedValue) + self.delimiter = delimiter + + def update(self, **kwargs): + for k, v in kwargs.items(): + if v is None: + continue + if isinstance(v, torch.Tensor): + v = v.item() + assert isinstance(v, (float, int)) + self.meters[k].update(v) + + def __getattr__(self, attr): + if attr in self.meters: + return self.meters[attr] + if attr in self.__dict__: + return self.__dict__[attr] + raise AttributeError("'{}' object has no attribute '{}'".format( + type(self).__name__, attr)) + + def __str__(self): + loss_str = [] + for name, meter in self.meters.items(): + loss_str.append( + "{}: {}".format(name, str(meter)) + ) + return self.delimiter.join(loss_str) + + def synchronize_between_processes(self): + for meter in self.meters.values(): + meter.synchronize_between_processes() + + def add_meter(self, name, meter): + self.meters[name] = meter + + def log_every(self, iterable, print_freq, header=None, max_iter=None): + i = 0 + if not header: + header = '' + start_time = time.time() + end = time.time() + iter_time = SmoothedValue(fmt='{avg:.4f}') + data_time = SmoothedValue(fmt='{avg:.4f}') + len_iterable = min(len(iterable), max_iter) if max_iter else len(iterable) + space_fmt = ':' + str(len(str(len_iterable))) + 'd' + log_msg = [ + header, + '[{0' + space_fmt + '}/{1}]', + 'eta: {eta}', + '{meters}', + 'time: {time}', + 'data: {data}' + ] + if torch.cuda.is_available(): + log_msg.append('max mem: {memory:.0f}') + log_msg = self.delimiter.join(log_msg) + MB = 1024.0 * 1024.0 + for it,obj in enumerate(iterable): + data_time.update(time.time() - end) + yield obj + iter_time.update(time.time() - end) + if i % print_freq == 0 or i == len_iterable - 1: + eta_seconds = iter_time.global_avg * (len_iterable - i) + eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) + if torch.cuda.is_available(): + print(log_msg.format( + i, len_iterable, eta=eta_string, + meters=str(self), + time=str(iter_time), data=str(data_time), + memory=torch.cuda.max_memory_allocated() / MB)) + else: + print(log_msg.format( + i, len_iterable, eta=eta_string, + meters=str(self), + time=str(iter_time), data=str(data_time))) + i += 1 + end = time.time() + if max_iter and it >= max_iter: + break + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('{} Total time: {} ({:.4f} s / it)'.format( + header, total_time_str, total_time / len_iterable)) + + +def setup_for_distributed(is_master): + """ + This function disables printing when not in master process + """ + builtin_print = builtins.print + + def print(*args, **kwargs): + force = kwargs.pop('force', False) + force = force or (get_world_size() > 8) + if is_master or force: + now = datetime.datetime.now().time() + builtin_print('[{}] '.format(now), end='') # print with time stamp + builtin_print(*args, **kwargs) + + builtins.print = print + + +def is_dist_avail_and_initialized(): + if not dist.is_available(): + return False + if not dist.is_initialized(): + return False + return True + + +def get_world_size(): + if not is_dist_avail_and_initialized(): + return 1 + return dist.get_world_size() + + +def get_rank(): + if not is_dist_avail_and_initialized(): + return 0 + return dist.get_rank() + + +def is_main_process(): + return get_rank() == 0 + + +def save_on_master(*args, **kwargs): + if is_main_process(): + torch.save(*args, **kwargs) + + +def init_distributed_mode(args): + nodist = args.nodist if hasattr(args,'nodist') else False + if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ and not nodist: + args.rank = int(os.environ["RANK"]) + args.world_size = int(os.environ['WORLD_SIZE']) + args.gpu = int(os.environ['LOCAL_RANK']) + else: + print('Not using distributed mode') + setup_for_distributed(is_master=True) # hack + args.distributed = False + return + + args.distributed = True + + torch.cuda.set_device(args.gpu) + args.dist_backend = 'nccl' + print('| distributed init (rank {}): {}, gpu {}'.format( + args.rank, args.dist_url, args.gpu), flush=True) + torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, + world_size=args.world_size, rank=args.rank) + torch.distributed.barrier() + setup_for_distributed(args.rank == 0) + + +class NativeScalerWithGradNormCount: + state_dict_key = "amp_scaler" + + def __init__(self, enabled=True): + self._scaler = torch.cuda.amp.GradScaler(enabled=enabled) + + def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): + self._scaler.scale(loss).backward(create_graph=create_graph) + if update_grad: + if clip_grad is not None: + assert parameters is not None + self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place + norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) + else: + self._scaler.unscale_(optimizer) + norm = get_grad_norm_(parameters) + self._scaler.step(optimizer) + self._scaler.update() + else: + norm = None + return norm + + def state_dict(self): + return self._scaler.state_dict() + + def load_state_dict(self, state_dict): + self._scaler.load_state_dict(state_dict) + + +def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = [p for p in parameters if p.grad is not None] + norm_type = float(norm_type) + if len(parameters) == 0: + return torch.tensor(0.) + device = parameters[0].grad.device + if norm_type == inf: + total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) + else: + total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) + return total_norm + + + + +def save_model(args, epoch, model_without_ddp, optimizer, loss_scaler, fname=None, best_so_far=None): + output_dir = Path(args.output_dir) + if fname is None: fname = str(epoch) + checkpoint_path = output_dir / ('checkpoint-%s.pth' % fname) + to_save = { + 'model': model_without_ddp.state_dict(), + 'optimizer': optimizer.state_dict(), + 'scaler': loss_scaler.state_dict(), + 'args': args, + 'epoch': epoch, + } + if best_so_far is not None: to_save['best_so_far'] = best_so_far + print(f'>> Saving model to {checkpoint_path} ...') + save_on_master(to_save, checkpoint_path) + + +def load_model(args, model_without_ddp, optimizer, loss_scaler): + args.start_epoch = 0 + best_so_far = None + if args.resume is not None: + if args.resume.startswith('https'): + checkpoint = torch.hub.load_state_dict_from_url( + args.resume, map_location='cpu', check_hash=True) + else: + checkpoint = torch.load(args.resume, map_location='cpu') + print("Resume checkpoint %s" % args.resume) + model_without_ddp.load_state_dict(checkpoint['model'], strict=False) + args.start_epoch = checkpoint['epoch'] + 1 + optimizer.load_state_dict(checkpoint['optimizer']) + if 'scaler' in checkpoint: + loss_scaler.load_state_dict(checkpoint['scaler']) + if 'best_so_far' in checkpoint: + best_so_far = checkpoint['best_so_far'] + print(" & best_so_far={:g}".format(best_so_far)) + else: + print("") + print("With optim & sched! start_epoch={:d}".format(args.start_epoch), end='') + return best_so_far + +def all_reduce_mean(x): + world_size = get_world_size() + if world_size > 1: + x_reduce = torch.tensor(x).cuda() + dist.all_reduce(x_reduce) + x_reduce /= world_size + return x_reduce.item() + else: + return x + +def _replace(text, src, tgt, rm=''): + """ Advanced string replacement. + Given a text: + - replace all elements in src by the corresponding element in tgt + - remove all elements in rm + """ + if len(tgt) == 1: + tgt = tgt * len(src) + assert len(src) == len(tgt), f"'{src}' and '{tgt}' should have the same len" + for s,t in zip(src, tgt): + text = text.replace(s,t) + for c in rm: + text = text.replace(c,'') + return text + +def filename( obj ): + """ transform a python obj or cmd into a proper filename. + - \1 gets replaced by slash '/' + - \2 gets replaced by comma ',' + """ + if not isinstance(obj, str): + obj = repr(obj) + obj = str(obj).replace('()','') + obj = _replace(obj, '_,(*/\1\2','-__x%/,', rm=' )\'"') + assert all(len(s) < 256 for s in obj.split(os.sep)), 'filename too long (>256 characters):\n'+obj + return obj + +def _get_num_layer_for_vit(var_name, enc_depth, dec_depth): + if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"): + return 0 + elif var_name.startswith("patch_embed"): + return 0 + elif var_name.startswith("enc_blocks"): + layer_id = int(var_name.split('.')[1]) + return layer_id + 1 + elif var_name.startswith('decoder_embed') or var_name.startswith('enc_norm'): # part of the last black + return enc_depth + elif var_name.startswith('dec_blocks'): + layer_id = int(var_name.split('.')[1]) + return enc_depth + layer_id + 1 + elif var_name.startswith('dec_norm'): # part of the last block + return enc_depth + dec_depth + elif any(var_name.startswith(k) for k in ['head','prediction_head']): + return enc_depth + dec_depth + 1 + else: + raise NotImplementedError(var_name) + +def get_parameter_groups(model, weight_decay, layer_decay=1.0, skip_list=(), no_lr_scale_list=[]): + parameter_group_names = {} + parameter_group_vars = {} + enc_depth, dec_depth = None, None + # prepare layer decay values + assert layer_decay==1.0 or 0. threshold + + # Scale heatmap for visualization + heatmap = np.uint8(255 * heatmap) + heatmap_color = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) + + # Prepare image + image = self.fix_imgs[i] + image = image * 255.0 + image = np.clip(image, 0, 255).astype(np.uint8) + + # Apply mask and overlay heatmap with red RGB for masked areas + mask_indices = np.where(mask) # Get indices where mask is True + heatmap_color[mask_indices[0], mask_indices[1]] = [0, 0, 255] # Red color for masked regions + + superimposed_img = np.where(np.expand_dims(mask, axis=-1), heatmap_color, image) / 255.0 + + self.rendered_imgs.append(superimposed_img) + + @property + def n_edges(self): + return len(self.edges) + + @property + def str_edges(self): + return [edge_str(i, j) for i, j in self.edges] + + @property + def imsizes(self): + return [(w, h) for h, w in self.imshapes] + + @property + def device(self): + return next(iter(self.parameters())).device + + def state_dict(self, trainable=True): + all_params = super().state_dict() + return {k: v for k, v in all_params.items() if k.startswith(('_', 'pred_i.', 'pred_j.', 'conf_i.', 'conf_j.')) != trainable} + + def load_state_dict(self, data): + return super().load_state_dict(self.state_dict(trainable=False) | data) + + def _check_edges(self): + indices = sorted({i for edge in self.edges for i in edge}) + assert indices == list(range(len(indices))), 'bad pair indices: missing values ' + return len(indices) + + @torch.no_grad() + def _compute_img_conf(self, pred1_conf, pred2_conf): + im_conf = nn.ParameterList([torch.zeros(hw, device=self.device) for hw in self.imshapes]) + for e, (i, j) in enumerate(self.edges): + im_conf[i] = torch.maximum(im_conf[i], pred1_conf[e]) + im_conf[j] = torch.maximum(im_conf[j], pred2_conf[e]) + return im_conf + + def get_adaptors(self): + adapt = self.pw_adaptors + adapt = torch.cat((adapt[:, 0:1], adapt), dim=-1) # (scale_xy, scale_xy, scale_z) + if self.norm_pw_scale: # normalize so that the product == 1 + adapt = adapt - adapt.mean(dim=1, keepdim=True) + return (adapt / self.pw_break).exp() + + def _get_poses(self, poses): + # normalize rotation + Q = poses[:, :4] + T = signed_expm1(poses[:, 4:7]) + RT = roma.RigidUnitQuat(Q, T).normalize().to_homogeneous() + return RT + + def _set_pose(self, poses, idx, R, T=None, scale=None, force=False): + # all poses == cam-to-world + pose = poses[idx] + if not (pose.requires_grad or force): + return pose + + if R.shape == (4, 4): + assert T is None + T = R[:3, 3] + R = R[:3, :3] + + if R is not None: + pose.data[0:4] = roma.rotmat_to_unitquat(R) + if T is not None: + pose.data[4:7] = signed_log1p(T / (scale or 1)) # translation is function of scale + + if scale is not None: + assert poses.shape[-1] in (8, 13) + pose.data[-1] = np.log(float(scale)) + return pose + + def get_pw_norm_scale_factor(self): + if self.norm_pw_scale: + # normalize scales so that things cannot go south + # we want that exp(scale) ~= self.base_scale + return (np.log(self.base_scale) - self.pw_poses[:, -1].mean()).exp() + else: + return 1 # don't norm scale for known poses + + def get_pw_scale(self): + scale = self.pw_poses[:, -1].exp() # (n_edges,) + scale = scale * self.get_pw_norm_scale_factor() + return scale + + def get_pw_poses(self): # cam to world + RT = self._get_poses(self.pw_poses) + scaled_RT = RT.clone() + scaled_RT[:, :3] *= self.get_pw_scale().view(-1, 1, 1) # scale the rotation AND translation + return scaled_RT + + def get_masks(self): + return [(conf > self.min_conf_thr) for conf in self.im_conf] + + def depth_to_pts3d(self): + raise NotImplementedError() + + def get_pts3d(self, raw=False): + res = self.depth_to_pts3d() + if not raw: + res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def _set_focal(self, idx, focal, force=False): + raise NotImplementedError() + + def get_focals(self): + raise NotImplementedError() + + def get_known_focal_mask(self): + raise NotImplementedError() + + def get_principal_points(self): + raise NotImplementedError() + + def get_conf(self, mode=None): + trf = self.conf_trf if mode is None else get_conf_trf(mode) + return [trf(c) for c in self.im_conf] + + def get_im_poses(self): + raise NotImplementedError() + + def _set_depthmap(self, idx, depth, force=False): + raise NotImplementedError() + + def get_depthmaps(self, raw=False): + raise NotImplementedError() + + def clean_pointcloud(self, **kw): + cams = inv(self.get_im_poses()) + K = self.get_intrinsics() + depthmaps = self.get_depthmaps() + all_pts3d = self.get_pts3d() + + new_im_confs = clean_pointcloud(self.im_conf, K, cams, depthmaps, all_pts3d, **kw) + + for i, new_conf in enumerate(new_im_confs): + self.im_conf[i].data[:] = new_conf + return self + + def forward(self, ret_details=False): + pw_poses = self.get_pw_poses() # cam-to-world + pw_adapt = self.get_adaptors() + proj_pts3d = self.get_pts3d() + # pre-compute pixel weights + weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()} + weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()} + + loss = 0 + if ret_details: + details = -torch.ones((self.n_imgs, self.n_imgs)) + + for e, (i, j) in enumerate(self.edges): + i_j = edge_str(i, j) + # distance in image i and j + aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j]) + aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j]) + li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean() + lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean() + loss = loss + li + lj + + if ret_details: + details[i, j] = li + lj + loss /= self.n_edges # average over all pairs + + if ret_details: + return loss, details + return loss + + def spatial_select_points(self, point_maps, semantic_maps, confidence_maps): + H, W = semantic_maps.shape + + # 将点图和语义图调整为二维形式 + point_map = point_maps.view(-1, 3) # (H*W, 3) + semantic_map = semantic_maps.view(-1) # (H*W) + confidence_map = confidence_maps.view(-1) + + dist_map = torch.zeros_like(semantic_map, dtype=torch.float32) + cnt_map = torch.zeros_like(semantic_map, dtype=torch.float32) + # near_point_map = torch.zeros_like(point_map, dtype=torch.float32) + + # refresh_point_map = point_map.clone() + refresh_confidence_map = confidence_map.clone() + + # 创建图像的索引 + row_idx, col_idx = torch.meshgrid(torch.arange(H), torch.arange(W)) + row_idx = row_idx.flatten() + col_idx = col_idx.flatten() + + kernel_size = 5 + offset_range = kernel_size // 2 + neighbor_offsets = [ + (dx, dy) for dx in range(-offset_range, offset_range + 1) + for dy in range(-offset_range, offset_range + 1) + if not (dx == 0 and dy == 0) + ] + + # 对每个像素点进行计算(仅在当前图像内计算邻域关系) + for offset in neighbor_offsets: + # 计算邻居位置 + neighbor_row = row_idx + offset[0] + neighbor_col = col_idx + offset[1] + + # 确保邻居在图像内部 + valid_mask = (neighbor_row >= 0) & (neighbor_row < H) & (neighbor_col >= 0) & (neighbor_col < W) + valid_row = neighbor_row[valid_mask] + valid_col = neighbor_col[valid_mask] + + # 获取有效像素点的索引 + idx = valid_mask.nonzero(as_tuple=True)[0] + neighbor_idx = valid_row * W + valid_col + + # 获取相邻像素点的语义标签和空间坐标 + sem_i = semantic_map[idx] + sem_j = semantic_map[neighbor_idx] + p_i = point_map[idx] + p_j = point_map[neighbor_idx] + + # 计算空间坐标差异的平方 + distance = torch.sum((p_i - p_j)**2, dim=1) + + same_object = (sem_i == sem_j) & (sem_i != -1) & (sem_j != -1) + + dist_map[idx] += same_object * distance + cnt_map[idx] += same_object + + anomaly_point = (dist_map / cnt_map) + tmp = (cnt_map==0) + idx = tmp.nonzero(as_tuple=True)[0] + anomaly_point[idx] = 0 + + mean = torch.mean(anomaly_point) + std = torch.std(anomaly_point) + anomaly_point = (anomaly_point - mean) / std + + anomaly_point = (anomaly_point > 0)#0.005) #& (cnt_map != 0) + anomaly_point_idx = anomaly_point.nonzero(as_tuple=True)[0] + + refresh_confidence_map[anomaly_point_idx] = -1 + + return refresh_confidence_map.view(H, W) + + + @torch.cuda.amp.autocast(enabled=False) + def compute_global_alignment(self, tune_flg=False, init=None, niter_PnP=10, **kw): + + if tune_flg: + for e, (i, j) in enumerate(self.edges): + i_j = edge_str(i, j) + self.conf_i[i_j] = self.spatial_select_points(self.pred_i[i_j], self.rev_segmaps[i], self.conf_i[i_j]) + self.conf_j[i_j] = self.spatial_select_points(self.pred_j[i_j], self.rev_segmaps[j], self.conf_j[i_j]) + self.im_conf[i] = self.conf_i[i_j] + self.im_conf[j] = self.conf_j[i_j] + + threshold = 0.25 + + for i in range(len(self.imgs)): + # self.imgs[i] = self.ori_imgs[i] + anomaly_mask = (self.im_conf[i] == -1) + unique_labels = torch.unique(self.rev_segmaps[i]) + # self.imgs[i][anomaly_mask.cpu()] = self.smoothed_imgs[i][anomaly_mask.cpu()] + for label in unique_labels: + semantic_mask = (self.rev_segmaps[i] == label) + if label == -1: + continue + cover = (semantic_mask & anomaly_mask).sum() / semantic_mask.sum() + if cover > threshold: + self.imgs[i][semantic_mask.cpu()] = self.smoothed_imgs[i][semantic_mask.cpu()] + for j in range(len(self.imgs)): + if j == i: + continue + semantic_mask = (self.rev_segmaps[j] == label) + self.imgs[j][semantic_mask.cpu()] = self.smoothed_imgs[j][semantic_mask.cpu()] + + if init is None: + pass + elif init == 'msp' or init == 'mst': + init_fun.init_minimum_spanning_tree(self, niter_PnP=niter_PnP) + elif init == 'known_poses': + init_fun.init_from_known_poses(self, min_conf_thr=self.min_conf_thr, + niter_PnP=niter_PnP) + else: + raise ValueError(f'bad value for {init=}') + + if tune_flg: + return 0 + + loss = global_alignment_loop(self, **kw) + return loss + + @torch.no_grad() + def mask_sky(self): + res = deepcopy(self) + for i in range(self.n_imgs): + sky = segment_sky(self.imgs[i]) + res.im_conf[i][sky] = 0 + return res + + def show(self, show_pw_cams=False, show_pw_pts3d=False, cam_size=None, **kw): + viz = SceneViz() + if self.imgs is None: + colors = np.random.randint(0, 256, size=(self.n_imgs, 3)) + colors = list(map(tuple, colors.tolist())) + for n in range(self.n_imgs): + viz.add_pointcloud(self.get_pts3d()[n], colors[n], self.get_masks()[n]) + else: + viz.add_pointcloud(self.get_pts3d(), self.imgs, self.get_masks()) + colors = np.random.randint(256, size=(self.n_imgs, 3)) + + # camera poses + im_poses = to_numpy(self.get_im_poses()) + if cam_size is None: + cam_size = auto_cam_size(im_poses) + viz.add_cameras(im_poses, self.get_focals(), colors=colors, + images=self.imgs, imsizes=self.imsizes, cam_size=cam_size) + if show_pw_cams: + pw_poses = self.get_pw_poses() + viz.add_cameras(pw_poses, color=(192, 0, 192), cam_size=cam_size) + + if show_pw_pts3d: + pts = [geotrf(pw_poses[e], self.pred_i[edge_str(i, j)]) for e, (i, j) in enumerate(self.edges)] + viz.add_pointcloud(pts, (128, 0, 128)) + + viz.show(**kw) + return viz + + +def global_alignment_loop(net, lr=0.01, niter=300, schedule='cosine', lr_min=1e-6): + # return net + params = [p for p in net.parameters() if p.requires_grad] + # for param in params: + # print(param.shape) + if not params: + return net + + verbose = net.verbose + if verbose: + print('Global alignement - optimizing for:') + print([name for name, value in net.named_parameters() if value.requires_grad]) + + lr_base = lr + optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9)) + + loss = float('inf') + if verbose: + with tqdm.tqdm(total=niter) as bar: + while bar.n < bar.total: + loss, lr = global_alignment_iter(net, bar.n, niter, lr_base, lr_min, optimizer, schedule) + bar.set_postfix_str(f'{lr=:g} loss={loss:g}') + bar.update() + else: + for n in range(niter): + loss, _ = global_alignment_iter(net, n, niter, lr_base, lr_min, optimizer, schedule) + return loss + + +def global_alignment_iter(net, cur_iter, niter, lr_base, lr_min, optimizer, schedule): + t = cur_iter / niter + if schedule == 'cosine': + lr = cosine_schedule(t, lr_base, lr_min) + elif schedule == 'linear': + lr = linear_schedule(t, lr_base, lr_min) + else: + raise ValueError(f'bad lr {schedule=}') + adjust_learning_rate_by_lr(optimizer, lr) + optimizer.zero_grad() + loss = net(cur_iter) + if loss == 0: + optimizer.step() + return float(loss), lr + + loss.backward() + optimizer.step() + + return float(loss), lr + + +@torch.no_grad() +def clean_pointcloud( im_confs, K, cams, depthmaps, all_pts3d, + tol=0.001, bad_conf=0, dbg=()): + """ Method: + 1) express all 3d points in each camera coordinate frame + 2) if they're in front of a depthmap --> then lower their confidence + """ + assert len(im_confs) == len(cams) == len(K) == len(depthmaps) == len(all_pts3d) + assert 0 <= tol < 1 + res = [c.clone() for c in im_confs] + + # reshape appropriately + all_pts3d = [p.view(*c.shape,3) for p,c in zip(all_pts3d, im_confs)] + depthmaps = [d.view(*c.shape) for d,c in zip(depthmaps, im_confs)] + + for i, pts3d in enumerate(all_pts3d): + for j in range(len(all_pts3d)): + if i == j: continue + + # project 3dpts in other view + proj = geotrf(cams[j], pts3d) + proj_depth = proj[:,:,2] + u,v = geotrf(K[j], proj, norm=1, ncol=2).round().long().unbind(-1) + + # check which points are actually in the visible cone + H, W = im_confs[j].shape + msk_i = (proj_depth > 0) & (0 <= u) & (u < W) & (0 <= v) & (v < H) + msk_j = v[msk_i], u[msk_i] + + # find bad points = those in front but less confident + bad_points = (proj_depth[msk_i] < (1-tol) * depthmaps[j][msk_j]) & (res[i][msk_i] < res[j][msk_j]) + + bad_msk_i = msk_i.clone() + bad_msk_i[msk_i] = bad_points + res[i][bad_msk_i] = res[i][bad_msk_i].clip_(max=bad_conf) + + return res + +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Base class for the global alignement procedure +# -------------------------------------------------------- +# from copy import deepcopy + +# import numpy as np +# import torch +# import torch.nn as nn +# import roma +# from copy import deepcopy +# import tqdm + +# from torch.nn.functional import cosine_similarity +# import cv2 + +# from dust3r.utils.geometry import inv, geotrf +# from dust3r.utils.device import to_numpy +# from dust3r.utils.image import rgb +# from dust3r.viz import SceneViz, segment_sky, auto_cam_size +# from dust3r.optim_factory import adjust_learning_rate_by_lr + +# from dust3r.cloud_opt.commons import (edge_str, ALL_DISTS, NoGradParamDict, get_imshapes, signed_expm1, signed_log1p, +# cosine_schedule, linear_schedule, get_conf_trf, GradParamDict) +# import dust3r.cloud_opt.init_im_poses as init_fun + + +# class BasePCOptimizer (nn.Module): +# """ Optimize a global scene, given a list of pairwise observations. +# Graph node: images +# Graph edges: observations = (pred1, pred2) +# """ + +# def __init__(self, *args, **kwargs): +# if len(args) == 1 and len(kwargs) == 0: +# other = deepcopy(args[0]) +# attrs = '''edges is_symmetrized dist n_imgs pred_i pred_j imshapes +# min_conf_thr conf_thr conf_i conf_j im_conf +# base_scale norm_pw_scale POSE_DIM pw_poses +# pw_adaptors pw_adaptors has_im_poses rand_pose imgs verbose'''.split() +# self.__dict__.update({k: other[k] for k in attrs}) +# else: +# self._init_from_views(*args, **kwargs) + +# def _init_from_views(self, view1, view2, pred1, pred2, cog_seg_maps, rev_cog_seg_maps, semantic_feats, +# dist='l2', +# conf='log', +# min_conf_thr=3, +# base_scale=0.5, +# allow_pw_adaptors=False, +# pw_break=20, +# rand_pose=torch.randn, +# iterationsCount=None, +# verbose=True): +# super().__init__() +# if not isinstance(view1['idx'], list): +# view1['idx'] = view1['idx'].tolist() +# if not isinstance(view2['idx'], list): +# view2['idx'] = view2['idx'].tolist() +# self.edges = [(int(i), int(j)) for i, j in zip(view1['idx'], view2['idx'])] +# self.is_symmetrized = set(self.edges) == {(j, i) for i, j in self.edges} +# self.dist = ALL_DISTS[dist] +# self.verbose = verbose + +# self.n_imgs = self._check_edges() + +# # input data +# pred1_pts = pred1['pts3d'] +# pred2_pts = pred2['pts3d_in_other_view'] +# self.pred_i = NoGradParamDict({ij: pred1_pts[n] for n, ij in enumerate(self.str_edges)}) +# self.pred_j = NoGradParamDict({ij: pred2_pts[n] for n, ij in enumerate(self.str_edges)}) +# # self.ori_pred_i = NoGradParamDict({ij: pred1_pts[n] for n, ij in enumerate(self.str_edges)}) +# # self.ori_pred_j = NoGradParamDict({ij: pred2_pts[n] for n, ij in enumerate(self.str_edges)}) +# self.imshapes = get_imshapes(self.edges, pred1_pts, pred2_pts) + +# # work in log-scale with conf +# pred1_conf = pred1['conf'] +# pred2_conf = pred2['conf'] +# self.min_conf_thr = min_conf_thr +# self.conf_trf = get_conf_trf(conf) + +# self.conf_i = NoGradParamDict({ij: pred1_conf[e] for e, ij in enumerate(self.str_edges)}) +# self.conf_j = NoGradParamDict({ij: pred2_conf[e] for e, ij in enumerate(self.str_edges)}) +# self.im_conf = self._compute_img_conf(pred1_conf, pred2_conf) +# for i in range(len(self.im_conf)): +# self.im_conf[i].requires_grad = False + +# # pairwise pose parameters +# self.base_scale = base_scale +# self.norm_pw_scale = True +# self.pw_break = pw_break +# self.POSE_DIM = 7 +# self.pw_poses = nn.Parameter(rand_pose((self.n_edges, 1+self.POSE_DIM))) # pairwise poses +# self.pw_poses.requires_grad_(True) +# self.pw_adaptors = nn.Parameter(torch.zeros((self.n_edges, 2))) # slight xy/z adaptation +# self.pw_adaptors.requires_grad_(True) +# self.has_im_poses = False +# self.rand_pose = rand_pose + +# # possibly store images for show_pointcloud +# self.imgs = None +# if 'img' in view1 and 'img' in view2: +# imgs = [torch.zeros((3,)+hw) for hw in self.imshapes] +# smoothed_imgs = [torch.zeros((3,)+hw) for hw in self.imshapes] +# ori_imgs = [torch.zeros((3,)+hw) for hw in self.imshapes] +# for v in range(len(self.edges)): +# idx = view1['idx'][v] +# imgs[idx] = view1['img'][v] +# smoothed_imgs[idx] = view1['smoothed_img'][v] +# ori_imgs[idx] = view1['ori_img'][v] + +# idx = view2['idx'][v] +# imgs[idx] = view2['img'][v] +# smoothed_imgs[idx] = view2['smoothed_img'][v] +# ori_imgs[idx] = view2['ori_img'][v] + +# self.imgs = rgb(imgs) +# self.ori_imgs = rgb(ori_imgs) +# self.fix_imgs = rgb(ori_imgs) +# self.smoothed_imgs = rgb(smoothed_imgs) + +# self.cogs = [torch.zeros((h, w, 1024), device="cuda") for h, w in self.imshapes] +# semantic_feats = semantic_feats.to("cuda") +# self.segmaps = [-torch.ones((h, w), device="cuda") for h, w in self.imshapes] +# self.rev_segmaps = [-torch.ones((h, w), device="cuda") for h, w in self.imshapes] +# # self.conf_1 = [torch.zeros((h, w), device="cuda") for h, w in self.imshapes] +# # self.conf_2 = [torch.zeros((h, w), device="cuda") for h, w in self.imshapes] +# for v in range(len(self.edges)): +# idx = view1['idx'][v] + +# h, w = self.cogs[idx].shape[0], self.cogs[idx].shape[1] +# cog_seg_map = cog_seg_maps[idx] +# cog_seg_map = torch.from_numpy(cv2.resize(cog_seg_map, [w, h], interpolation=cv2.INTER_NEAREST)) +# rev_seg_map = rev_cog_seg_maps[idx] +# rev_seg_map = torch.from_numpy(cv2.resize(rev_seg_map, [w, h], interpolation=cv2.INTER_NEAREST)) + +# y, x = torch.meshgrid(torch.arange(0, h), torch.arange(0, w)) +# x = x.reshape(-1, 1) +# y = y.reshape(-1, 1) +# seg = cog_seg_map[y, x].squeeze(-1).long() + +# self.cogs[idx] = semantic_feats[seg].reshape(h, w, -1) +# self.segmaps[idx] = cog_seg_map.cuda() +# self.rev_segmaps[idx] = rev_seg_map.cuda() + +# idx = view2['idx'][v] +# h, w = self.cogs[idx].shape[0], self.cogs[idx].shape[1] +# cog_seg_map = cog_seg_maps[idx] +# cog_seg_map = torch.from_numpy(cv2.resize(cog_seg_map, [w, h], interpolation=cv2.INTER_NEAREST)) +# rev_seg_map = rev_cog_seg_maps[idx] +# rev_seg_map = torch.from_numpy(cv2.resize(rev_seg_map, [w, h], interpolation=cv2.INTER_NEAREST)) + +# y, x = torch.meshgrid(torch.arange(0, h), torch.arange(0, w)) +# x = x.reshape(-1, 1) +# y = y.reshape(-1, 1) +# seg = cog_seg_map[y, x].squeeze(-1).long() + +# self.cogs[idx] = semantic_feats[seg].reshape(h, w, -1) +# self.segmaps[idx] = cog_seg_map.cuda() +# self.rev_segmaps[idx] = rev_seg_map.cuda() + +# self.rendered_imgs = [] + +# def render_image(self, text_feats, threshold=0.85): +# self.rendered_imgs = [] + +# # Collect all cosine similarities to compute min-max normalization +# all_similarities = [] +# for each_cog in self.cogs: +# similarity_map = cosine_similarity(each_cog.to("cpu"), text_feats.to("cpu").unsqueeze(1), dim=-1) +# all_similarities.append(similarity_map.squeeze().numpy()) + +# # Flatten and normalize all similarities +# total_similarities = np.concatenate(all_similarities) +# min_sim, max_sim = total_similarities.min(), total_similarities.max() +# normalized_similarities = [(sim - min_sim) / (max_sim - min_sim) for sim in all_similarities] + +# # Process each image with normalized similarities +# for i, (each_cog, heatmap) in enumerate(zip(self.cogs, normalized_similarities)): +# mask = heatmap > threshold + +# # Scale heatmap for visualization +# heatmap = np.uint8(255 * heatmap) +# heatmap_color = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) + +# # Prepare image +# image = self.fix_imgs[i] +# image = image * 255.0 +# image = np.clip(image, 0, 255).astype(np.uint8) + +# # Apply mask and overlay heatmap with red RGB for masked areas +# mask_indices = np.where(mask) # Get indices where mask is True +# heatmap_color[mask_indices[0], mask_indices[1]] = [0, 0, 255] # Red color for masked regions + +# superimposed_img = np.where(np.expand_dims(mask, axis=-1), heatmap_color, image) / 255.0 + +# self.rendered_imgs.append(superimposed_img) + +# @property +# def n_edges(self): +# return len(self.edges) + +# @property +# def str_edges(self): +# return [edge_str(i, j) for i, j in self.edges] + +# @property +# def imsizes(self): +# return [(w, h) for h, w in self.imshapes] + +# @property +# def device(self): +# return next(iter(self.parameters())).device + +# def state_dict(self, trainable=True): +# all_params = super().state_dict() +# return {k: v for k, v in all_params.items() if k.startswith(('_', 'pred_i.', 'pred_j.', 'conf_i.', 'conf_j.')) != trainable} + +# def load_state_dict(self, data): +# return super().load_state_dict(self.state_dict(trainable=False) | data) + +# def _check_edges(self): +# indices = sorted({i for edge in self.edges for i in edge}) +# assert indices == list(range(len(indices))), 'bad pair indices: missing values ' +# return len(indices) + +# @torch.no_grad() +# def _compute_img_conf(self, pred1_conf, pred2_conf): +# im_conf = nn.ParameterList([torch.zeros(hw, device=self.device) for hw in self.imshapes]) +# for e, (i, j) in enumerate(self.edges): +# im_conf[i] = torch.maximum(im_conf[i], pred1_conf[e]) +# im_conf[j] = torch.maximum(im_conf[j], pred2_conf[e]) +# return im_conf + +# def get_adaptors(self): +# adapt = self.pw_adaptors +# adapt = torch.cat((adapt[:, 0:1], adapt), dim=-1) # (scale_xy, scale_xy, scale_z) +# if self.norm_pw_scale: # normalize so that the product == 1 +# adapt = adapt - adapt.mean(dim=1, keepdim=True) +# return (adapt / self.pw_break).exp() + +# def _get_poses(self, poses): +# # normalize rotation +# Q = poses[:, :4] +# T = signed_expm1(poses[:, 4:7]) +# RT = roma.RigidUnitQuat(Q, T).normalize().to_homogeneous() +# return RT + +# def _set_pose(self, poses, idx, R, T=None, scale=None, force=False): +# # all poses == cam-to-world +# pose = poses[idx] +# if not (pose.requires_grad or force): +# return pose + +# if R.shape == (4, 4): +# assert T is None +# T = R[:3, 3] +# R = R[:3, :3] + +# if R is not None: +# pose.data[0:4] = roma.rotmat_to_unitquat(R) +# if T is not None: +# pose.data[4:7] = signed_log1p(T / (scale or 1)) # translation is function of scale + +# if scale is not None: +# assert poses.shape[-1] in (8, 13) +# pose.data[-1] = np.log(float(scale)) +# return pose + +# def get_pw_norm_scale_factor(self): +# if self.norm_pw_scale: +# # normalize scales so that things cannot go south +# # we want that exp(scale) ~= self.base_scale +# return (np.log(self.base_scale) - self.pw_poses[:, -1].mean()).exp() +# else: +# return 1 # don't norm scale for known poses + +# def get_pw_scale(self): +# scale = self.pw_poses[:, -1].exp() # (n_edges,) +# scale = scale * self.get_pw_norm_scale_factor() +# return scale + +# def get_pw_poses(self): # cam to world +# RT = self._get_poses(self.pw_poses) +# scaled_RT = RT.clone() +# scaled_RT[:, :3] *= self.get_pw_scale().view(-1, 1, 1) # scale the rotation AND translation +# return scaled_RT + +# def get_masks(self): +# return [(conf > self.min_conf_thr) for conf in self.im_conf] + +# def depth_to_pts3d(self): +# raise NotImplementedError() + +# def get_pts3d(self, raw=False): +# res = self.depth_to_pts3d() +# if not raw: +# res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] +# return res + +# def _set_focal(self, idx, focal, force=False): +# raise NotImplementedError() + +# def get_focals(self): +# raise NotImplementedError() + +# def get_known_focal_mask(self): +# raise NotImplementedError() + +# def get_principal_points(self): +# raise NotImplementedError() + +# def get_conf(self, mode=None): +# trf = self.conf_trf if mode is None else get_conf_trf(mode) +# return [trf(c) for c in self.im_conf] + +# def get_im_poses(self): +# raise NotImplementedError() + +# def _set_depthmap(self, idx, depth, force=False): +# raise NotImplementedError() + +# def get_depthmaps(self, raw=False): +# raise NotImplementedError() + +# def clean_pointcloud(self, **kw): +# cams = inv(self.get_im_poses()) +# K = self.get_intrinsics() +# depthmaps = self.get_depthmaps() +# all_pts3d = self.get_pts3d() + +# new_im_confs = clean_pointcloud(self.im_conf, K, cams, depthmaps, all_pts3d, **kw) + +# for i, new_conf in enumerate(new_im_confs): +# self.im_conf[i].data[:] = new_conf +# return self + +# def forward(self, ret_details=False): +# pw_poses = self.get_pw_poses() # cam-to-world +# pw_adapt = self.get_adaptors() +# proj_pts3d = self.get_pts3d() +# # pre-compute pixel weights +# weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()} +# weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()} + +# loss = 0 +# if ret_details: +# details = -torch.ones((self.n_imgs, self.n_imgs)) + +# for e, (i, j) in enumerate(self.edges): +# i_j = edge_str(i, j) +# # distance in image i and j +# aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j]) +# aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j]) +# li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean() +# lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean() +# loss = loss + li + lj + +# if ret_details: +# details[i, j] = li + lj +# loss /= self.n_edges # average over all pairs + +# if ret_details: +# return loss, details +# return loss + + +# def spatial_select_points(self, point_maps, semantic_maps, confidence_maps): +# H, W = semantic_maps.shape + +# # 将点图和语义图调整为二维形式 +# point_map = point_maps.view(-1, 3) # (H*W, 3) +# semantic_map = semantic_maps.view(-1) # (H*W) +# confidence_map = confidence_maps.view(-1) + +# dist_map = torch.zeros_like(semantic_map, dtype=torch.float32) +# cnt_map = torch.zeros_like(semantic_map, dtype=torch.float32) +# # near_point_map = torch.zeros_like(point_map, dtype=torch.float32) + +# # refresh_point_map = point_map.clone() +# refresh_confidence_map = confidence_map.clone() + +# # 创建图像的索引 +# row_idx, col_idx = torch.meshgrid(torch.arange(H), torch.arange(W)) +# row_idx = row_idx.flatten() +# col_idx = col_idx.flatten() + +# kernel_size = 7 +# offset_range = kernel_size // 2 +# neighbor_offsets = [ +# (dx, dy) for dx in range(-offset_range, offset_range + 1) +# for dy in range(-offset_range, offset_range + 1) +# if not (dx == 0 and dy == 0) +# ] + +# # 对每个像素点进行计算(仅在当前图像内计算邻域关系) +# for offset in neighbor_offsets: +# # 计算邻居位置 +# neighbor_row = row_idx + offset[0] +# neighbor_col = col_idx + offset[1] + +# # 确保邻居在图像内部 +# valid_mask = (neighbor_row >= 0) & (neighbor_row < H) & (neighbor_col >= 0) & (neighbor_col < W) +# valid_row = neighbor_row[valid_mask] +# valid_col = neighbor_col[valid_mask] + +# # 获取有效像素点的索引 +# idx = valid_mask.nonzero(as_tuple=True)[0] +# neighbor_idx = valid_row * W + valid_col + +# # 获取相邻像素点的语义标签和空间坐标 +# sem_i = semantic_map[idx] +# sem_j = semantic_map[neighbor_idx] +# p_i = point_map[idx] +# p_j = point_map[neighbor_idx] + +# # 计算空间坐标差异的平方 +# distance = torch.sum((p_i - p_j)**2, dim=1) + +# same_object = (sem_i == sem_j) & (sem_i != -1) & (sem_j != -1) + +# dist_map[idx] += same_object * distance +# cnt_map[idx] += same_object + +# anomaly_point = (dist_map / (cnt_map + 1e-6)) +# print(anomaly_point, anomaly_point.shape) +# anomaly_point = (anomaly_point > 0.001) & (cnt_map != 0) +# anomaly_point_idx = anomaly_point.nonzero(as_tuple=True)[0] + +# refresh_confidence_map[anomaly_point_idx] = 0 + +# return refresh_confidence_map.view(H, W) + +# @torch.cuda.amp.autocast(enabled=False) +# def compute_global_alignment(self, tune_flg=False, init=None, niter_PnP=10, **kw): + +# if tune_flg: +# im_conf = nn.ParameterList([torch.zeros(hw, device=self.device) for hw in self.imshapes]) +# for e, (i, j) in enumerate(self.edges): +# i_j = edge_str(i, j) +# im_conf[i] = self.spatial_select_points(self.pred_i[i_j], self.rev_segmaps[i], self.conf_i[i_j]) +# im_conf[j] = self.spatial_select_points(self.pred_j[i_j], self.rev_segmaps[j], self.conf_j[i_j]) + +# for i in range(len(self.imgs)): +# self.imgs[i] = self.ori_imgs[i] +# anomaly_mask = (im_conf[i] == 0) +# unique_labels = torch.unique(self.rev_segmaps[i]) +# for label in unique_labels: +# semantic_mask = (self.rev_segmaps[i] == label) +# if label == -1: +# continue +# cover = (semantic_mask & anomaly_mask).sum() / semantic_mask.sum() +# if cover > 0.3: +# self.imgs[i][semantic_mask.cpu()] = self.smoothed_imgs[i][semantic_mask.cpu()] +# for j in range(len(self.imgs)): +# if j == i: +# continue +# semantic_mask = (self.rev_segmaps[j] == label) +# self.imgs[j][semantic_mask.cpu()] = self.smoothed_imgs[j][semantic_mask.cpu()] + +# if init is None: +# pass +# elif init == 'msp' or init == 'mst': +# init_fun.init_minimum_spanning_tree(self, niter_PnP=niter_PnP) +# elif init == 'known_poses': +# init_fun.init_from_known_poses(self, min_conf_thr=self.min_conf_thr, +# niter_PnP=niter_PnP) +# else: +# raise ValueError(f'bad value for {init=}') + +# if tune_flg: +# return 0 +# # loss = 0 +# loss = global_alignment_loop(self, **kw) +# # +# # init_fun.init_minimum_spanning_tree(self, niter_PnP=niter_PnP) +# return loss + +# @torch.no_grad() +# def mask_sky(self): +# res = deepcopy(self) +# for i in range(self.n_imgs): +# sky = segment_sky(self.imgs[i]) +# res.im_conf[i][sky] = 0 +# return res + +# def show(self, show_pw_cams=False, show_pw_pts3d=False, cam_size=None, **kw): +# viz = SceneViz() +# if self.imgs is None: +# colors = np.random.randint(0, 256, size=(self.n_imgs, 3)) +# colors = list(map(tuple, colors.tolist())) +# for n in range(self.n_imgs): +# viz.add_pointcloud(self.get_pts3d()[n], colors[n], self.get_masks()[n]) +# else: +# viz.add_pointcloud(self.get_pts3d(), self.imgs, self.get_masks()) +# colors = np.random.randint(256, size=(self.n_imgs, 3)) + +# # camera poses +# im_poses = to_numpy(self.get_im_poses()) +# if cam_size is None: +# cam_size = auto_cam_size(im_poses) +# viz.add_cameras(im_poses, self.get_focals(), colors=colors, +# images=self.imgs, imsizes=self.imsizes, cam_size=cam_size) +# if show_pw_cams: +# pw_poses = self.get_pw_poses() +# viz.add_cameras(pw_poses, color=(192, 0, 192), cam_size=cam_size) + +# if show_pw_pts3d: +# pts = [geotrf(pw_poses[e], self.pred_i[edge_str(i, j)]) for e, (i, j) in enumerate(self.edges)] +# viz.add_pointcloud(pts, (128, 0, 128)) + +# viz.show(**kw) +# return viz + + +# def global_alignment_loop(net, lr=0.01, niter=300, schedule='cosine', lr_min=1e-6): +# # return net +# params = [p for p in net.parameters() if p.requires_grad] +# for param in params: +# print(param.shape) +# if not params: +# return net + +# verbose = net.verbose +# if verbose: +# print('Global alignement - optimizing for:') +# print([name for name, value in net.named_parameters() if value.requires_grad]) + +# lr_base = lr +# optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9)) + +# loss = float('inf') +# if verbose: +# with tqdm.tqdm(total=niter) as bar: +# while bar.n < bar.total: +# loss, lr = global_alignment_iter(net, bar.n, niter, lr_base, lr_min, optimizer, schedule) +# bar.set_postfix_str(f'{lr=:g} loss={loss:g}') +# bar.update() +# else: +# for n in range(niter): +# loss, _ = global_alignment_iter(net, n, niter, lr_base, lr_min, optimizer, schedule) +# return loss + + +# def global_alignment_iter(net, cur_iter, niter, lr_base, lr_min, optimizer, schedule): +# t = cur_iter / niter +# if schedule == 'cosine': +# lr = cosine_schedule(t, lr_base, lr_min) +# elif schedule == 'linear': +# lr = linear_schedule(t, lr_base, lr_min) +# else: +# raise ValueError(f'bad lr {schedule=}') +# adjust_learning_rate_by_lr(optimizer, lr) +# optimizer.zero_grad() +# loss = net(cur_iter) +# if loss == 0: +# optimizer.step() +# return float(loss), lr + +# loss.backward() +# optimizer.step() + +# return float(loss), lr + + +# @torch.no_grad() +# def clean_pointcloud( im_confs, K, cams, depthmaps, all_pts3d, +# tol=0.001, bad_conf=0, dbg=()): +# """ Method: +# 1) express all 3d points in each camera coordinate frame +# 2) if they're in front of a depthmap --> then lower their confidence +# """ +# assert len(im_confs) == len(cams) == len(K) == len(depthmaps) == len(all_pts3d) +# assert 0 <= tol < 1 +# res = [c.clone() for c in im_confs] + +# # reshape appropriately +# all_pts3d = [p.view(*c.shape,3) for p,c in zip(all_pts3d, im_confs)] +# depthmaps = [d.view(*c.shape) for d,c in zip(depthmaps, im_confs)] + +# for i, pts3d in enumerate(all_pts3d): +# for j in range(len(all_pts3d)): +# if i == j: continue + +# # project 3dpts in other view +# proj = geotrf(cams[j], pts3d) +# proj_depth = proj[:,:,2] +# u,v = geotrf(K[j], proj, norm=1, ncol=2).round().long().unbind(-1) + +# # check which points are actually in the visible cone +# H, W = im_confs[j].shape +# msk_i = (proj_depth > 0) & (0 <= u) & (u < W) & (0 <= v) & (v < H) +# msk_j = v[msk_i], u[msk_i] + +# # find bad points = those in front but less confident +# bad_points = (proj_depth[msk_i] < (1-tol) * depthmaps[j][msk_j]) & (res[i][msk_i] < res[j][msk_j]) + +# bad_msk_i = msk_i.clone() +# bad_msk_i[msk_i] = bad_points +# res[i][bad_msk_i] = res[i][bad_msk_i].clip_(max=bad_conf) + +# return res diff --git a/modules/dust3r/cloud_opt/commons.py b/modules/dust3r/cloud_opt/commons.py new file mode 100644 index 0000000000000000000000000000000000000000..3ccbf2b644797e4580e33fbf676ecb8bcdb7e62a --- /dev/null +++ b/modules/dust3r/cloud_opt/commons.py @@ -0,0 +1,98 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utility functions for global alignment +# -------------------------------------------------------- +import torch +import torch.nn as nn +import numpy as np + + +def edge_str(i, j): + return f'{i}_{j}' + + +def i_j_ij(ij): + return edge_str(*ij), ij + + +def edge_conf(conf_i, conf_j, edge): + return float(conf_i[edge].mean() * conf_j[edge].mean()) + + +def compute_edge_scores(edges, conf_i, conf_j): + return {(i, j): edge_conf(conf_i, conf_j, e) for e, (i, j) in edges} + + +def NoGradParamDict(x): + assert isinstance(x, dict) + return nn.ParameterDict(x).requires_grad_(False) + +def GradParamDict(x): + assert isinstance(x, dict) + return nn.ParameterDict(x).requires_grad_(True) + + +def get_imshapes(edges, pred_i, pred_j): + n_imgs = max(max(e) for e in edges) + 1 + imshapes = [None] * n_imgs + for e, (i, j) in enumerate(edges): + shape_i = tuple(pred_i[e].shape[0:2]) + shape_j = tuple(pred_j[e].shape[0:2]) + if imshapes[i]: + assert imshapes[i] == shape_i, f'incorrect shape for image {i}' + if imshapes[j]: + assert imshapes[j] == shape_j, f'incorrect shape for image {j}' + imshapes[i] = shape_i + imshapes[j] = shape_j + return imshapes + + +def get_conf_trf(mode): + if mode == 'log': + def conf_trf(x): return x.log() + elif mode == 'sqrt': + def conf_trf(x): return x.sqrt() + elif mode == 'm1': + def conf_trf(x): return x-1 + elif mode in ('id', 'none'): + def conf_trf(x): return x + else: + raise ValueError(f'bad mode for {mode=}') + return conf_trf + + +def l2_dist(a, b, weight=None): + if weight == None: + return (a - b).square().sum(dim=-1) + return ((a - b).square().sum(dim=-1) * weight) + + +def l1_dist(a, b, weight=None): + if weight == None: + return (a - b).norm(dim=-1) + return ((a - b).norm(dim=-1) * weight) + + +ALL_DISTS = dict(l1=l1_dist, l2=l2_dist) + + +def signed_log1p(x): + sign = torch.sign(x) + return sign * torch.log1p(torch.abs(x)) + + +def signed_expm1(x): + sign = torch.sign(x) + return sign * torch.expm1(torch.abs(x)) + + +def cosine_schedule(t, lr_start, lr_end): + assert 0 <= t <= 1 + return lr_end + (lr_start - lr_end) * (1+np.cos(t * np.pi))/2 + + +def linear_schedule(t, lr_start, lr_end): + assert 0 <= t <= 1 + return lr_start + (lr_end - lr_start) * t diff --git a/modules/dust3r/cloud_opt/init_im_poses.py b/modules/dust3r/cloud_opt/init_im_poses.py new file mode 100644 index 0000000000000000000000000000000000000000..61c64ed1f07bfb4d4e3d452fe2980bbe29d74406 --- /dev/null +++ b/modules/dust3r/cloud_opt/init_im_poses.py @@ -0,0 +1,316 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Initialization functions for global alignment +# -------------------------------------------------------- +from functools import cache + +import numpy as np +import scipy.sparse as sp +import torch +import cv2 +import roma +from tqdm import tqdm + +from dust3r.utils.geometry import geotrf, inv, get_med_dist_between_poses +from dust3r.post_process import estimate_focal_knowing_depth +from dust3r.viz import to_numpy + +from dust3r.cloud_opt.commons import edge_str, i_j_ij, compute_edge_scores + + +@torch.no_grad() +def init_from_known_poses(self, niter_PnP=10, min_conf_thr=3): + device = self.device + + # indices of known poses + nkp, known_poses_msk, known_poses = get_known_poses(self) + assert nkp == self.n_imgs, 'not all poses are known' + + # get all focals + nkf, _, im_focals = get_known_focals(self) + assert nkf == self.n_imgs + im_pp = self.get_principal_points() + + best_depthmaps = {} + # init all pairwise poses + for e, (i, j) in enumerate(tqdm(self.edges, disable=not self.verbose)): + i_j = edge_str(i, j) + + # find relative pose for this pair + P1 = torch.eye(4, device=device) + msk = self.conf_i[i_j] > min(min_conf_thr, self.conf_i[i_j].min() - 0.1) + _, P2 = fast_pnp(self.pred_j[i_j], float(im_focals[i].mean()), + pp=im_pp[i], msk=msk, device=device, niter_PnP=niter_PnP) + + # align the two predicted camera with the two gt cameras + s, R, T = align_multiple_poses(torch.stack((P1, P2)), known_poses[[i, j]]) + # normally we have known_poses[i] ~= sRT_to_4x4(s,R,T,device) @ P1 + # and geotrf(sRT_to_4x4(1,R,T,device), s*P2[:3,3]) + self._set_pose(self.pw_poses, e, R, T, scale=s) + + # remember if this is a good depthmap + score = float(self.conf_i[i_j].mean()) + if score > best_depthmaps.get(i, (0,))[0]: + best_depthmaps[i] = score, i_j, s + + # init all image poses + for n in range(self.n_imgs): + assert known_poses_msk[n] + _, i_j, scale = best_depthmaps[n] + depth = self.pred_i[i_j][:, :, 2] + self._set_depthmap(n, depth * scale) + + +@torch.no_grad() +def init_minimum_spanning_tree(self, **kw): + """ Init all camera poses (image-wise and pairwise poses) given + an initial set of pairwise estimations. + """ + device = self.device + pts3d, _, im_focals, im_poses = minimum_spanning_tree(self.imshapes, self.edges, + self.pred_i, self.pred_j, self.conf_i, self.conf_j, self.im_conf, self.min_conf_thr, + device, has_im_poses=self.has_im_poses, verbose=self.verbose, + **kw) + + return init_from_pts3d(self, pts3d, im_focals, im_poses) + + +def init_from_pts3d(self, pts3d, im_focals, im_poses): + # init poses + nkp, known_poses_msk, known_poses = get_known_poses(self) + if nkp == 1: + raise NotImplementedError("Would be simpler to just align everything afterwards on the single known pose") + elif nkp > 1: + # global rigid SE3 alignment + s, R, T = align_multiple_poses(im_poses[known_poses_msk], known_poses[known_poses_msk]) + trf = sRT_to_4x4(s, R, T, device=known_poses.device) + + # rotate everything + im_poses = trf @ im_poses + im_poses[:, :3, :3] /= s # undo scaling on the rotation part + for img_pts3d in pts3d: + img_pts3d[:] = geotrf(trf, img_pts3d) + + # set all pairwise poses + for e, (i, j) in enumerate(self.edges): + i_j = edge_str(i, j) + # compute transform that goes from cam to world + s, R, T = rigid_points_registration(self.pred_i[i_j], pts3d[i], conf=self.conf_i[i_j]) + self._set_pose(self.pw_poses, e, R, T, scale=s) + + # take into account the scale normalization + s_factor = self.get_pw_norm_scale_factor() + im_poses[:, :3, 3] *= s_factor # apply downscaling factor + for img_pts3d in pts3d: + img_pts3d *= s_factor + + # init all image poses + if self.has_im_poses: + for i in range(self.n_imgs): + cam2world = im_poses[i] + depth = geotrf(inv(cam2world), pts3d[i])[..., 2] + self._set_depthmap(i, depth) + self._set_pose(self.im_poses, i, cam2world) + if im_focals[i] is not None: + self._set_focal(i, im_focals[i]) + + if self.verbose: + print(' init loss =', float(self(0))) + + +def minimum_spanning_tree(imshapes, edges, pred_i, pred_j, conf_i, conf_j, im_conf, min_conf_thr, + device, has_im_poses=True, niter_PnP=10, verbose=True): + n_imgs = len(imshapes) + sparse_graph = -dict_to_sparse_graph(compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j)) + msp = sp.csgraph.minimum_spanning_tree(sparse_graph).tocoo() + + # temp variable to store 3d points + pts3d = [None] * len(imshapes) + + todo = sorted(zip(-msp.data, msp.row, msp.col)) # sorted edges + im_poses = [None] * n_imgs + im_focals = [None] * n_imgs + + # init with strongest edge + score, i, j = todo.pop() + if verbose: + print(f' init edge ({i}*,{j}*) {score=}') + i_j = edge_str(i, j) + pts3d[i] = pred_i[i_j].clone() + pts3d[j] = pred_j[i_j].clone() + done = {i, j} + if has_im_poses: + im_poses[i] = torch.eye(4, device=device) + im_focals[i] = estimate_focal(pred_i[i_j]) + + # set initial pointcloud based on pairwise graph + msp_edges = [(i, j)] + while todo: + # each time, predict the next one + score, i, j = todo.pop() + + if im_focals[i] is None: + im_focals[i] = estimate_focal(pred_i[i_j]) + + if i in done: + if verbose: + print(f' init edge ({i},{j}*) {score=}') + assert j not in done + # align pred[i] with pts3d[i], and then set j accordingly + i_j = edge_str(i, j) + s, R, T = rigid_points_registration(pred_i[i_j], pts3d[i], conf=conf_i[i_j]) + trf = sRT_to_4x4(s, R, T, device) + pts3d[j] = geotrf(trf, pred_j[i_j]) + done.add(j) + msp_edges.append((i, j)) + + if has_im_poses and im_poses[i] is None: + im_poses[i] = sRT_to_4x4(1, R, T, device) + + elif j in done: + if verbose: + print(f' init edge ({i}*,{j}) {score=}') + assert i not in done + i_j = edge_str(i, j) + s, R, T = rigid_points_registration(pred_j[i_j], pts3d[j], conf=conf_j[i_j]) + trf = sRT_to_4x4(s, R, T, device) + pts3d[i] = geotrf(trf, pred_i[i_j]) + done.add(i) + msp_edges.append((i, j)) + + if has_im_poses and im_poses[i] is None: + im_poses[i] = sRT_to_4x4(1, R, T, device) + else: + # let's try again later + todo.insert(0, (score, i, j)) + + if has_im_poses: + # complete all missing informations + pair_scores = list(sparse_graph.values()) # already negative scores: less is best + edges_from_best_to_worse = np.array(list(sparse_graph.keys()))[np.argsort(pair_scores)] + for i, j in edges_from_best_to_worse.tolist(): + if im_focals[i] is None: + im_focals[i] = estimate_focal(pred_i[edge_str(i, j)]) + + for i in range(n_imgs): + if im_poses[i] is None: + msk = im_conf[i] > min_conf_thr + res = fast_pnp(pts3d[i], im_focals[i], msk=msk, device=device, niter_PnP=niter_PnP) + if res: + im_focals[i], im_poses[i] = res + if im_poses[i] is None: + im_poses[i] = torch.eye(4, device=device) + im_poses = torch.stack(im_poses) + else: + im_poses = im_focals = None + + return pts3d, msp_edges, im_focals, im_poses + + +def dict_to_sparse_graph(dic): + n_imgs = max(max(e) for e in dic) + 1 + res = sp.dok_array((n_imgs, n_imgs)) + for edge, value in dic.items(): + res[edge] = value + return res + + +def rigid_points_registration(pts1, pts2, conf): + R, T, s = roma.rigid_points_registration( + pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf.ravel(), compute_scaling=True) + return s, R, T # return un-scaled (R, T) + + +def sRT_to_4x4(scale, R, T, device): + trf = torch.eye(4, device=device) + trf[:3, :3] = R * scale + trf[:3, 3] = T.ravel() # doesn't need scaling + return trf + + +def estimate_focal(pts3d_i, pp=None): + if pp is None: + H, W, THREE = pts3d_i.shape + assert THREE == 3 + pp = torch.tensor((W/2, H/2), device=pts3d_i.device) + focal = estimate_focal_knowing_depth(pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode='weiszfeld').ravel() + return float(focal) + + +@cache +def pixel_grid(H, W): + return np.mgrid[:W, :H].T.astype(np.float32) + + +def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10): + # extract camera poses and focals with RANSAC-PnP + if msk.sum() < 4: + return None # we need at least 4 points for PnP + pts3d, msk = map(to_numpy, (pts3d, msk)) + + H, W, THREE = pts3d.shape + assert THREE == 3 + pixels = pixel_grid(H, W) + + if focal is None: + S = max(W, H) + tentative_focals = np.geomspace(S/2, S*3, 21) + else: + tentative_focals = [focal] + + if pp is None: + pp = (W/2, H/2) + else: + pp = to_numpy(pp) + + best = 0, + for focal in tentative_focals: + K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) + + success, R, T, inliers = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None, + iterationsCount=niter_PnP, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP) + if not success: + continue + + score = len(inliers) + if success and score > best[0]: + best = score, R, T, focal + + if not best[0]: + return None + + _, R, T, best_focal = best + R = cv2.Rodrigues(R)[0] # world to cam + R, T = map(torch.from_numpy, (R, T)) + return best_focal, inv(sRT_to_4x4(1, R, T, device)) # cam to world + + +def get_known_poses(self): + if self.has_im_poses: + known_poses_msk = torch.tensor([not (p.requires_grad) for p in self.im_poses]) + known_poses = self.get_im_poses() + return known_poses_msk.sum(), known_poses_msk, known_poses + else: + return 0, None, None + + +def get_known_focals(self): + if self.has_im_poses: + known_focal_msk = self.get_known_focal_mask() + known_focals = self.get_focals() + return known_focal_msk.sum(), known_focal_msk, known_focals + else: + return 0, None, None + + +def align_multiple_poses(src_poses, target_poses): + N = len(src_poses) + assert src_poses.shape == target_poses.shape == (N, 4, 4) + + def center_and_z(poses): + eps = get_med_dist_between_poses(poses) / 100 + return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps*poses[:, :3, 2])) + R, T, s = roma.rigid_points_registration(center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True) + return s, R, T diff --git a/modules/dust3r/cloud_opt/modular_optimizer.py b/modules/dust3r/cloud_opt/modular_optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..d06464b40276684385c18b9195be1491c6f47f07 --- /dev/null +++ b/modules/dust3r/cloud_opt/modular_optimizer.py @@ -0,0 +1,145 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Slower implementation of the global alignment that allows to freeze partial poses/intrinsics +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn + +from dust3r.cloud_opt.base_opt import BasePCOptimizer +from dust3r.utils.geometry import geotrf +from dust3r.utils.device import to_cpu, to_numpy +from dust3r.utils.geometry import depthmap_to_pts3d + + +class ModularPointCloudOptimizer (BasePCOptimizer): + """ Optimize a global scene, given a list of pairwise observations. + Unlike PointCloudOptimizer, you can fix parts of the optimization process (partial poses/intrinsics) + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__(self, *args, optimize_pp=False, fx_and_fy=False, focal_brake=20, **kwargs): + super().__init__(*args, **kwargs) + self.has_im_poses = True # by definition of this class + self.focal_brake = focal_brake + + # adding thing to optimize + self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) + self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses + default_focals = [self.focal_brake * np.log(max(H, W)) for H, W in self.imshapes] + self.im_focals = nn.ParameterList(torch.FloatTensor([f, f] if fx_and_fy else [ + f]) for f in default_focals) # camera intrinsics + self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics + self.im_pp.requires_grad_(optimize_pp) + + def preset_pose(self, known_poses, pose_msk=None): # cam-to-world + if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: + known_poses = [known_poses] + for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): + if self.verbose: + print(f' (setting pose #{idx} = {pose[:3,3]})') + self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose), force=True)) + + # normalize scale if there's less than 1 known pose + n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) + self.norm_pw_scale = (n_known_poses <= 1) + + def preset_intrinsics(self, known_intrinsics, msk=None): + if isinstance(known_intrinsics, torch.Tensor) and known_intrinsics.ndim == 2: + known_intrinsics = [known_intrinsics] + for K in known_intrinsics: + assert K.shape == (3, 3) + self.preset_focal([K.diagonal()[:2].mean() for K in known_intrinsics], msk) + self.preset_principal_point([K[:2, 2] for K in known_intrinsics], msk) + + def preset_focal(self, known_focals, msk=None): + for idx, focal in zip(self._get_msk_indices(msk), known_focals): + if self.verbose: + print(f' (setting focal #{idx} = {focal})') + self._no_grad(self._set_focal(idx, focal, force=True)) + + def preset_principal_point(self, known_pp, msk=None): + for idx, pp in zip(self._get_msk_indices(msk), known_pp): + if self.verbose: + print(f' (setting principal point #{idx} = {pp})') + self._no_grad(self._set_principal_point(idx, pp, force=True)) + + def _no_grad(self, tensor): + return tensor.requires_grad_(False) + + def _get_msk_indices(self, msk): + if msk is None: + return range(self.n_imgs) + elif isinstance(msk, int): + return [msk] + elif isinstance(msk, (tuple, list)): + return self._get_msk_indices(np.array(msk)) + elif msk.dtype in (bool, torch.bool, np.bool_): + assert len(msk) == self.n_imgs + return np.where(msk)[0] + elif np.issubdtype(msk.dtype, np.integer): + return msk + else: + raise ValueError(f'bad {msk=}') + + def _set_focal(self, idx, focal, force=False): + param = self.im_focals[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = self.focal_brake * np.log(focal) + return param + + def get_focals(self): + log_focals = torch.stack(list(self.im_focals), dim=0) + return (log_focals / self.focal_brake).exp() + + def _set_principal_point(self, idx, pp, force=False): + param = self.im_pp[idx] + H, W = self.imshapes[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 + return param + + def get_principal_points(self): + return torch.stack([pp.new((W/2, H/2))+10*pp for pp, (H, W) in zip(self.im_pp, self.imshapes)]) + + def get_intrinsics(self): + K = torch.zeros((self.n_imgs, 3, 3), device=self.device) + focals = self.get_focals().view(self.n_imgs, -1) + K[:, 0, 0] = focals[:, 0] + K[:, 1, 1] = focals[:, -1] + K[:, :2, 2] = self.get_principal_points() + K[:, 2, 2] = 1 + return K + + def get_im_poses(self): # cam to world + cam2world = self._get_poses(torch.stack(list(self.im_poses))) + return cam2world + + def _set_depthmap(self, idx, depth, force=False): + param = self.im_depthmaps[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = depth.log().nan_to_num(neginf=0) + return param + + def get_depthmaps(self): + return [d.exp() for d in self.im_depthmaps] + + def depth_to_pts3d(self): + # Get depths and projection params if not provided + focals = self.get_focals() + pp = self.get_principal_points() + im_poses = self.get_im_poses() + depth = self.get_depthmaps() + + # convert focal to (1,2,H,W) constant field + def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *self.imshapes[i]) + # get pointmaps in camera frame + rel_ptmaps = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i+1])[0] for i in range(im_poses.shape[0])] + # project to world frame + return [geotrf(pose, ptmap) for pose, ptmap in zip(im_poses, rel_ptmaps)] + + def get_pts3d(self): + return self.depth_to_pts3d() diff --git a/modules/dust3r/cloud_opt/optimizer.py b/modules/dust3r/cloud_opt/optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..46ba765d59bab751294879ec4720da47fa320b3d --- /dev/null +++ b/modules/dust3r/cloud_opt/optimizer.py @@ -0,0 +1,258 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Main class for the implementation of the global alignment +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn + +from dust3r.cloud_opt.base_opt import BasePCOptimizer +from dust3r.utils.geometry import xy_grid, geotrf +from dust3r.utils.device import to_cpu, to_numpy +import torch.nn.functional as F + +from scipy.spatial import cKDTree + +from dust3r.cloud_opt.commons import (edge_str, ALL_DISTS, NoGradParamDict, get_imshapes, signed_expm1, signed_log1p, + cosine_schedule, linear_schedule, get_conf_trf, GradParamDict) + + +class PointCloudOptimizer(BasePCOptimizer): + """ Optimize a global scene, given a list of pairwise observations. + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs): + super().__init__(*args, **kwargs) + + self.has_im_poses = True # by definition of this class + self.focal_break = focal_break + + # adding thing to optimize + self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) + self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses + self.im_focals = nn.ParameterList(torch.FloatTensor( + [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics + self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics + self.im_pp.requires_grad_(optimize_pp) + + self.imshape = self.imshapes[0] + im_areas = [h*w for h, w in self.imshapes] + self.max_area = max(im_areas) + + # adding thing to optimize + self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area) + self.im_poses = ParameterStack(self.im_poses, is_param=True) + self.im_focals = ParameterStack(self.im_focals, is_param=True) + self.im_pp = ParameterStack(self.im_pp, is_param=True) + self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes])) + self.register_buffer('_grid', ParameterStack( + [xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area)) + + # pre-compute pixel weights + self.register_buffer('_weight_i', ParameterStack( + [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area)) + self.register_buffer('_weight_j', ParameterStack( + [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area)) + + self._stacked_pred_i = ParameterStack(self.pred_i, self.str_edges, is_param=True, fill=self.max_area) + self._stacked_pred_j = ParameterStack(self.pred_j, self.str_edges, is_param=True, fill=self.max_area) + + # precompute aa + # self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area)) + # self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area)) + self.register_buffer('_ei', torch.tensor([i for i, j in self.edges])) + self.register_buffer('_ej', torch.tensor([j for i, j in self.edges])) + self.total_area_i = sum([im_areas[i] for i, j in self.edges]) + self.total_area_j = sum([im_areas[j] for i, j in self.edges]) + + def _check_all_imgs_are_selected(self, msk): + assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!' + + def preset_pose(self, known_poses, pose_msk=None): # cam-to-world + self._check_all_imgs_are_selected(pose_msk) + + if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: + known_poses = [known_poses] + for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): + if self.verbose: + print(f' (setting pose #{idx} = {pose[:3,3]})') + self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose))) + + # normalize scale if there's less than 1 known pose + n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) + self.norm_pw_scale = (n_known_poses <= 1) + + self.im_poses.requires_grad_(False) + self.norm_pw_scale = False + + def preset_focal(self, known_focals, msk=None): + self._check_all_imgs_are_selected(msk) + + for idx, focal in zip(self._get_msk_indices(msk), known_focals): + if self.verbose: + print(f' (setting focal #{idx} = {focal})') + self._no_grad(self._set_focal(idx, focal)) + + self.im_focals.requires_grad_(False) + + def preset_principal_point(self, known_pp, msk=None): + self._check_all_imgs_are_selected(msk) + + for idx, pp in zip(self._get_msk_indices(msk), known_pp): + if self.verbose: + print(f' (setting principal point #{idx} = {pp})') + self._no_grad(self._set_principal_point(idx, pp)) + + self.im_pp.requires_grad_(False) + + def _get_msk_indices(self, msk): + if msk is None: + return range(self.n_imgs) + elif isinstance(msk, int): + return [msk] + elif isinstance(msk, (tuple, list)): + return self._get_msk_indices(np.array(msk)) + elif msk.dtype in (bool, torch.bool, np.bool_): + assert len(msk) == self.n_imgs + return np.where(msk)[0] + elif np.issubdtype(msk.dtype, np.integer): + return msk + else: + raise ValueError(f'bad {msk=}') + + def _no_grad(self, tensor): + assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs' + + def _set_focal(self, idx, focal, force=False): + param = self.im_focals[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = self.focal_break * np.log(focal) + return param + + def get_focals(self): + log_focals = torch.stack(list(self.im_focals), dim=0) + return (log_focals / self.focal_break).exp() + + def get_known_focal_mask(self): + return torch.tensor([not (p.requires_grad) for p in self.im_focals]) + + def _set_principal_point(self, idx, pp, force=False): + param = self.im_pp[idx] + H, W = self.imshapes[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 + return param + + def get_principal_points(self): + return self._pp + 10 * self.im_pp + + def get_intrinsics(self): + K = torch.zeros((self.n_imgs, 3, 3), device=self.device) + focals = self.get_focals().flatten() + K[:, 0, 0] = K[:, 1, 1] = focals + K[:, :2, 2] = self.get_principal_points() + K[:, 2, 2] = 1 + return K + + def get_im_poses(self): # cam to world + cam2world = self._get_poses(self.im_poses) + return cam2world + + def _set_depthmap(self, idx, depth, force=False): + depth = _ravel_hw(depth, self.max_area) + + param = self.im_depthmaps[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = depth.log().nan_to_num(neginf=0) + return param + + def get_depthmaps(self, raw=False): + res = self.im_depthmaps.exp() + if not raw: + res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def depth_to_pts3d(self): + # Get depths and projection params if not provided + focals = self.get_focals() + pp = self.get_principal_points() + im_poses = self.get_im_poses() + depth = self.get_depthmaps(raw=True) + + # get pointmaps in camera frame + rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp) + # project to world frame + return geotrf(im_poses, rel_ptmaps) + + def get_pts3d(self, raw=False): + res = self.depth_to_pts3d() + if not raw: + res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def forward(self, cur_iter): + + loss = 0.0 + pw_poses = self.get_pw_poses() # cam-to-world + pw_adapt = self.get_adaptors().unsqueeze(1) + proj_pts3d = self.get_pts3d(raw=True) + + # rotate pairwise prediction according to pw_poses + aligned_pred_i = geotrf(pw_poses, pw_adapt*self._stacked_pred_i) + aligned_pred_j = geotrf(pw_poses, pw_adapt*self._stacked_pred_j) + + loss += self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i + loss += self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j + + return loss + + +def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp): + pp = pp.unsqueeze(1) + focal = focal.unsqueeze(1) + assert focal.shape == (len(depth), 1, 1) + assert pp.shape == (len(depth), 1, 2) + assert pixel_grid.shape == depth.shape + (2,) + depth = depth.unsqueeze(-1) + return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1) + + +def ParameterStack(params, keys=None, is_param=None, fill=0): + if keys is not None: + params = [params[k] for k in keys] + + if fill > 0: + params = [_ravel_hw(p, fill) for p in params] + + requires_grad = params[0].requires_grad + assert all(p.requires_grad == requires_grad for p in params) + + params = torch.stack(list(params)).float().detach() + if is_param or requires_grad: + params = nn.Parameter(params) + params.requires_grad_(requires_grad) + return params + + +def _ravel_hw(tensor, fill=0): + # ravel H,W + tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) + + if len(tensor) < fill: + tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:]))) + return tensor + + +def acceptable_focal_range(H, W, minf=0.5, maxf=3.5): + focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515 + return minf*focal_base, maxf*focal_base + + +def apply_mask(img, msk): + img = img.copy() + img[msk] = 0 + return img diff --git a/modules/dust3r/cloud_opt/optimizer.py.bak.1216 b/modules/dust3r/cloud_opt/optimizer.py.bak.1216 new file mode 100644 index 0000000000000000000000000000000000000000..da588a79d8bbc38587a7101270f58432d970e2cc --- /dev/null +++ b/modules/dust3r/cloud_opt/optimizer.py.bak.1216 @@ -0,0 +1,533 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Main class for the implementation of the global alignment +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn + +from dust3r.cloud_opt.base_opt import BasePCOptimizer +from dust3r.utils.geometry import xy_grid, geotrf +from dust3r.utils.device import to_cpu, to_numpy +import torch.nn.functional as F + +class PointCloudOptimizer(BasePCOptimizer): + """ Optimize a global scene, given a list of pairwise observations. + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs): + super().__init__(*args, **kwargs) + + self.has_im_poses = True # by definition of this class + self.focal_break = focal_break + + # adding thing to optimize + self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) + self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses + self.im_focals = nn.ParameterList(torch.FloatTensor( + [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics + self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics + self.im_pp.requires_grad_(optimize_pp) + + self.imshape = self.imshapes[0] + im_areas = [h*w for h, w in self.imshapes] + self.max_area = max(im_areas) + + # adding thing to optimize + self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area) + self.im_poses = ParameterStack(self.im_poses, is_param=True) + self.im_focals = ParameterStack(self.im_focals, is_param=True) + self.im_pp = ParameterStack(self.im_pp, is_param=True) + self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes])) + self.register_buffer('_grid', ParameterStack( + [xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area)) + + # pre-compute pixel weights + self.register_buffer('_weight_i', ParameterStack( + [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area)) + self.register_buffer('_weight_j', ParameterStack( + [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area)) + + # precompute aa + self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area)) + self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area)) + self.register_buffer('_ei', torch.tensor([i for i, j in self.edges])) + self.register_buffer('_ej', torch.tensor([j for i, j in self.edges])) + self.total_area_i = sum([im_areas[i] for i, j in self.edges]) + self.total_area_j = sum([im_areas[j] for i, j in self.edges]) + + def _check_all_imgs_are_selected(self, msk): + assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!' + + def preset_pose(self, known_poses, pose_msk=None): # cam-to-world + self._check_all_imgs_are_selected(pose_msk) + + if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: + known_poses = [known_poses] + for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): + if self.verbose: + print(f' (setting pose #{idx} = {pose[:3,3]})') + self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose))) + + # normalize scale if there's less than 1 known pose + n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) + self.norm_pw_scale = (n_known_poses <= 1) + + self.im_poses.requires_grad_(False) + self.norm_pw_scale = False + + def preset_focal(self, known_focals, msk=None): + self._check_all_imgs_are_selected(msk) + + for idx, focal in zip(self._get_msk_indices(msk), known_focals): + if self.verbose: + print(f' (setting focal #{idx} = {focal})') + self._no_grad(self._set_focal(idx, focal)) + + self.im_focals.requires_grad_(False) + + def preset_principal_point(self, known_pp, msk=None): + self._check_all_imgs_are_selected(msk) + + for idx, pp in zip(self._get_msk_indices(msk), known_pp): + if self.verbose: + print(f' (setting principal point #{idx} = {pp})') + self._no_grad(self._set_principal_point(idx, pp)) + + self.im_pp.requires_grad_(False) + + def _get_msk_indices(self, msk): + if msk is None: + return range(self.n_imgs) + elif isinstance(msk, int): + return [msk] + elif isinstance(msk, (tuple, list)): + return self._get_msk_indices(np.array(msk)) + elif msk.dtype in (bool, torch.bool, np.bool_): + assert len(msk) == self.n_imgs + return np.where(msk)[0] + elif np.issubdtype(msk.dtype, np.integer): + return msk + else: + raise ValueError(f'bad {msk=}') + + def _no_grad(self, tensor): + assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs' + + def _set_focal(self, idx, focal, force=False): + param = self.im_focals[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = self.focal_break * np.log(focal) + return param + + def get_focals(self): + log_focals = torch.stack(list(self.im_focals), dim=0) + return (log_focals / self.focal_break).exp() + + def get_known_focal_mask(self): + return torch.tensor([not (p.requires_grad) for p in self.im_focals]) + + def _set_principal_point(self, idx, pp, force=False): + param = self.im_pp[idx] + H, W = self.imshapes[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 + return param + + def get_principal_points(self): + return self._pp + 10 * self.im_pp + + def get_intrinsics(self): + K = torch.zeros((self.n_imgs, 3, 3), device=self.device) + focals = self.get_focals().flatten() + K[:, 0, 0] = K[:, 1, 1] = focals + K[:, :2, 2] = self.get_principal_points() + K[:, 2, 2] = 1 + return K + + def get_im_poses(self): # cam to world + cam2world = self._get_poses(self.im_poses) + return cam2world + + def _set_depthmap(self, idx, depth, force=False): + depth = _ravel_hw(depth, self.max_area) + + param = self.im_depthmaps[idx] + if param.requires_grad or force: # can only init a parameter not already initialized + param.data[:] = depth.log().nan_to_num(neginf=0) + return param + + def get_depthmaps(self, raw=False): + res = self.im_depthmaps.exp() + if not raw: + res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def depth_to_pts3d(self): + # Get depths and projection params if not provided + focals = self.get_focals() + pp = self.get_principal_points() + im_poses = self.get_im_poses() + depth = self.get_depthmaps(raw=True) + + # get pointmaps in camera frame + rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp) + # project to world frame + return geotrf(im_poses, rel_ptmaps) + + def get_pts3d(self, raw=False): + res = self.depth_to_pts3d() + if not raw: + res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] + return res + + # def cosine_similarity_batch(self, semantic_features, query_pixels): + # # 扩展维度进行广播计算余弦相似度 + # query_pixels = query_pixels.unsqueeze(1) # [B, 1, C] + # semantic_features = semantic_features.unsqueeze(0) # [1, H, W, C] + # cos_sim = F.cosine_similarity(query_pixels, semantic_features, dim=-1) # [B, H, W] + # return cos_sim + + # def semantic_loss(self, semantic_features, predicted_depth, window_size=32, stride=16, lambda_semantic=0.1): + # # 获取图像的尺寸 + # height, width, channels = semantic_features.shape + # # 执行矩阵化处理 + # ret_loss = 0.0 + # cnt = 0 + # for i in range(0, height, stride): + # for j in range(0, width, stride): + # window_semantic = semantic_features[i:min(i+window_size,height), j:min(j+window_size,width), :] + # window_depth = predicted_depth[i:min(i+window_size,height), j:min(j+window_size,width)] + # # print(window_semantic.shape, window_depth.shape) + + # window_semantic = window_semantic.reshape(-1, channels) + # window_depth = window_depth.reshape(-1, 1) + + # cos_sim = torch.matmul(window_semantic, window_semantic.t()) + # dep_dif = torch.abs(window_depth - window_depth.reshape(1, -1)) + + # # print(torch.sum(cos_sim * dep_dif)) + # ret_loss += torch.mean(cos_sim * dep_dif) + # cnt += 1 + + # return ret_loss / cnt + + # def segmap_loss(self, predicted_depth, seg_map): + # ret_loss = 0.0 + # cnt = 0 + # seg_map = seg_map.view(-1) + # predicted_depth = predicted_depth.view(-1, 1) + # unique_groups = torch.unique(seg_map) + # for group in unique_groups: + # # print(group) + # if group == -1: + # continue + # group_indices = (seg_map == group).nonzero(as_tuple=True)[0] + # if len(group_indices) > 0: + # now_feat = predicted_depth[group_indices] + + # dep_dif = torch.abs(now_feat - now_feat.reshape(1, -1)) + + # ret_loss += torch.mean(dep_dif) + # cnt += 1 + + # return ret_loss / cnt if cnt > 0 else ret_loss + + # def spatial_smoothness_loss(self, point_map, semantic_map): + # """ + # 计算空间平滑性损失,使得同一语义类别的相邻像素点空间位置变化不剧烈。 + # 使用八邻域。 + + # 参数: + # - point_map: (H, W, 3),表示每个像素点的空间坐标 (x, y, z) + # - semantic_map: (H, W, 1),每个像素点的语义标签 + + # 返回: + # - 总损失值 + # """ + + # # 获取图像的高度和宽度 + # H, W = semantic_map.shape + + # # 将点图和语义图调整为二维形式 + # point_map = point_map.view(-1, 3) # (H * W, 3) + # semantic_map = semantic_map.view(-1) # (H * W,) + + # # 创建图像的索引 + # row_idx, col_idx = torch.meshgrid(torch.arange(H), torch.arange(W)) + # row_idx = row_idx.flatten() + # col_idx = col_idx.flatten() + + # # 定义八邻域偏移 + # neighbor_offsets = torch.tensor([[-1, 0], [1, 0], [0, -1], [0, 1], + # [-1, -1], [-1, 1], [1, -1], [1, 1]], dtype=torch.long) + + # # 存储损失值 + # total_loss = 0.0 + + # # 对每个像素点进行计算 + # for offset in neighbor_offsets: + # # 计算邻居位置 + # neighbor_row = row_idx + offset[0] + # neighbor_col = col_idx + offset[1] + + # # 确保邻居在图像内部 + # valid_mask = (neighbor_row >= 0) & (neighbor_row < H) & (neighbor_col >= 0) & (neighbor_col < W) + # valid_row = neighbor_row[valid_mask] + # valid_col = neighbor_col[valid_mask] + + # # 获取有效像素点的索引 + # idx = valid_mask.nonzero(as_tuple=True)[0] + # neighbor_idx = valid_row * W + valid_col + + # # 获取相邻像素点的语义标签和空间坐标 + # sem_i = semantic_map[idx] + # sem_j = semantic_map[neighbor_idx] + # p_i = point_map[idx] + # p_j = point_map[neighbor_idx] + + # # 计算空间坐标差异的平方 + # distance = torch.sum((p_i - p_j) ** 2, dim=1) + + # # 如果相邻像素属于同一语义类别,计算损失 + # loss_mask = (sem_i == sem_j) + # total_loss += torch.sum(loss_mask * distance) + + # # 平均损失 + # return total_loss / point_map.size(0) + + + def spatial_smoothness_loss_multi_image(self, point_maps, semantic_maps, confidence_maps): + """ + 计算空间平滑性损失,考虑多张图像中属于同一物体的像素点的空间平滑性。 + + 参数: + - point_maps: (B, H, W, 3),每张图像的空间坐标 (x, y, z) B是batch大小 + - semantic_maps: (B, H, W, 1),每张图像的语义标签 + + 返回: + - 总损失值 + """ + + B, H, W = semantic_maps.shape + + # 将点图和语义图调整为二维形式 + point_maps = point_maps.view(B, -1, 3) # (B, H*W, 3) + semantic_maps = semantic_maps.view(B, -1) # (B, H*W) + confidence_maps = confidence_maps.view(B, -1) # (B, H*W) + + # 存储损失值 + total_loss = 0.0 + + # 对每张图像中的每个像素进行计算 + for b in range(B): + # 获取当前图像的点图和语义图 + point_map = point_maps[b] + semantic_map = semantic_maps[b] + confidence_map = confidence_maps[b] + + # 创建图像的索引 + row_idx, col_idx = torch.meshgrid(torch.arange(H), torch.arange(W)) + row_idx = row_idx.flatten() + col_idx = col_idx.flatten() + + # 定义八邻域偏移 + neighbor_offsets = torch.tensor([[-1, 0], [1, 0], [0, -1], [0, 1], + [-1, -1], [-1, 1], [1, -1], [1, 1]], dtype=torch.long) + + # 对每个像素点进行计算(仅在当前图像内计算邻域关系) + for offset in neighbor_offsets: + # 计算邻居位置 + neighbor_row = row_idx + offset[0] + neighbor_col = col_idx + offset[1] + + # 确保邻居在图像内部 + valid_mask = (neighbor_row >= 0) & (neighbor_row < H) & (neighbor_col >= 0) & (neighbor_col < W) + valid_row = neighbor_row[valid_mask] + valid_col = neighbor_col[valid_mask] + + # 获取有效像素点的索引 + idx = valid_mask.nonzero(as_tuple=True)[0] + neighbor_idx = valid_row * W + valid_col + + # 获取相邻像素点的语义标签和空间坐标 + sem_i = semantic_map[idx] + sem_j = semantic_map[neighbor_idx] + p_i = point_map[idx] + p_j = point_map[neighbor_idx] + conf_i = confidence_map[idx] + conf_j = confidence_map[neighbor_idx] + + # 计算空间坐标差异的平方 + distance = torch.sum((p_i - p_j)**2, dim=1) + + # 如果相邻像素属于同一语义类别,计算加权损失 + loss_mask = (sem_i == sem_j) + + # 反向加权,低置信度的点会有更高的权重 + # inverse_weight_i = 1.0 / (conf_i) # 防止除零错误 + # inverse_weight_j = 1.0 / (conf_j) + weighted_distance = loss_mask * distance # 加权损失 * inverse_weight_i * inverse_weight_j + total_loss += torch.sum(weighted_distance) + + # 跨图计算:对于同一语义类别的像素,只计算其均值差异,避免两两计算 + # for b2 in range(B): + # if b == b2: + # continue # 跳过与自己图像的比较 + # point_map_b2 = point_maps[b2] + # semantic_map_b2 = semantic_maps[b2] + # confidence_map_b2 = confidence_maps[b2] + + # for sem_id in torch.unique(semantic_map): + # sem_mask_a = (semantic_map == sem_id) + # sem_mask_b2 = (semantic_map_b2 == sem_id) + + # # 提取同一语义类别的像素点 + # shared_points_a = point_map[sem_mask_a] + # shared_points_b2 = point_map_b2[sem_mask_b2] + # shared_conf_a = confidence_map[sem_mask_a] + # shared_conf_b2 = confidence_map_b2[sem_mask_b2] + + # if shared_points_a.shape[0] > 0 and shared_points_b2.shape[0] > 0: + # # 计算这些像素点的均值 + # mean_a = shared_points_a.mean(dim=0) # 当前图像该语义类别的均值 + # mean_b2 = shared_points_b2.mean(dim=0) # 第b2图像该语义类别的均值 + # mean_conf_a = shared_conf_a.mean() # 当前图像该语义类别的置信度均值 + # mean_conf_b2 = shared_conf_b2.mean() # 第b2图像该语义类别的置信度均值 + + # # 计算均值之间的空间差异,并考虑置信度的加权 + # distance_cross = torch.sum((mean_a - mean_b2) ** 2) + # weighted_distance_cross = distance_cross * mean_conf_a * mean_conf_b2 + # total_loss += weighted_distance_cross + + # 平均损失 + return total_loss / (B * H * W) + + + + def forward(self, cur_iter=0): + pw_poses = self.get_pw_poses() # cam-to-world + pw_adapt = self.get_adaptors().unsqueeze(1) + proj_pts3d = self.get_pts3d(raw=True) + + loss = 0.0 + + # depth = self.get_depthmaps(raw=True) + # print(depth.shape) + # if cur_iter < 100: + # # for i, pointmap in enumerate(proj_pts3d): + # # loss += self.spatial_smoothness_loss(pointmap, seg_maps[i].cuda()) + + # # depths = self.get_depthmaps() + # # # cogs = self.cogs + # # seg_maps = self.segmaps + # # im_conf = self.conf_trf(torch.stack([param_tensor for param_tensor in self.im_conf])) + + # # for i, depth in enumerate(depths): + # # # print(seg_maps[i].shape) + # # # H, W = depth.shape + # # # tmp = cogs[i].reshape(-1, 1024) + # # # tmp = torch.matmul(tmp, self.cog_matrix.detach().t()) + # # # tmp / (tmp.norm(dim=-1, keepdim=True)+0.000000000001) + # # # tmp = tmp.reshape(H, W, 3) + # # loss += self.segmap_loss(depth, seg_maps[i], im_conf[i]) + # # loss += self.semantic_loss(cogs[i], depth) + + # # im_conf = self.conf_trf(torch.stack([param_tensor for param_tensor in self.im_conf])) + + # # cogs = self.cogs.permute(0, 3, 1, 2) + # # cogs = F.interpolate(cogs, scale_factor=2, mode='nearest') + # # cogs = cogs.permute(0, 2, 3, 1) + # # cogs = torch.stack(self.cogs).view(-1, 1024) + # # proj = proj_pts3d.view(-1, 3) + # # proj = proj / proj.norm(dim=-1, keepdim=True) + # # img_conf = im_conf.view(-1,1) + + # # selected_indices = torch.where(img_conf > 2.0)[0] + # # img_conf = img_conf[selected_indices] + # # cogs = cogs[selected_indices] + # # proj = proj[selected_indices] + # # print(img_conf.shape, cogs.shape, proj.shape) + # # proj_dis = torch.matmul(proj, proj.t()) + # # cogs_dis = torch.matmul(cogs, cogs.t()) + # # loss += (im_conf * F.mse_loss(proj_dis, cogs_dis, reduction='none')).mean() + + # # if cur_iter % 2 == 0: + # # tmp = torch.matmul(cogs.detach(), self.cog_matrix.detach().t()) + # # tmp = tmp / (tmp.norm(dim=-1, keepdim=True)+0.000000000001) + # # loss += 0/1*(img_conf * F.mse_loss(proj, tmp, reduction='none')).mean() + # # if cur_iter % 2 == 1: + # # tmp = torch.matmul(cogs.view(-1, 1024), self.cog_matrix.detach().t()) + # # tmp = tmp / tmp.norm(dim=-1, keepdim=True) + # # loss += (im_conf.view(-1,1) * F.mse_loss(proj.detach(), tmp, reduction='none')).mean() + # # if cur_iter % 3 == 2: + # # tmp = torch.matmul(cogs.view(-1, 1024).detach(), self.cog_matrix.t()) + # # tmp = tmp / tmp.norm(dim=-1, keepdim=True) + # # loss += (im_conf.view(-1,1) * F.mse_loss(proj.detach(), tmp, reduction='none')).mean() + seg_maps = torch.stack(self.segmaps).cuda() + im_conf = self.conf_trf(torch.stack([param_tensor for param_tensor in self.im_conf])) + loss += self.spatial_smoothness_loss_multi_image(proj_pts3d, seg_maps, im_conf) + # # if cur_iter > 100: + # # rotate pairwise prediction according to pw_poses + # aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i) + # aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j) + + # loss += self.spatial_smoothness_loss_multi_image(aligned_pred_i, seg_maps[self._ei], im_conf[self._ei]) + # loss += self.spatial_smoothness_loss_multi_image(aligned_pred_j, seg_maps[self._ej], im_conf[self._ej]) + + # # compute the less + # loss += self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i + # loss += self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j + + return loss + + +def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp): + pp = pp.unsqueeze(1) + focal = focal.unsqueeze(1) + assert focal.shape == (len(depth), 1, 1) + assert pp.shape == (len(depth), 1, 2) + assert pixel_grid.shape == depth.shape + (2,) + depth = depth.unsqueeze(-1) + return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1) + + +def ParameterStack(params, keys=None, is_param=None, fill=0): + if keys is not None: + params = [params[k] for k in keys] + + if fill > 0: + params = [_ravel_hw(p, fill) for p in params] + + requires_grad = params[0].requires_grad + assert all(p.requires_grad == requires_grad for p in params) + + params = torch.stack(list(params)).float().detach() + if is_param or requires_grad: + params = nn.Parameter(params) + params.requires_grad_(requires_grad) + return params + + +def _ravel_hw(tensor, fill=0): + # ravel H,W + tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) + + if len(tensor) < fill: + tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:]))) + return tensor + + +def acceptable_focal_range(H, W, minf=0.5, maxf=3.5): + focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515 + return minf*focal_base, maxf*focal_base + + +def apply_mask(img, msk): + img = img.copy() + img[msk] = 0 + return img diff --git a/modules/dust3r/cloud_opt/pair_viewer.py b/modules/dust3r/cloud_opt/pair_viewer.py new file mode 100644 index 0000000000000000000000000000000000000000..baa0dc4f0052f508fc150f0753593120f964c781 --- /dev/null +++ b/modules/dust3r/cloud_opt/pair_viewer.py @@ -0,0 +1,127 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dummy optimizer for visualizing pairs +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn +import cv2 + +from dust3r.cloud_opt.base_opt import BasePCOptimizer +from dust3r.utils.geometry import inv, geotrf, depthmap_to_absolute_camera_coordinates +from dust3r.cloud_opt.commons import edge_str +from dust3r.post_process import estimate_focal_knowing_depth + + +class PairViewer (BasePCOptimizer): + """ + This a Dummy Optimizer. + To use only when the goal is to visualize the results for a pair of images (with is_symmetrized) + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + assert self.is_symmetrized and self.n_edges == 2 + self.has_im_poses = True + + # compute all parameters directly from raw input + self.focals = [] + self.pp = [] + rel_poses = [] + confs = [] + for i in range(self.n_imgs): + conf = float(self.conf_i[edge_str(i, 1-i)].mean() * self.conf_j[edge_str(i, 1-i)].mean()) + if self.verbose: + print(f' - {conf=:.3} for edge {i}-{1-i}') + confs.append(conf) + + H, W = self.imshapes[i] + pts3d = self.pred_i[edge_str(i, 1-i)] + pp = torch.tensor((W/2, H/2)) + focal = float(estimate_focal_knowing_depth(pts3d[None], pp, focal_mode='weiszfeld')) + self.focals.append(focal) + self.pp.append(pp) + + # estimate the pose of pts1 in image 2 + pixels = np.mgrid[:W, :H].T.astype(np.float32) + pts3d = self.pred_j[edge_str(1-i, i)].numpy() + assert pts3d.shape[:2] == (H, W) + msk = self.get_masks()[i].numpy() + K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) + + try: + res = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None, + iterationsCount=100, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP) + success, R, T, inliers = res + assert success + + R = cv2.Rodrigues(R)[0] # world to cam + pose = inv(np.r_[np.c_[R, T], [(0, 0, 0, 1)]]) # cam to world + except: + pose = np.eye(4) + rel_poses.append(torch.from_numpy(pose.astype(np.float32))) + + # let's use the pair with the most confidence + if confs[0] > confs[1]: + # ptcloud is expressed in camera1 + self.im_poses = [torch.eye(4), rel_poses[1]] # I, cam2-to-cam1 + self.depth = [self.pred_i['0_1'][..., 2], geotrf(inv(rel_poses[1]), self.pred_j['0_1'])[..., 2]] + else: + # ptcloud is expressed in camera2 + self.im_poses = [rel_poses[0], torch.eye(4)] # I, cam1-to-cam2 + self.depth = [geotrf(inv(rel_poses[0]), self.pred_j['1_0'])[..., 2], self.pred_i['1_0'][..., 2]] + + self.im_poses = nn.Parameter(torch.stack(self.im_poses, dim=0), requires_grad=False) + self.focals = nn.Parameter(torch.tensor(self.focals), requires_grad=False) + self.pp = nn.Parameter(torch.stack(self.pp, dim=0), requires_grad=False) + self.depth = nn.ParameterList(self.depth) + for p in self.parameters(): + p.requires_grad = False + + def _set_depthmap(self, idx, depth, force=False): + if self.verbose: + print('_set_depthmap is ignored in PairViewer') + return + + def get_depthmaps(self, raw=False): + depth = [d.to(self.device) for d in self.depth] + return depth + + def _set_focal(self, idx, focal, force=False): + self.focals[idx] = focal + + def get_focals(self): + return self.focals + + def get_known_focal_mask(self): + return torch.tensor([not (p.requires_grad) for p in self.focals]) + + def get_principal_points(self): + return self.pp + + def get_intrinsics(self): + focals = self.get_focals() + pps = self.get_principal_points() + K = torch.zeros((len(focals), 3, 3), device=self.device) + for i in range(len(focals)): + K[i, 0, 0] = K[i, 1, 1] = focals[i] + K[i, :2, 2] = pps[i] + K[i, 2, 2] = 1 + return K + + def get_im_poses(self): + return self.im_poses + + def depth_to_pts3d(self): + pts3d = [] + for d, intrinsics, im_pose in zip(self.depth, self.get_intrinsics(), self.get_im_poses()): + pts, _ = depthmap_to_absolute_camera_coordinates(d.cpu().numpy(), + intrinsics.cpu().numpy(), + im_pose.cpu().numpy()) + pts3d.append(torch.from_numpy(pts).to(device=self.device)) + return pts3d + + def forward(self, tmp): + return float('nan') diff --git a/modules/dust3r/datasets/__init__.py b/modules/dust3r/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2123d09ec2840ab5ee9ca43057c35f93233bde89 --- /dev/null +++ b/modules/dust3r/datasets/__init__.py @@ -0,0 +1,50 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +from .utils.transforms import * +from .base.batched_sampler import BatchedRandomSampler # noqa +from .arkitscenes import ARKitScenes # noqa +from .blendedmvs import BlendedMVS # noqa +from .co3d import Co3d # noqa +from .habitat import Habitat # noqa +from .megadepth import MegaDepth # noqa +from .scannetpp import ScanNetpp # noqa +from .staticthings3d import StaticThings3D # noqa +from .waymo import Waymo # noqa +from .wildrgbd import WildRGBD # noqa + + +def get_data_loader(dataset, batch_size, num_workers=8, shuffle=True, drop_last=True, pin_mem=True): + import torch + from croco.utils.misc import get_world_size, get_rank + + # pytorch dataset + if isinstance(dataset, str): + dataset = eval(dataset) + + world_size = get_world_size() + rank = get_rank() + + try: + sampler = dataset.make_sampler(batch_size, shuffle=shuffle, world_size=world_size, + rank=rank, drop_last=drop_last) + except (AttributeError, NotImplementedError): + # not avail for this dataset + if torch.distributed.is_initialized(): + sampler = torch.utils.data.DistributedSampler( + dataset, num_replicas=world_size, rank=rank, shuffle=shuffle, drop_last=drop_last + ) + elif shuffle: + sampler = torch.utils.data.RandomSampler(dataset) + else: + sampler = torch.utils.data.SequentialSampler(dataset) + + data_loader = torch.utils.data.DataLoader( + dataset, + sampler=sampler, + batch_size=batch_size, + num_workers=num_workers, + pin_memory=pin_mem, + drop_last=drop_last, + ) + + return data_loader diff --git a/modules/dust3r/datasets/arkitscenes.py b/modules/dust3r/datasets/arkitscenes.py new file mode 100644 index 0000000000000000000000000000000000000000..4fad51acdc18b82cd6a4d227de0dac3b25783e33 --- /dev/null +++ b/modules/dust3r/datasets/arkitscenes.py @@ -0,0 +1,102 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed arkitscenes +# dataset at https://github.com/apple/ARKitScenes - Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License https://github.com/apple/ARKitScenes/tree/main?tab=readme-ov-file#license +# See datasets_preprocess/preprocess_arkitscenes.py +# -------------------------------------------------------- +import os.path as osp +import cv2 +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class ARKitScenes(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + if split == "train": + self.split = "Training" + elif split == "test": + self.split = "Test" + else: + raise ValueError("") + + self.loaded_data = self._load_data(self.split) + + def _load_data(self, split): + with np.load(osp.join(self.ROOT, split, 'all_metadata.npz')) as data: + self.scenes = data['scenes'] + self.sceneids = data['sceneids'] + self.images = data['images'] + self.intrinsics = data['intrinsics'].astype(np.float32) + self.trajectories = data['trajectories'].astype(np.float32) + self.pairs = data['pairs'][:, :2].astype(int) + + def __len__(self): + return len(self.pairs) + + def _get_views(self, idx, resolution, rng): + + image_idx1, image_idx2 = self.pairs[idx] + + views = [] + for view_idx in [image_idx1, image_idx2]: + scene_id = self.sceneids[view_idx] + scene_dir = osp.join(self.ROOT, self.split, self.scenes[scene_id]) + + intrinsics = self.intrinsics[view_idx] + camera_pose = self.trajectories[view_idx] + basename = self.images[view_idx] + + # Load RGB image + rgb_image = imread_cv2(osp.join(scene_dir, 'vga_wide', basename.replace('.png', '.jpg'))) + # Load depthmap + depthmap = imread_cv2(osp.join(scene_dir, 'lowres_depth', basename), cv2.IMREAD_UNCHANGED) + depthmap = depthmap.astype(np.float32) / 1000 + depthmap[~np.isfinite(depthmap)] = 0 # invalid + + rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx) + + views.append(dict( + img=rgb_image, + depthmap=depthmap.astype(np.float32), + camera_pose=camera_pose.astype(np.float32), + camera_intrinsics=intrinsics.astype(np.float32), + dataset='arkitscenes', + label=self.scenes[scene_id] + '_' + basename, + instance=f'{str(idx)}_{str(view_idx)}', + )) + + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = ARKitScenes(split='train', ROOT="data/arkitscenes_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/modules/dust3r/datasets/base/__init__.py b/modules/dust3r/datasets/base/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/modules/dust3r/datasets/base/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/modules/dust3r/datasets/base/base_stereo_view_dataset.py b/modules/dust3r/datasets/base/base_stereo_view_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..17390ca29d4437fc41f3c946b235888af9e4c888 --- /dev/null +++ b/modules/dust3r/datasets/base/base_stereo_view_dataset.py @@ -0,0 +1,220 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# base class for implementing datasets +# -------------------------------------------------------- +import PIL +import numpy as np +import torch + +from dust3r.datasets.base.easy_dataset import EasyDataset +from dust3r.datasets.utils.transforms import ImgNorm +from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates +import dust3r.datasets.utils.cropping as cropping + + +class BaseStereoViewDataset (EasyDataset): + """ Define all basic options. + + Usage: + class MyDataset (BaseStereoViewDataset): + def _get_views(self, idx, rng): + # overload here + views = [] + views.append(dict(img=, ...)) + return views + """ + + def __init__(self, *, # only keyword arguments + split=None, + resolution=None, # square_size or (width, height) or list of [(width,height), ...] + transform=ImgNorm, + aug_crop=False, + seed=None): + self.num_views = 2 + self.split = split + self._set_resolutions(resolution) + + self.transform = transform + if isinstance(transform, str): + transform = eval(transform) + + self.aug_crop = aug_crop + self.seed = seed + + def __len__(self): + return len(self.scenes) + + def get_stats(self): + return f"{len(self)} pairs" + + def __repr__(self): + resolutions_str = '['+';'.join(f'{w}x{h}' for w, h in self._resolutions)+']' + return f"""{type(self).__name__}({self.get_stats()}, + {self.split=}, + {self.seed=}, + resolutions={resolutions_str}, + {self.transform=})""".replace('self.', '').replace('\n', '').replace(' ', '') + + def _get_views(self, idx, resolution, rng): + raise NotImplementedError() + + def __getitem__(self, idx): + if isinstance(idx, tuple): + # the idx is specifying the aspect-ratio + idx, ar_idx = idx + else: + assert len(self._resolutions) == 1 + ar_idx = 0 + + # set-up the rng + if self.seed: # reseed for each __getitem__ + self._rng = np.random.default_rng(seed=self.seed + idx) + elif not hasattr(self, '_rng'): + seed = torch.initial_seed() # this is different for each dataloader process + self._rng = np.random.default_rng(seed=seed) + + # over-loaded code + resolution = self._resolutions[ar_idx] # DO NOT CHANGE THIS (compatible with BatchedRandomSampler) + views = self._get_views(idx, resolution, self._rng) + assert len(views) == self.num_views + + # check data-types + for v, view in enumerate(views): + assert 'pts3d' not in view, f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}" + view['idx'] = (idx, ar_idx, v) + + # encode the image + width, height = view['img'].size + view['true_shape'] = np.int32((height, width)) + view['img'] = self.transform(view['img']) + + assert 'camera_intrinsics' in view + if 'camera_pose' not in view: + view['camera_pose'] = np.full((4, 4), np.nan, dtype=np.float32) + else: + assert np.isfinite(view['camera_pose']).all(), f'NaN in camera pose for view {view_name(view)}' + assert 'pts3d' not in view + assert 'valid_mask' not in view + assert np.isfinite(view['depthmap']).all(), f'NaN in depthmap for view {view_name(view)}' + pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) + + view['pts3d'] = pts3d + view['valid_mask'] = valid_mask & np.isfinite(pts3d).all(axis=-1) + + # check all datatypes + for key, val in view.items(): + res, err_msg = is_good_type(key, val) + assert res, f"{err_msg} with {key}={val} for view {view_name(view)}" + K = view['camera_intrinsics'] + + # last thing done! + for view in views: + # transpose to make sure all views are the same size + transpose_to_landscape(view) + # this allows to check whether the RNG is is the same state each time + view['rng'] = int.from_bytes(self._rng.bytes(4), 'big') + return views + + def _set_resolutions(self, resolutions): + assert resolutions is not None, 'undefined resolution' + + if not isinstance(resolutions, list): + resolutions = [resolutions] + + self._resolutions = [] + for resolution in resolutions: + if isinstance(resolution, int): + width = height = resolution + else: + width, height = resolution + assert isinstance(width, int), f'Bad type for {width=} {type(width)=}, should be int' + assert isinstance(height, int), f'Bad type for {height=} {type(height)=}, should be int' + assert width >= height + self._resolutions.append((width, height)) + + def _crop_resize_if_necessary(self, image, depthmap, intrinsics, resolution, rng=None, info=None): + """ This function: + - first downsizes the image with LANCZOS inteprolation, + which is better than bilinear interpolation in + """ + if not isinstance(image, PIL.Image.Image): + image = PIL.Image.fromarray(image) + + # downscale with lanczos interpolation so that image.size == resolution + # cropping centered on the principal point + W, H = image.size + cx, cy = intrinsics[:2, 2].round().astype(int) + min_margin_x = min(cx, W-cx) + min_margin_y = min(cy, H-cy) + assert min_margin_x > W/5, f'Bad principal point in view={info}' + assert min_margin_y > H/5, f'Bad principal point in view={info}' + # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) + l, t = cx - min_margin_x, cy - min_margin_y + r, b = cx + min_margin_x, cy + min_margin_y + crop_bbox = (l, t, r, b) + image, depthmap, intrinsics = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox) + + # transpose the resolution if necessary + W, H = image.size # new size + assert resolution[0] >= resolution[1] + if H > 1.1*W: + # image is portrait mode + resolution = resolution[::-1] + elif 0.9 < H/W < 1.1 and resolution[0] != resolution[1]: + # image is square, so we chose (portrait, landscape) randomly + if rng.integers(2): + resolution = resolution[::-1] + + # high-quality Lanczos down-scaling + target_resolution = np.array(resolution) + if self.aug_crop > 1: + target_resolution += rng.integers(0, self.aug_crop) + image, depthmap, intrinsics = cropping.rescale_image_depthmap(image, depthmap, intrinsics, target_resolution) + + # actual cropping (if necessary) with bilinear interpolation + intrinsics2 = cropping.camera_matrix_of_crop(intrinsics, image.size, resolution, offset_factor=0.5) + crop_bbox = cropping.bbox_from_intrinsics_in_out(intrinsics, intrinsics2, resolution) + image, depthmap, intrinsics2 = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox) + + return image, depthmap, intrinsics2 + + +def is_good_type(key, v): + """ returns (is_good, err_msg) + """ + if isinstance(v, (str, int, tuple)): + return True, None + if v.dtype not in (np.float32, torch.float32, bool, np.int32, np.int64, np.uint8): + return False, f"bad {v.dtype=}" + return True, None + + +def view_name(view, batch_index=None): + def sel(x): return x[batch_index] if batch_index not in (None, slice(None)) else x + db = sel(view['dataset']) + label = sel(view['label']) + instance = sel(view['instance']) + return f"{db}/{label}/{instance}" + + +def transpose_to_landscape(view): + height, width = view['true_shape'] + + if width < height: + # rectify portrait to landscape + assert view['img'].shape == (3, height, width) + view['img'] = view['img'].swapaxes(1, 2) + + assert view['valid_mask'].shape == (height, width) + view['valid_mask'] = view['valid_mask'].swapaxes(0, 1) + + assert view['depthmap'].shape == (height, width) + view['depthmap'] = view['depthmap'].swapaxes(0, 1) + + assert view['pts3d'].shape == (height, width, 3) + view['pts3d'] = view['pts3d'].swapaxes(0, 1) + + # transpose x and y pixels + view['camera_intrinsics'] = view['camera_intrinsics'][[1, 0, 2]] diff --git a/modules/dust3r/datasets/base/batched_sampler.py b/modules/dust3r/datasets/base/batched_sampler.py new file mode 100644 index 0000000000000000000000000000000000000000..85f58a65d41bb8101159e032d5b0aac26a7cf1a1 --- /dev/null +++ b/modules/dust3r/datasets/base/batched_sampler.py @@ -0,0 +1,74 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Random sampling under a constraint +# -------------------------------------------------------- +import numpy as np +import torch + + +class BatchedRandomSampler: + """ Random sampling under a constraint: each sample in the batch has the same feature, + which is chosen randomly from a known pool of 'features' for each batch. + + For instance, the 'feature' could be the image aspect-ratio. + + The index returned is a tuple (sample_idx, feat_idx). + This sampler ensures that each series of `batch_size` indices has the same `feat_idx`. + """ + + def __init__(self, dataset, batch_size, pool_size, world_size=1, rank=0, drop_last=True): + self.batch_size = batch_size + self.pool_size = pool_size + + self.len_dataset = N = len(dataset) + self.total_size = round_by(N, batch_size*world_size) if drop_last else N + assert world_size == 1 or drop_last, 'must drop the last batch in distributed mode' + + # distributed sampler + self.world_size = world_size + self.rank = rank + self.epoch = None + + def __len__(self): + return self.total_size // self.world_size + + def set_epoch(self, epoch): + self.epoch = epoch + + def __iter__(self): + # prepare RNG + if self.epoch is None: + assert self.world_size == 1 and self.rank == 0, 'use set_epoch() if distributed mode is used' + seed = int(torch.empty((), dtype=torch.int64).random_().item()) + else: + seed = self.epoch + 777 + rng = np.random.default_rng(seed=seed) + + # random indices (will restart from 0 if not drop_last) + sample_idxs = np.arange(self.total_size) + rng.shuffle(sample_idxs) + + # random feat_idxs (same across each batch) + n_batches = (self.total_size+self.batch_size-1) // self.batch_size + feat_idxs = rng.integers(self.pool_size, size=n_batches) + feat_idxs = np.broadcast_to(feat_idxs[:, None], (n_batches, self.batch_size)) + feat_idxs = feat_idxs.ravel()[:self.total_size] + + # put them together + idxs = np.c_[sample_idxs, feat_idxs] # shape = (total_size, 2) + + # Distributed sampler: we select a subset of batches + # make sure the slice for each node is aligned with batch_size + size_per_proc = self.batch_size * ((self.total_size + self.world_size * + self.batch_size-1) // (self.world_size * self.batch_size)) + idxs = idxs[self.rank*size_per_proc: (self.rank+1)*size_per_proc] + + yield from (tuple(idx) for idx in idxs) + + +def round_by(total, multiple, up=False): + if up: + total = total + multiple-1 + return (total//multiple) * multiple diff --git a/modules/dust3r/datasets/base/easy_dataset.py b/modules/dust3r/datasets/base/easy_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..4939a88f02715a1f80be943ddb6d808e1be84db7 --- /dev/null +++ b/modules/dust3r/datasets/base/easy_dataset.py @@ -0,0 +1,157 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# A dataset base class that you can easily resize and combine. +# -------------------------------------------------------- +import numpy as np +from dust3r.datasets.base.batched_sampler import BatchedRandomSampler + + +class EasyDataset: + """ a dataset that you can easily resize and combine. + Examples: + --------- + 2 * dataset ==> duplicate each element 2x + + 10 @ dataset ==> set the size to 10 (random sampling, duplicates if necessary) + + dataset1 + dataset2 ==> concatenate datasets + """ + + def __add__(self, other): + return CatDataset([self, other]) + + def __rmul__(self, factor): + return MulDataset(factor, self) + + def __rmatmul__(self, factor): + return ResizedDataset(factor, self) + + def set_epoch(self, epoch): + pass # nothing to do by default + + def make_sampler(self, batch_size, shuffle=True, world_size=1, rank=0, drop_last=True): + if not (shuffle): + raise NotImplementedError() # cannot deal yet + num_of_aspect_ratios = len(self._resolutions) + return BatchedRandomSampler(self, batch_size, num_of_aspect_ratios, world_size=world_size, rank=rank, drop_last=drop_last) + + +class MulDataset (EasyDataset): + """ Artifically augmenting the size of a dataset. + """ + multiplicator: int + + def __init__(self, multiplicator, dataset): + assert isinstance(multiplicator, int) and multiplicator > 0 + self.multiplicator = multiplicator + self.dataset = dataset + + def __len__(self): + return self.multiplicator * len(self.dataset) + + def __repr__(self): + return f'{self.multiplicator}*{repr(self.dataset)}' + + def __getitem__(self, idx): + if isinstance(idx, tuple): + idx, other = idx + return self.dataset[idx // self.multiplicator, other] + else: + return self.dataset[idx // self.multiplicator] + + @property + def _resolutions(self): + return self.dataset._resolutions + + +class ResizedDataset (EasyDataset): + """ Artifically changing the size of a dataset. + """ + new_size: int + + def __init__(self, new_size, dataset): + assert isinstance(new_size, int) and new_size > 0 + self.new_size = new_size + self.dataset = dataset + + def __len__(self): + return self.new_size + + def __repr__(self): + size_str = str(self.new_size) + for i in range((len(size_str)-1) // 3): + sep = -4*i-3 + size_str = size_str[:sep] + '_' + size_str[sep:] + return f'{size_str} @ {repr(self.dataset)}' + + def set_epoch(self, epoch): + # this random shuffle only depends on the epoch + rng = np.random.default_rng(seed=epoch+777) + + # shuffle all indices + perm = rng.permutation(len(self.dataset)) + + # rotary extension until target size is met + shuffled_idxs = np.concatenate([perm] * (1 + (len(self)-1) // len(self.dataset))) + self._idxs_mapping = shuffled_idxs[:self.new_size] + + assert len(self._idxs_mapping) == self.new_size + + def __getitem__(self, idx): + assert hasattr(self, '_idxs_mapping'), 'You need to call dataset.set_epoch() to use ResizedDataset.__getitem__()' + if isinstance(idx, tuple): + idx, other = idx + return self.dataset[self._idxs_mapping[idx], other] + else: + return self.dataset[self._idxs_mapping[idx]] + + @property + def _resolutions(self): + return self.dataset._resolutions + + +class CatDataset (EasyDataset): + """ Concatenation of several datasets + """ + + def __init__(self, datasets): + for dataset in datasets: + assert isinstance(dataset, EasyDataset) + self.datasets = datasets + self._cum_sizes = np.cumsum([len(dataset) for dataset in datasets]) + + def __len__(self): + return self._cum_sizes[-1] + + def __repr__(self): + # remove uselessly long transform + return ' + '.join(repr(dataset).replace(',transform=Compose( ToTensor() Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))', '') for dataset in self.datasets) + + def set_epoch(self, epoch): + for dataset in self.datasets: + dataset.set_epoch(epoch) + + def __getitem__(self, idx): + other = None + if isinstance(idx, tuple): + idx, other = idx + + if not (0 <= idx < len(self)): + raise IndexError() + + db_idx = np.searchsorted(self._cum_sizes, idx, 'right') + dataset = self.datasets[db_idx] + new_idx = idx - (self._cum_sizes[db_idx - 1] if db_idx > 0 else 0) + + if other is not None: + new_idx = (new_idx, other) + return dataset[new_idx] + + @property + def _resolutions(self): + resolutions = self.datasets[0]._resolutions + for dataset in self.datasets[1:]: + assert tuple(dataset._resolutions) == tuple(resolutions) + return resolutions diff --git a/modules/dust3r/datasets/blendedmvs.py b/modules/dust3r/datasets/blendedmvs.py new file mode 100644 index 0000000000000000000000000000000000000000..93e68c28620cc47a7b1743834e45f82d576126d0 --- /dev/null +++ b/modules/dust3r/datasets/blendedmvs.py @@ -0,0 +1,104 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed BlendedMVS +# dataset at https://github.com/YoYo000/BlendedMVS +# See datasets_preprocess/preprocess_blendedmvs.py +# -------------------------------------------------------- +import os.path as osp +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class BlendedMVS (BaseStereoViewDataset): + """ Dataset of outdoor street scenes, 5 images each time + """ + + def __init__(self, *args, ROOT, split=None, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + self._load_data(split) + + def _load_data(self, split): + pairs = np.load(osp.join(self.ROOT, 'blendedmvs_pairs.npy')) + if split is None: + selection = slice(None) + if split == 'train': + # select 90% of all scenes + selection = (pairs['seq_low'] % 10) > 0 + if split == 'val': + # select 10% of all scenes + selection = (pairs['seq_low'] % 10) == 0 + self.pairs = pairs[selection] + + # list of all scenes + self.scenes = np.unique(self.pairs['seq_low']) # low is unique enough + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f'{len(self)} pairs from {len(self.scenes)} scenes' + + def _get_views(self, pair_idx, resolution, rng): + seqh, seql, img1, img2, score = self.pairs[pair_idx] + + seq = f"{seqh:08x}{seql:016x}" + seq_path = osp.join(self.ROOT, seq) + + views = [] + + for view_index in [img1, img2]: + impath = f"{view_index:08n}" + image = imread_cv2(osp.join(seq_path, impath + ".jpg")) + depthmap = imread_cv2(osp.join(seq_path, impath + ".exr")) + camera_params = np.load(osp.join(seq_path, impath + ".npz")) + + intrinsics = np.float32(camera_params['intrinsics']) + camera_pose = np.eye(4, dtype=np.float32) + camera_pose[:3, :3] = camera_params['R_cam2world'] + camera_pose[:3, 3] = camera_params['t_cam2world'] + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=(seq_path, impath)) + + views.append(dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset='BlendedMVS', + label=osp.relpath(seq_path, self.ROOT), + instance=impath)) + + return views + + +if __name__ == '__main__': + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = BlendedMVS(split='train', ROOT="data/blendedmvs_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/modules/dust3r/datasets/co3d.py b/modules/dust3r/datasets/co3d.py new file mode 100644 index 0000000000000000000000000000000000000000..2ea5c8555d34b776e7a48396dcd0eecece713e34 --- /dev/null +++ b/modules/dust3r/datasets/co3d.py @@ -0,0 +1,165 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed Co3d_v2 +# dataset at https://github.com/facebookresearch/co3d - Creative Commons Attribution-NonCommercial 4.0 International +# See datasets_preprocess/preprocess_co3d.py +# -------------------------------------------------------- +import os.path as osp +import json +import itertools +from collections import deque + +import cv2 +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class Co3d(BaseStereoViewDataset): + def __init__(self, mask_bg=True, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + assert mask_bg in (True, False, 'rand') + self.mask_bg = mask_bg + self.dataset_label = 'Co3d_v2' + + # load all scenes + with open(osp.join(self.ROOT, f'selected_seqs_{self.split}.json'), 'r') as f: + self.scenes = json.load(f) + self.scenes = {k: v for k, v in self.scenes.items() if len(v) > 0} + self.scenes = {(k, k2): v2 for k, v in self.scenes.items() + for k2, v2 in v.items()} + self.scene_list = list(self.scenes.keys()) + + # for each scene, we have 100 images ==> 360 degrees (so 25 frames ~= 90 degrees) + # we prepare all combinations such that i-j = +/- [5, 10, .., 90] degrees + self.combinations = [(i, j) + for i, j in itertools.combinations(range(100), 2) + if 0 < abs(i - j) <= 30 and abs(i - j) % 5 == 0] + + self.invalidate = {scene: {} for scene in self.scene_list} + + def __len__(self): + return len(self.scene_list) * len(self.combinations) + + def _get_metadatapath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'images', f'frame{view_idx:06n}.npz') + + def _get_impath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'images', f'frame{view_idx:06n}.jpg') + + def _get_depthpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'depths', f'frame{view_idx:06n}.jpg.geometric.png') + + def _get_maskpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'masks', f'frame{view_idx:06n}.png') + + def _read_depthmap(self, depthpath, input_metadata): + depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) + depthmap = (depthmap.astype(np.float32) / 65535) * np.nan_to_num(input_metadata['maximum_depth']) + return depthmap + + def _get_views(self, idx, resolution, rng): + # choose a scene + obj, instance = self.scene_list[idx // len(self.combinations)] + image_pool = self.scenes[obj, instance] + im1_idx, im2_idx = self.combinations[idx % len(self.combinations)] + + # add a bit of randomness + last = len(image_pool) - 1 + + if resolution not in self.invalidate[obj, instance]: # flag invalid images + self.invalidate[obj, instance][resolution] = [False for _ in range(len(image_pool))] + + # decide now if we mask the bg + mask_bg = (self.mask_bg == True) or (self.mask_bg == 'rand' and rng.choice(2)) + + views = [] + imgs_idxs = [max(0, min(im_idx + rng.integers(-4, 5), last)) for im_idx in [im2_idx, im1_idx]] + imgs_idxs = deque(imgs_idxs) + while len(imgs_idxs) > 0: # some images (few) have zero depth + im_idx = imgs_idxs.pop() + + if self.invalidate[obj, instance][resolution][im_idx]: + # search for a valid image + random_direction = 2 * rng.choice(2) - 1 + for offset in range(1, len(image_pool)): + tentative_im_idx = (im_idx + (random_direction * offset)) % len(image_pool) + if not self.invalidate[obj, instance][resolution][tentative_im_idx]: + im_idx = tentative_im_idx + break + + view_idx = image_pool[im_idx] + + impath = self._get_impath(obj, instance, view_idx) + depthpath = self._get_depthpath(obj, instance, view_idx) + + # load camera params + metadata_path = self._get_metadatapath(obj, instance, view_idx) + input_metadata = np.load(metadata_path) + camera_pose = input_metadata['camera_pose'].astype(np.float32) + intrinsics = input_metadata['camera_intrinsics'].astype(np.float32) + + # load image and depth + rgb_image = imread_cv2(impath) + depthmap = self._read_depthmap(depthpath, input_metadata) + + if mask_bg: + # load object mask + maskpath = self._get_maskpath(obj, instance, view_idx) + maskmap = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED).astype(np.float32) + maskmap = (maskmap / 255.0) > 0.1 + + # update the depthmap with mask + depthmap *= maskmap + + rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath) + + num_valid = (depthmap > 0.0).sum() + if num_valid == 0: + # problem, invalidate image and retry + self.invalidate[obj, instance][resolution][im_idx] = True + imgs_idxs.append(im_idx) + continue + + views.append(dict( + img=rgb_image, + depthmap=depthmap, + camera_pose=camera_pose, + camera_intrinsics=intrinsics, + dataset=self.dataset_label, + label=osp.join(obj, instance), + instance=osp.split(impath)[1], + )) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = Co3d(split='train', ROOT="data/co3d_subset_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/modules/dust3r/datasets/habitat.py b/modules/dust3r/datasets/habitat.py new file mode 100644 index 0000000000000000000000000000000000000000..11ce8a0ffb2134387d5fb794df89834db3ea8c9f --- /dev/null +++ b/modules/dust3r/datasets/habitat.py @@ -0,0 +1,107 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed habitat +# dataset at https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md +# See datasets_preprocess/habitat for more details +# -------------------------------------------------------- +import os.path as osp +import os +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" # noqa +import cv2 # noqa +import numpy as np +from PIL import Image +import json + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset + + +class Habitat(BaseStereoViewDataset): + def __init__(self, size, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + assert self.split is not None + # loading list of scenes + with open(osp.join(self.ROOT, f'Habitat_{size}_scenes_{self.split}.txt')) as f: + self.scenes = f.read().splitlines() + self.instances = list(range(1, 5)) + + def filter_scene(self, label, instance=None): + if instance: + subscene, instance = instance.split('_') + label += '/' + subscene + self.instances = [int(instance) - 1] + valid = np.bool_([scene.startswith(label) for scene in self.scenes]) + assert sum(valid), 'no scene was selected for {label=} {instance=}' + self.scenes = [scene for i, scene in enumerate(self.scenes) if valid[i]] + + def _get_views(self, idx, resolution, rng): + scene = self.scenes[idx] + data_path, key = osp.split(osp.join(self.ROOT, scene)) + views = [] + two_random_views = [0, rng.choice(self.instances)] # view 0 is connected with all other views + for view_index in two_random_views: + # load the view (and use the next one if this one's broken) + for ii in range(view_index, view_index + 5): + image, depthmap, intrinsics, camera_pose = self._load_one_view(data_path, key, ii % 5, resolution, rng) + if np.isfinite(camera_pose).all(): + break + views.append(dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset='Habitat', + label=osp.relpath(data_path, self.ROOT), + instance=f"{key}_{view_index}")) + return views + + def _load_one_view(self, data_path, key, view_index, resolution, rng): + view_index += 1 # file indices starts at 1 + impath = osp.join(data_path, f"{key}_{view_index}.jpeg") + image = Image.open(impath) + + depthmap_filename = osp.join(data_path, f"{key}_{view_index}_depth.exr") + depthmap = cv2.imread(depthmap_filename, cv2.IMREAD_GRAYSCALE | cv2.IMREAD_ANYDEPTH) + + camera_params_filename = osp.join(data_path, f"{key}_{view_index}_camera_params.json") + with open(camera_params_filename, 'r') as f: + camera_params = json.load(f) + + intrinsics = np.float32(camera_params['camera_intrinsics']) + camera_pose = np.eye(4, dtype=np.float32) + camera_pose[:3, :3] = camera_params['R_cam2world'] + camera_pose[:3, 3] = camera_params['t_cam2world'] + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=impath) + return image, depthmap, intrinsics, camera_pose + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = Habitat(1_000_000, split='train', ROOT="data/habitat_processed", + resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/modules/dust3r/datasets/megadepth.py b/modules/dust3r/datasets/megadepth.py new file mode 100644 index 0000000000000000000000000000000000000000..8131498b76d855e5293fe79b3686fc42bf87eea8 --- /dev/null +++ b/modules/dust3r/datasets/megadepth.py @@ -0,0 +1,123 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed MegaDepth +# dataset at https://www.cs.cornell.edu/projects/megadepth/ +# See datasets_preprocess/preprocess_megadepth.py +# -------------------------------------------------------- +import os.path as osp +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class MegaDepth(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + self.loaded_data = self._load_data(self.split) + + if self.split is None: + pass + elif self.split == 'train': + self.select_scene(('0015', '0022'), opposite=True) + elif self.split == 'val': + self.select_scene(('0015', '0022')) + else: + raise ValueError(f'bad {self.split=}') + + def _load_data(self, split): + with np.load(osp.join(self.ROOT, 'all_metadata.npz')) as data: + self.all_scenes = data['scenes'] + self.all_images = data['images'] + self.pairs = data['pairs'] + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f'{len(self)} pairs from {len(self.all_scenes)} scenes' + + def select_scene(self, scene, *instances, opposite=False): + scenes = (scene,) if isinstance(scene, str) else tuple(scene) + scene_id = [s.startswith(scenes) for s in self.all_scenes] + assert any(scene_id), 'no scene found' + + valid = np.in1d(self.pairs['scene_id'], np.nonzero(scene_id)[0]) + if instances: + image_id = [i.startswith(instances) for i in self.all_images] + image_id = np.nonzero(image_id)[0] + assert len(image_id), 'no instance found' + # both together? + if len(instances) == 2: + valid &= np.in1d(self.pairs['im1_id'], image_id) & np.in1d(self.pairs['im2_id'], image_id) + else: + valid &= np.in1d(self.pairs['im1_id'], image_id) | np.in1d(self.pairs['im2_id'], image_id) + + if opposite: + valid = ~valid + assert valid.any() + self.pairs = self.pairs[valid] + + def _get_views(self, pair_idx, resolution, rng): + scene_id, im1_id, im2_id, score = self.pairs[pair_idx] + + scene, subscene = self.all_scenes[scene_id].split() + seq_path = osp.join(self.ROOT, scene, subscene) + + views = [] + + for im_id in [im1_id, im2_id]: + img = self.all_images[im_id] + try: + image = imread_cv2(osp.join(seq_path, img + '.jpg')) + depthmap = imread_cv2(osp.join(seq_path, img + ".exr")) + camera_params = np.load(osp.join(seq_path, img + ".npz")) + except Exception as e: + raise OSError(f'cannot load {img}, got exception {e}') + + intrinsics = np.float32(camera_params['intrinsics']) + camera_pose = np.float32(camera_params['cam2world']) + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=(seq_path, img)) + + views.append(dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset='MegaDepth', + label=osp.relpath(seq_path, self.ROOT), + instance=img)) + + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = MegaDepth(split='train', ROOT="data/megadepth_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/modules/dust3r/datasets/scannetpp.py b/modules/dust3r/datasets/scannetpp.py new file mode 100644 index 0000000000000000000000000000000000000000..520deedd0eb8cba8663af941731d89e0b2e71a80 --- /dev/null +++ b/modules/dust3r/datasets/scannetpp.py @@ -0,0 +1,96 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed scannet++ +# dataset at https://github.com/scannetpp/scannetpp - non-commercial research and educational purposes +# https://kaldir.vc.in.tum.de/scannetpp/static/scannetpp-terms-of-use.pdf +# See datasets_preprocess/preprocess_scannetpp.py +# -------------------------------------------------------- +import os.path as osp +import cv2 +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class ScanNetpp(BaseStereoViewDataset): + def __init__(self, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + assert self.split == 'train' + self.loaded_data = self._load_data() + + def _load_data(self): + with np.load(osp.join(self.ROOT, 'all_metadata.npz')) as data: + self.scenes = data['scenes'] + self.sceneids = data['sceneids'] + self.images = data['images'] + self.intrinsics = data['intrinsics'].astype(np.float32) + self.trajectories = data['trajectories'].astype(np.float32) + self.pairs = data['pairs'][:, :2].astype(int) + + def __len__(self): + return len(self.pairs) + + def _get_views(self, idx, resolution, rng): + + image_idx1, image_idx2 = self.pairs[idx] + + views = [] + for view_idx in [image_idx1, image_idx2]: + scene_id = self.sceneids[view_idx] + scene_dir = osp.join(self.ROOT, self.scenes[scene_id]) + + intrinsics = self.intrinsics[view_idx] + camera_pose = self.trajectories[view_idx] + basename = self.images[view_idx] + + # Load RGB image + rgb_image = imread_cv2(osp.join(scene_dir, 'images', basename + '.jpg')) + # Load depthmap + depthmap = imread_cv2(osp.join(scene_dir, 'depth', basename + '.png'), cv2.IMREAD_UNCHANGED) + depthmap = depthmap.astype(np.float32) / 1000 + depthmap[~np.isfinite(depthmap)] = 0 # invalid + + rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx) + + views.append(dict( + img=rgb_image, + depthmap=depthmap.astype(np.float32), + camera_pose=camera_pose.astype(np.float32), + camera_intrinsics=intrinsics.astype(np.float32), + dataset='ScanNet++', + label=self.scenes[scene_id] + '_' + basename, + instance=f'{str(idx)}_{str(view_idx)}', + )) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = ScanNetpp(split='train', ROOT="data/scannetpp_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx*255, (1 - idx)*255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/modules/dust3r/datasets/staticthings3d.py b/modules/dust3r/datasets/staticthings3d.py new file mode 100644 index 0000000000000000000000000000000000000000..e7f70f0ee7bf8c8ab6bb1702aa2481f3d16df413 --- /dev/null +++ b/modules/dust3r/datasets/staticthings3d.py @@ -0,0 +1,96 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed StaticThings3D +# dataset at https://github.com/lmb-freiburg/robustmvd/ +# See datasets_preprocess/preprocess_staticthings3d.py +# -------------------------------------------------------- +import os.path as osp +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class StaticThings3D (BaseStereoViewDataset): + """ Dataset of indoor scenes, 5 images each time + """ + def __init__(self, ROOT, *args, mask_bg='rand', **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + + assert mask_bg in (True, False, 'rand') + self.mask_bg = mask_bg + + # loading all pairs + assert self.split is None + self.pairs = np.load(osp.join(ROOT, 'staticthings_pairs.npy')) + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f'{len(self)} pairs' + + def _get_views(self, pair_idx, resolution, rng): + scene, seq, cam1, im1, cam2, im2 = self.pairs[pair_idx] + seq_path = osp.join('TRAIN', scene.decode('ascii'), f'{seq:04d}') + + views = [] + + mask_bg = (self.mask_bg == True) or (self.mask_bg == 'rand' and rng.choice(2)) + + CAM = {b'l':'left', b'r':'right'} + for cam, idx in [(CAM[cam1], im1), (CAM[cam2], im2)]: + num = f"{idx:04n}" + img = num+"_clean.jpg" if rng.choice(2) else num+"_final.jpg" + image = imread_cv2(osp.join(self.ROOT, seq_path, cam, img)) + depthmap = imread_cv2(osp.join(self.ROOT, seq_path, cam, num+".exr")) + camera_params = np.load(osp.join(self.ROOT, seq_path, cam, num+".npz")) + + intrinsics = camera_params['intrinsics'] + camera_pose = camera_params['cam2world'] + + if mask_bg: + depthmap[depthmap > 200] = 0 + + image, depthmap, intrinsics = self._crop_resize_if_necessary(image, depthmap, intrinsics, resolution, rng, info=(seq_path,cam,img)) + + views.append(dict( + img = image, + depthmap = depthmap, + camera_pose = camera_pose, # cam2world + camera_intrinsics = intrinsics, + dataset = 'StaticThings3D', + label = seq_path, + instance = cam+'_'+img)) + + return views + + +if __name__ == '__main__': + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = StaticThings3D(ROOT="data/staticthings3d_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx*255, (1 - idx)*255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/modules/dust3r/datasets/utils/__init__.py b/modules/dust3r/datasets/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/modules/dust3r/datasets/utils/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/modules/dust3r/datasets/utils/cropping.py b/modules/dust3r/datasets/utils/cropping.py new file mode 100644 index 0000000000000000000000000000000000000000..bfb4eaa92d21d0ecb8473faa60e5fc13ddf317e3 --- /dev/null +++ b/modules/dust3r/datasets/utils/cropping.py @@ -0,0 +1,124 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# croppping utilities +# -------------------------------------------------------- +import PIL.Image +import os +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 # noqa +import numpy as np # noqa +from dust3r.utils.geometry import colmap_to_opencv_intrinsics, opencv_to_colmap_intrinsics # noqa +try: + lanczos = PIL.Image.Resampling.LANCZOS + bicubic = PIL.Image.Resampling.BICUBIC +except AttributeError: + lanczos = PIL.Image.LANCZOS + bicubic = PIL.Image.BICUBIC + + +class ImageList: + """ Convenience class to aply the same operation to a whole set of images. + """ + + def __init__(self, images): + if not isinstance(images, (tuple, list, set)): + images = [images] + self.images = [] + for image in images: + if not isinstance(image, PIL.Image.Image): + image = PIL.Image.fromarray(image) + self.images.append(image) + + def __len__(self): + return len(self.images) + + def to_pil(self): + return tuple(self.images) if len(self.images) > 1 else self.images[0] + + @property + def size(self): + sizes = [im.size for im in self.images] + assert all(sizes[0] == s for s in sizes) + return sizes[0] + + def resize(self, *args, **kwargs): + return ImageList(self._dispatch('resize', *args, **kwargs)) + + def crop(self, *args, **kwargs): + return ImageList(self._dispatch('crop', *args, **kwargs)) + + def _dispatch(self, func, *args, **kwargs): + return [getattr(im, func)(*args, **kwargs) for im in self.images] + + +def rescale_image_depthmap(image, depthmap, camera_intrinsics, output_resolution, force=True): + """ Jointly rescale a (image, depthmap) + so that (out_width, out_height) >= output_res + """ + image = ImageList(image) + input_resolution = np.array(image.size) # (W,H) + output_resolution = np.array(output_resolution) + if depthmap is not None: + # can also use this with masks instead of depthmaps + assert tuple(depthmap.shape[:2]) == image.size[::-1] + + # define output resolution + assert output_resolution.shape == (2,) + scale_final = max(output_resolution / image.size) + 1e-8 + if scale_final >= 1 and not force: # image is already smaller than what is asked + return (image.to_pil(), depthmap, camera_intrinsics) + output_resolution = np.floor(input_resolution * scale_final).astype(int) + + # first rescale the image so that it contains the crop + image = image.resize(output_resolution, resample=lanczos if scale_final < 1 else bicubic) + if depthmap is not None: + depthmap = cv2.resize(depthmap, output_resolution, fx=scale_final, + fy=scale_final, interpolation=cv2.INTER_NEAREST) + + # no offset here; simple rescaling + camera_intrinsics = camera_matrix_of_crop( + camera_intrinsics, input_resolution, output_resolution, scaling=scale_final) + + return image.to_pil(), depthmap, camera_intrinsics + + +def camera_matrix_of_crop(input_camera_matrix, input_resolution, output_resolution, scaling=1, offset_factor=0.5, offset=None): + # Margins to offset the origin + margins = np.asarray(input_resolution) * scaling - output_resolution + assert np.all(margins >= 0.0) + if offset is None: + offset = offset_factor * margins + + # Generate new camera parameters + output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix) + output_camera_matrix_colmap[:2, :] *= scaling + output_camera_matrix_colmap[:2, 2] -= offset + output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap) + + return output_camera_matrix + + +def crop_image_depthmap(image, depthmap, camera_intrinsics, crop_bbox): + """ + Return a crop of the input view. + """ + image = ImageList(image) + l, t, r, b = crop_bbox + + image = image.crop((l, t, r, b)) + depthmap = depthmap[t:b, l:r] + + camera_intrinsics = camera_intrinsics.copy() + camera_intrinsics[0, 2] -= l + camera_intrinsics[1, 2] -= t + + return image.to_pil(), depthmap, camera_intrinsics + + +def bbox_from_intrinsics_in_out(input_camera_matrix, output_camera_matrix, output_resolution): + out_width, out_height = output_resolution + l, t = np.int32(np.round(input_camera_matrix[:2, 2] - output_camera_matrix[:2, 2])) + crop_bbox = (l, t, l + out_width, t + out_height) + return crop_bbox diff --git a/modules/dust3r/datasets/utils/transforms.py b/modules/dust3r/datasets/utils/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..eb34f2f01d3f8f829ba71a7e03e181bf18f72c25 --- /dev/null +++ b/modules/dust3r/datasets/utils/transforms.py @@ -0,0 +1,11 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# DUST3R default transforms +# -------------------------------------------------------- +import torchvision.transforms as tvf +from dust3r.utils.image import ImgNorm + +# define the standard image transforms +ColorJitter = tvf.Compose([tvf.ColorJitter(0.5, 0.5, 0.5, 0.1), ImgNorm]) diff --git a/modules/dust3r/datasets/waymo.py b/modules/dust3r/datasets/waymo.py new file mode 100644 index 0000000000000000000000000000000000000000..b9a135152cd8973532405b491450c22942dcd6ca --- /dev/null +++ b/modules/dust3r/datasets/waymo.py @@ -0,0 +1,93 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed WayMo +# dataset at https://github.com/waymo-research/waymo-open-dataset +# See datasets_preprocess/preprocess_waymo.py +# -------------------------------------------------------- +import os.path as osp +import numpy as np + +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class Waymo (BaseStereoViewDataset): + """ Dataset of outdoor street scenes, 5 images each time + """ + + def __init__(self, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + self._load_data() + + def _load_data(self): + with np.load(osp.join(self.ROOT, 'waymo_pairs.npz')) as data: + self.scenes = data['scenes'] + self.frames = data['frames'] + self.inv_frames = {frame: i for i, frame in enumerate(data['frames'])} + self.pairs = data['pairs'] # (array of (scene_id, img1_id, img2_id) + assert self.pairs[:, 0].max() == len(self.scenes) - 1 + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f'{len(self)} pairs from {len(self.scenes)} scenes' + + def _get_views(self, pair_idx, resolution, rng): + seq, img1, img2 = self.pairs[pair_idx] + seq_path = osp.join(self.ROOT, self.scenes[seq]) + + views = [] + + for view_index in [img1, img2]: + impath = self.frames[view_index] + image = imread_cv2(osp.join(seq_path, impath + ".jpg")) + depthmap = imread_cv2(osp.join(seq_path, impath + ".exr")) + camera_params = np.load(osp.join(seq_path, impath + ".npz")) + + intrinsics = np.float32(camera_params['intrinsics']) + camera_pose = np.float32(camera_params['cam2world']) + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=(seq_path, impath)) + + views.append(dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset='Waymo', + label=osp.relpath(seq_path, self.ROOT), + instance=impath)) + + return views + + +if __name__ == '__main__': + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = Waymo(split='train', ROOT="data/megadepth_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/modules/dust3r/datasets/wildrgbd.py b/modules/dust3r/datasets/wildrgbd.py new file mode 100644 index 0000000000000000000000000000000000000000..c41dd0b78402bf8ff1e62c6a50de338aa916e0af --- /dev/null +++ b/modules/dust3r/datasets/wildrgbd.py @@ -0,0 +1,67 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed WildRGB-D +# dataset at https://github.com/wildrgbd/wildrgbd/ +# See datasets_preprocess/preprocess_wildrgbd.py +# -------------------------------------------------------- +import os.path as osp + +import cv2 +import numpy as np + +from dust3r.datasets.co3d import Co3d +from dust3r.utils.image import imread_cv2 + + +class WildRGBD(Co3d): + def __init__(self, mask_bg=True, *args, ROOT, **kwargs): + super().__init__(mask_bg, *args, ROOT=ROOT, **kwargs) + self.dataset_label = 'WildRGBD' + + def _get_metadatapath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'metadata', f'{view_idx:0>5d}.npz') + + def _get_impath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'rgb', f'{view_idx:0>5d}.jpg') + + def _get_depthpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'depth', f'{view_idx:0>5d}.png') + + def _get_maskpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, 'masks', f'{view_idx:0>5d}.png') + + def _read_depthmap(self, depthpath, input_metadata): + # We store depths in the depth scale of 1000. + # That is, when we load depth image and divide by 1000, we could get depth in meters. + depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) + depthmap = depthmap.astype(np.float32) / 1000.0 + return depthmap + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.viz import SceneViz, auto_cam_size + from dust3r.utils.image import rgb + + dataset = WildRGBD(split='train', ROOT="data/wildrgbd_processed", resolution=224, aug_crop=16) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]['pts3d'] + valid_mask = views[view_idx]['valid_mask'] + colors = rgb(views[view_idx]['img']) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], + focal=views[view_idx]['camera_intrinsics'][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size) + viz.show() diff --git a/modules/dust3r/demo.py b/modules/dust3r/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..c491be097b71ec38ea981dadf4f456d6e9829d48 --- /dev/null +++ b/modules/dust3r/demo.py @@ -0,0 +1,283 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# gradio demo +# -------------------------------------------------------- +import argparse +import math +import builtins +import datetime +import gradio +import os +import torch +import numpy as np +import functools +import trimesh +import copy +from scipy.spatial.transform import Rotation + +from dust3r.inference import inference +from dust3r.image_pairs import make_pairs +from dust3r.utils.image import load_images, rgb +from dust3r.utils.device import to_numpy +from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes +from dust3r.cloud_opt import global_aligner, GlobalAlignerMode + +import matplotlib.pyplot as pl + + +def get_args_parser(): + parser = argparse.ArgumentParser() + parser_url = parser.add_mutually_exclusive_group() + parser_url.add_argument("--local_network", action='store_true', default=False, + help="make app accessible on local network: address will be set to 0.0.0.0") + parser_url.add_argument("--server_name", type=str, default=None, help="server url, default is 127.0.0.1") + parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size") + parser.add_argument("--server_port", type=int, help=("will start gradio app on this port (if available). " + "If None, will search for an available port starting at 7860."), + default=None) + parser_weights = parser.add_mutually_exclusive_group(required=True) + parser_weights.add_argument("--weights", type=str, help="path to the model weights", default=None) + parser_weights.add_argument("--model_name", type=str, help="name of the model weights", + choices=["DUSt3R_ViTLarge_BaseDecoder_512_dpt", + "DUSt3R_ViTLarge_BaseDecoder_512_linear", + "DUSt3R_ViTLarge_BaseDecoder_224_linear"]) + parser.add_argument("--device", type=str, default='cuda', help="pytorch device") + parser.add_argument("--tmp_dir", type=str, default=None, help="value for tempfile.tempdir") + parser.add_argument("--silent", action='store_true', default=False, + help="silence logs") + return parser + + +def set_print_with_timestamp(time_format="%Y-%m-%d %H:%M:%S"): + builtin_print = builtins.print + + def print_with_timestamp(*args, **kwargs): + now = datetime.datetime.now() + formatted_date_time = now.strftime(time_format) + + builtin_print(f'[{formatted_date_time}] ', end='') # print with time stamp + builtin_print(*args, **kwargs) + + builtins.print = print_with_timestamp + + +def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, + cam_color=None, as_pointcloud=False, + transparent_cams=False, silent=False): + assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) + pts3d = to_numpy(pts3d) + imgs = to_numpy(imgs) + focals = to_numpy(focals) + cams2world = to_numpy(cams2world) + + scene = trimesh.Scene() + + # full pointcloud + if as_pointcloud: + pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) + col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) + pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) + scene.add_geometry(pct) + else: + meshes = [] + for i in range(len(imgs)): + meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i])) + mesh = trimesh.Trimesh(**cat_meshes(meshes)) + scene.add_geometry(mesh) + + # add each camera + for i, pose_c2w in enumerate(cams2world): + if isinstance(cam_color, list): + camera_edge_color = cam_color[i] + else: + camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] + add_scene_cam(scene, pose_c2w, camera_edge_color, + None if transparent_cams else imgs[i], focals[i], + imsize=imgs[i].shape[1::-1], screen_width=cam_size) + + rot = np.eye(4) + rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() + scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) + outfile = os.path.join(outdir, 'scene.glb') + if not silent: + print('(exporting 3D scene to', outfile, ')') + scene.export(file_obj=outfile) + return outfile + + +def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False, + clean_depth=False, transparent_cams=False, cam_size=0.05): + """ + extract 3D_model (glb file) from a reconstructed scene + """ + if scene is None: + return None + # post processes + if clean_depth: + scene = scene.clean_pointcloud() + if mask_sky: + scene = scene.mask_sky() + + # get optimized values from scene + rgbimg = scene.imgs + focals = scene.get_focals().cpu() + cams2world = scene.get_im_poses().cpu() + # 3D pointcloud from depthmap, poses and intrinsics + pts3d = to_numpy(scene.get_pts3d()) + scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr))) + msk = to_numpy(scene.get_masks()) + return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, + transparent_cams=transparent_cams, cam_size=cam_size, silent=silent) + + +def get_reconstructed_scene(outdir, model, device, silent, image_size, filelist, schedule, niter, min_conf_thr, + as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, + scenegraph_type, winsize, refid): + """ + from a list of images, run dust3r inference, global aligner. + then run get_3D_model_from_scene + """ + imgs = load_images(filelist, size=image_size, verbose=not silent) + if len(imgs) == 1: + imgs = [imgs[0], copy.deepcopy(imgs[0])] + imgs[1]['idx'] = 1 + if scenegraph_type == "swin": + scenegraph_type = scenegraph_type + "-" + str(winsize) + elif scenegraph_type == "oneref": + scenegraph_type = scenegraph_type + "-" + str(refid) + + pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) + output = inference(pairs, model, device, batch_size=1, verbose=not silent) + + mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer + scene = global_aligner(output, device=device, mode=mode, verbose=not silent) + lr = 0.01 + + if mode == GlobalAlignerMode.PointCloudOptimizer: + loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr) + + outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size) + + # also return rgb, depth and confidence imgs + # depth is normalized with the max value for all images + # we apply the jet colormap on the confidence maps + rgbimg = scene.imgs + depths = to_numpy(scene.get_depthmaps()) + confs = to_numpy([c for c in scene.im_conf]) + cmap = pl.get_cmap('jet') + depths_max = max([d.max() for d in depths]) + depths = [d / depths_max for d in depths] + confs_max = max([d.max() for d in confs]) + confs = [cmap(d / confs_max) for d in confs] + + imgs = [] + for i in range(len(rgbimg)): + imgs.append(rgbimg[i]) + imgs.append(rgb(depths[i])) + imgs.append(rgb(confs[i])) + + return scene, outfile, imgs + + +def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type): + num_files = len(inputfiles) if inputfiles is not None else 1 + max_winsize = max(1, math.ceil((num_files - 1) / 2)) + if scenegraph_type == "swin": + winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, + minimum=1, maximum=max_winsize, step=1, visible=True) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, + maximum=num_files - 1, step=1, visible=False) + elif scenegraph_type == "oneref": + winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, + minimum=1, maximum=max_winsize, step=1, visible=False) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, + maximum=num_files - 1, step=1, visible=True) + else: + winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, + minimum=1, maximum=max_winsize, step=1, visible=False) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, + maximum=num_files - 1, step=1, visible=False) + return winsize, refid + + +def main_demo(tmpdirname, model, device, image_size, server_name, server_port, silent=False): + recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, model, device, silent, image_size) + model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname, silent) + with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="DUSt3R Demo") as demo: + # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference + scene = gradio.State(None) + gradio.HTML('

DUSt3R Demo

') + with gradio.Column(): + inputfiles = gradio.File(file_count="multiple") + with gradio.Row(): + schedule = gradio.Dropdown(["linear", "cosine"], + value='linear', label="schedule", info="For global alignment!") + niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000, + label="num_iterations", info="For global alignment!") + scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"), + ("swin: sliding window", "swin"), + ("oneref: match one image with all", "oneref")], + value='complete', label="Scenegraph", + info="Define how to make pairs", + interactive=True) + winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, + minimum=1, maximum=1, step=1, visible=False) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False) + + run_btn = gradio.Button("Run") + + with gradio.Row(): + # adjust the confidence threshold + min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1) + # adjust the camera size in the output pointcloud + cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001) + with gradio.Row(): + as_pointcloud = gradio.Checkbox(value=False, label="As pointcloud") + # two post process implemented + mask_sky = gradio.Checkbox(value=False, label="Mask sky") + clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") + transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") + + outmodel = gradio.Model3D() + outgallery = gradio.Gallery(label='rgb,depth,confidence', columns=3, height="100%") + + # events + scenegraph_type.change(set_scenegraph_options, + inputs=[inputfiles, winsize, refid, scenegraph_type], + outputs=[winsize, refid]) + inputfiles.change(set_scenegraph_options, + inputs=[inputfiles, winsize, refid, scenegraph_type], + outputs=[winsize, refid]) + run_btn.click(fn=recon_fun, + inputs=[inputfiles, schedule, niter, min_conf_thr, as_pointcloud, + mask_sky, clean_depth, transparent_cams, cam_size, + scenegraph_type, winsize, refid], + outputs=[scene, outmodel, outgallery]) + min_conf_thr.release(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + cam_size.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + as_pointcloud.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + mask_sky.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + clean_depth.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + transparent_cams.change(model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + demo.launch(share=False, server_name=server_name, server_port=server_port) diff --git a/modules/dust3r/heads/__init__.py b/modules/dust3r/heads/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..53d0aa5610cae95f34f96bdb3ff9e835a2d6208e --- /dev/null +++ b/modules/dust3r/heads/__init__.py @@ -0,0 +1,19 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# head factory +# -------------------------------------------------------- +from .linear_head import LinearPts3d +from .dpt_head import create_dpt_head + + +def head_factory(head_type, output_mode, net, has_conf=False): + """" build a prediction head for the decoder + """ + if head_type == 'linear' and output_mode == 'pts3d': + return LinearPts3d(net, has_conf) + elif head_type == 'dpt' and output_mode == 'pts3d': + return create_dpt_head(net, has_conf=has_conf) + else: + raise NotImplementedError(f"unexpected {head_type=} and {output_mode=}") diff --git a/modules/dust3r/heads/__pycache__/__init__.cpython-312.pyc b/modules/dust3r/heads/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d01712831f898b2f71b6c71ee64ef1e76a98259 Binary files /dev/null and b/modules/dust3r/heads/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/dust3r/heads/__pycache__/dpt_head.cpython-312.pyc b/modules/dust3r/heads/__pycache__/dpt_head.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..975f97f7c23ef3b2ab8065635f8d61e2d74f6273 Binary files /dev/null and b/modules/dust3r/heads/__pycache__/dpt_head.cpython-312.pyc differ diff --git a/modules/dust3r/heads/__pycache__/linear_head.cpython-312.pyc b/modules/dust3r/heads/__pycache__/linear_head.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..39aca22ebcdfcbfc12b38ff850b762a0c73ee702 Binary files /dev/null and b/modules/dust3r/heads/__pycache__/linear_head.cpython-312.pyc differ diff --git a/modules/dust3r/heads/__pycache__/postprocess.cpython-312.pyc b/modules/dust3r/heads/__pycache__/postprocess.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8b647b2396bb33a67bf829e68c2dc53b9c754735 Binary files /dev/null and b/modules/dust3r/heads/__pycache__/postprocess.cpython-312.pyc differ diff --git a/modules/dust3r/heads/dpt_head.py b/modules/dust3r/heads/dpt_head.py new file mode 100644 index 0000000000000000000000000000000000000000..b7bdc9ff587eef3ec8978a22f63659fbf3c277d6 --- /dev/null +++ b/modules/dust3r/heads/dpt_head.py @@ -0,0 +1,115 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# dpt head implementation for DUST3R +# Downstream heads assume inputs of size B x N x C (where N is the number of tokens) ; +# or if it takes as input the output at every layer, the attribute return_all_layers should be set to True +# the forward function also takes as input a dictionnary img_info with key "height" and "width" +# for PixelwiseTask, the output will be of dimension B x num_channels x H x W +# -------------------------------------------------------- +from einops import rearrange +from typing import List +import torch +import torch.nn as nn +from dust3r.heads.postprocess import postprocess +import dust3r.utils.path_to_croco # noqa: F401 +from models.dpt_block import DPTOutputAdapter # noqa + + +class DPTOutputAdapter_fix(DPTOutputAdapter): + """ + Adapt croco's DPTOutputAdapter implementation for dust3r: + remove duplicated weigths, and fix forward for dust3r + """ + + def init(self, dim_tokens_enc=768): + super().init(dim_tokens_enc) + # these are duplicated weights + del self.act_1_postprocess + del self.act_2_postprocess + del self.act_3_postprocess + del self.act_4_postprocess + + def forward(self, encoder_tokens: List[torch.Tensor], image_size=None): + assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first' + # H, W = input_info['image_size'] + image_size = self.image_size if image_size is None else image_size + H, W = image_size + # Number of patches in height and width + N_H = H // (self.stride_level * self.P_H) + N_W = W // (self.stride_level * self.P_W) + + # Hook decoder onto 4 layers from specified ViT layers + layers = [encoder_tokens[hook] for hook in self.hooks] + + # Extract only task-relevant tokens and ignore global tokens. + layers = [self.adapt_tokens(l) for l in layers] + + # Reshape tokens to spatial representation + layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers] + + layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] + # Project layers to chosen feature dim + layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] + + # Fuse layers using refinement stages + path_4 = self.scratch.refinenet4(layers[3])[:, :, :layers[2].shape[2], :layers[2].shape[3]] + path_3 = self.scratch.refinenet3(path_4, layers[2]) + path_2 = self.scratch.refinenet2(path_3, layers[1]) + path_1 = self.scratch.refinenet1(path_2, layers[0]) + + # Output head + out = self.head(path_1) + + return out + + +class PixelwiseTaskWithDPT(nn.Module): + """ DPT module for dust3r, can return 3D points + confidence for all pixels""" + + def __init__(self, *, n_cls_token=0, hooks_idx=None, dim_tokens=None, + output_width_ratio=1, num_channels=1, postprocess=None, depth_mode=None, conf_mode=None, **kwargs): + super(PixelwiseTaskWithDPT, self).__init__() + self.return_all_layers = True # backbone needs to return all layers + self.postprocess = postprocess + self.depth_mode = depth_mode + self.conf_mode = conf_mode + + assert n_cls_token == 0, "Not implemented" + dpt_args = dict(output_width_ratio=output_width_ratio, + num_channels=num_channels, + **kwargs) + if hooks_idx is not None: + dpt_args.update(hooks=hooks_idx) + self.dpt = DPTOutputAdapter_fix(**dpt_args) + dpt_init_args = {} if dim_tokens is None else {'dim_tokens_enc': dim_tokens} + self.dpt.init(**dpt_init_args) + + def forward(self, x, img_info): + out = self.dpt(x, image_size=(img_info[0], img_info[1])) + if self.postprocess: + out = self.postprocess(out, self.depth_mode, self.conf_mode) + return out + + +def create_dpt_head(net, has_conf=False): + """ + return PixelwiseTaskWithDPT for given net params + """ + assert net.dec_depth > 9 + l2 = net.dec_depth + feature_dim = 256 + last_dim = feature_dim//2 + out_nchan = 3 + ed = net.enc_embed_dim + dd = net.dec_embed_dim + return PixelwiseTaskWithDPT(num_channels=out_nchan + has_conf, + feature_dim=feature_dim, + last_dim=last_dim, + hooks_idx=[0, l2*2//4, l2*3//4, l2], + dim_tokens=[ed, dd, dd, dd], + postprocess=postprocess, + depth_mode=net.depth_mode, + conf_mode=net.conf_mode, + head_type='regression') diff --git a/modules/dust3r/heads/linear_head.py b/modules/dust3r/heads/linear_head.py new file mode 100644 index 0000000000000000000000000000000000000000..6b697f29eaa6f43fad0a3e27a8d9b8f1a602a833 --- /dev/null +++ b/modules/dust3r/heads/linear_head.py @@ -0,0 +1,41 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# linear head implementation for DUST3R +# -------------------------------------------------------- +import torch.nn as nn +import torch.nn.functional as F +from dust3r.heads.postprocess import postprocess + + +class LinearPts3d (nn.Module): + """ + Linear head for dust3r + Each token outputs: - 16x16 3D points (+ confidence) + """ + + def __init__(self, net, has_conf=False): + super().__init__() + self.patch_size = net.patch_embed.patch_size[0] + self.depth_mode = net.depth_mode + self.conf_mode = net.conf_mode + self.has_conf = has_conf + + self.proj = nn.Linear(net.dec_embed_dim, (3 + has_conf)*self.patch_size**2) + + def setup(self, croconet): + pass + + def forward(self, decout, img_shape): + H, W = img_shape + tokens = decout[-1] + B, S, D = tokens.shape + + # extract 3D points + feat = self.proj(tokens) # B,S,D + feat = feat.transpose(-1, -2).view(B, -1, H//self.patch_size, W//self.patch_size) + feat = F.pixel_shuffle(feat, self.patch_size) # B,3,H,W + + # permute + norm depth + return postprocess(feat, self.depth_mode, self.conf_mode) diff --git a/modules/dust3r/heads/postprocess.py b/modules/dust3r/heads/postprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..cd68a90d89b8dcd7d8a4b4ea06ef8b17eb5da093 --- /dev/null +++ b/modules/dust3r/heads/postprocess.py @@ -0,0 +1,58 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# post process function for all heads: extract 3D points/confidence from output +# -------------------------------------------------------- +import torch + + +def postprocess(out, depth_mode, conf_mode): + """ + extract 3D points/confidence from prediction head output + """ + fmap = out.permute(0, 2, 3, 1) # B,H,W,3 + res = dict(pts3d=reg_dense_depth(fmap[:, :, :, 0:3], mode=depth_mode)) + + if conf_mode is not None: + res['conf'] = reg_dense_conf(fmap[:, :, :, 3], mode=conf_mode) + return res + + +def reg_dense_depth(xyz, mode): + """ + extract 3D points from prediction head output + """ + mode, vmin, vmax = mode + + no_bounds = (vmin == -float('inf')) and (vmax == float('inf')) + assert no_bounds + + if mode == 'linear': + if no_bounds: + return xyz # [-inf, +inf] + return xyz.clip(min=vmin, max=vmax) + + # distance to origin + d = xyz.norm(dim=-1, keepdim=True) + xyz = xyz / d.clip(min=1e-8) + + if mode == 'square': + return xyz * d.square() + + if mode == 'exp': + return xyz * torch.expm1(d) + + raise ValueError(f'bad {mode=}') + + +def reg_dense_conf(x, mode): + """ + extract confidence from prediction head output + """ + mode, vmin, vmax = mode + if mode == 'exp': + return vmin + x.exp().clip(max=vmax-vmin) + if mode == 'sigmoid': + return (vmax - vmin) * torch.sigmoid(x) + vmin + raise ValueError(f'bad {mode=}') diff --git a/modules/dust3r/image_pairs.py b/modules/dust3r/image_pairs.py new file mode 100644 index 0000000000000000000000000000000000000000..ebcf902b4d07b83fe83ffceba3f45ca0d74dfcf7 --- /dev/null +++ b/modules/dust3r/image_pairs.py @@ -0,0 +1,104 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilities needed to load image pairs +# -------------------------------------------------------- +import numpy as np +import torch + + +def make_pairs(imgs, scene_graph='complete', prefilter=None, symmetrize=True): + pairs = [] + if scene_graph == 'complete': # complete graph + for i in range(len(imgs)): + for j in range(i): + pairs.append((imgs[i], imgs[j])) + elif scene_graph.startswith('swin'): + iscyclic = not scene_graph.endswith('noncyclic') + try: + winsize = int(scene_graph.split('-')[1]) + except Exception as e: + winsize = 3 + pairsid = set() + for i in range(len(imgs)): + for j in range(1, winsize + 1): + idx = (i + j) + if iscyclic: + idx = idx % len(imgs) # explicit loop closure + if idx >= len(imgs): + continue + pairsid.add((i, idx) if i < idx else (idx, i)) + for i, j in pairsid: + pairs.append((imgs[i], imgs[j])) + elif scene_graph.startswith('logwin'): + iscyclic = not scene_graph.endswith('noncyclic') + try: + winsize = int(scene_graph.split('-')[1]) + except Exception as e: + winsize = 3 + offsets = [2**i for i in range(winsize)] + pairsid = set() + for i in range(len(imgs)): + ixs_l = [i - off for off in offsets] + ixs_r = [i + off for off in offsets] + for j in ixs_l + ixs_r: + if iscyclic: + j = j % len(imgs) # Explicit loop closure + if j < 0 or j >= len(imgs) or j == i: + continue + pairsid.add((i, j) if i < j else (j, i)) + for i, j in pairsid: + pairs.append((imgs[i], imgs[j])) + elif scene_graph.startswith('oneref'): + refid = int(scene_graph.split('-')[1]) if '-' in scene_graph else 0 + for j in range(len(imgs)): + if j != refid: + pairs.append((imgs[refid], imgs[j])) + if symmetrize: + pairs += [(img2, img1) for img1, img2 in pairs] + + # now, remove edges + if isinstance(prefilter, str) and prefilter.startswith('seq'): + pairs = filter_pairs_seq(pairs, int(prefilter[3:])) + + if isinstance(prefilter, str) and prefilter.startswith('cyc'): + pairs = filter_pairs_seq(pairs, int(prefilter[3:]), cyclic=True) + + return pairs + + +def sel(x, kept): + if isinstance(x, dict): + return {k: sel(v, kept) for k, v in x.items()} + if isinstance(x, (torch.Tensor, np.ndarray)): + return x[kept] + if isinstance(x, (tuple, list)): + return type(x)([x[k] for k in kept]) + + +def _filter_edges_seq(edges, seq_dis_thr, cyclic=False): + # number of images + n = max(max(e) for e in edges) + 1 + + kept = [] + for e, (i, j) in enumerate(edges): + dis = abs(i - j) + if cyclic: + dis = min(dis, abs(i + n - j), abs(i - n - j)) + if dis <= seq_dis_thr: + kept.append(e) + return kept + + +def filter_pairs_seq(pairs, seq_dis_thr, cyclic=False): + edges = [(img1['idx'], img2['idx']) for img1, img2 in pairs] + kept = _filter_edges_seq(edges, seq_dis_thr, cyclic=cyclic) + return [pairs[i] for i in kept] + + +def filter_edges_seq(view1, view2, pred1, pred2, seq_dis_thr, cyclic=False): + edges = [(int(i), int(j)) for i, j in zip(view1['idx'], view2['idx'])] + kept = _filter_edges_seq(edges, seq_dis_thr, cyclic=cyclic) + print(f'>> Filtering edges more than {seq_dis_thr} frames apart: kept {len(kept)}/{len(edges)} edges') + return sel(view1, kept), sel(view2, kept), sel(pred1, kept), sel(pred2, kept) diff --git a/modules/dust3r/inference.py b/modules/dust3r/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..90540486b077add90ca50f62a5072e082cb2f2d7 --- /dev/null +++ b/modules/dust3r/inference.py @@ -0,0 +1,150 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilities needed for the inference +# -------------------------------------------------------- +import tqdm +import torch +from dust3r.utils.device import to_cpu, collate_with_cat +from dust3r.utils.misc import invalid_to_nans +from dust3r.utils.geometry import depthmap_to_pts3d, geotrf + + +def _interleave_imgs(img1, img2): + res = {} + for key, value1 in img1.items(): + value2 = img2[key] + if isinstance(value1, torch.Tensor): + value = torch.stack((value1, value2), dim=1).flatten(0, 1) + else: + value = [x for pair in zip(value1, value2) for x in pair] + res[key] = value + return res + + +def make_batch_symmetric(batch): + view1, view2 = batch + view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1)) + return view1, view2 + + +def loss_of_one_batch(batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None): + view1, view2 = batch + ignore_keys = set(['depthmap', 'dataset', 'label', 'instance', 'idx', 'true_shape', 'rng']) + for view in batch: + for name in view.keys(): # pseudo_focal + if name in ignore_keys: + continue + view[name] = view[name].to(device, non_blocking=True) + + if symmetrize_batch: + view1, view2 = make_batch_symmetric(batch) + + with torch.cuda.amp.autocast(enabled=bool(use_amp)): + pred1, pred2 = model(view1, view2) + + # loss is supposed to be symmetric + with torch.cuda.amp.autocast(enabled=False): + loss = criterion(view1, view2, pred1, pred2) if criterion is not None else None + + result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss) + return result[ret] if ret else result + + +@torch.no_grad() +def inference(pairs, model, device, batch_size=8, verbose=True): + if verbose: + print(f'>> Inference with model on {len(pairs)} image pairs') + result = [] + + # first, check if all images have the same size + multiple_shapes = not (check_if_same_size(pairs)) + if multiple_shapes: # force bs=1 + batch_size = 1 + + for i in tqdm.trange(0, len(pairs), batch_size, disable=not verbose): + res = loss_of_one_batch(collate_with_cat(pairs[i:i + batch_size]), model, None, device) + result.append(to_cpu(res)) + + result = collate_with_cat(result, lists=multiple_shapes) + + return result + + +def check_if_same_size(pairs): + shapes1 = [img1['img'].shape[-2:] for img1, img2 in pairs] + shapes2 = [img2['img'].shape[-2:] for img1, img2 in pairs] + return all(shapes1[0] == s for s in shapes1) and all(shapes2[0] == s for s in shapes2) + + +def get_pred_pts3d(gt, pred, use_pose=False): + if 'depth' in pred and 'pseudo_focal' in pred: + try: + pp = gt['camera_intrinsics'][..., :2, 2] + except KeyError: + pp = None + pts3d = depthmap_to_pts3d(**pred, pp=pp) + + elif 'pts3d' in pred: + # pts3d from my camera + pts3d = pred['pts3d'] + + elif 'pts3d_in_other_view' in pred: + # pts3d from the other camera, already transformed + assert use_pose is True + return pred['pts3d_in_other_view'] # return! + + if use_pose: + camera_pose = pred.get('camera_pose') + assert camera_pose is not None + pts3d = geotrf(camera_pose, pts3d) + + return pts3d + + +def find_opt_scaling(gt_pts1, gt_pts2, pr_pts1, pr_pts2=None, fit_mode='weiszfeld_stop_grad', valid1=None, valid2=None): + assert gt_pts1.ndim == pr_pts1.ndim == 4 + assert gt_pts1.shape == pr_pts1.shape + if gt_pts2 is not None: + assert gt_pts2.ndim == pr_pts2.ndim == 4 + assert gt_pts2.shape == pr_pts2.shape + + # concat the pointcloud + nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2) + nan_gt_pts2 = invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None + + pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2) + pr_pts2 = invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None + + all_gt = torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1) if gt_pts2 is not None else nan_gt_pts1 + all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1 + + dot_gt_pr = (all_pr * all_gt).sum(dim=-1) + dot_gt_gt = all_gt.square().sum(dim=-1) + + if fit_mode.startswith('avg'): + # scaling = (all_pr / all_gt).view(B, -1).mean(dim=1) + scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) + elif fit_mode.startswith('median'): + scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values + elif fit_mode.startswith('weiszfeld'): + # init scaling with l2 closed form + scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) + # iterative re-weighted least-squares + for iter in range(10): + # re-weighting by inverse of distance + dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1) + # print(dis.nanmean(-1)) + w = dis.clip_(min=1e-8).reciprocal() + # update the scaling with the new weights + scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1) + else: + raise ValueError(f'bad {fit_mode=}') + + if fit_mode.endswith('stop_grad'): + scaling = scaling.detach() + + scaling = scaling.clip(min=1e-3) + # assert scaling.isfinite().all(), bb() + return scaling diff --git a/modules/dust3r/losses.py b/modules/dust3r/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..4f8febff1a2dd674e759bcf83d023099a59cc934 --- /dev/null +++ b/modules/dust3r/losses.py @@ -0,0 +1,299 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Implementation of DUSt3R training losses +# -------------------------------------------------------- +from copy import copy, deepcopy +import torch +import torch.nn as nn + +from dust3r.inference import get_pred_pts3d, find_opt_scaling +from dust3r.utils.geometry import inv, geotrf, normalize_pointcloud +from dust3r.utils.geometry import get_joint_pointcloud_depth, get_joint_pointcloud_center_scale + + +def Sum(*losses_and_masks): + loss, mask = losses_and_masks[0] + if loss.ndim > 0: + # we are actually returning the loss for every pixels + return losses_and_masks + else: + # we are returning the global loss + for loss2, mask2 in losses_and_masks[1:]: + loss = loss + loss2 + return loss + + +class BaseCriterion(nn.Module): + def __init__(self, reduction='mean'): + super().__init__() + self.reduction = reduction + + +class LLoss (BaseCriterion): + """ L-norm loss + """ + + def forward(self, a, b): + assert a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3, f'Bad shape = {a.shape}' + dist = self.distance(a, b) + assert dist.ndim == a.ndim - 1 # one dimension less + if self.reduction == 'none': + return dist + if self.reduction == 'sum': + return dist.sum() + if self.reduction == 'mean': + return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) + raise ValueError(f'bad {self.reduction=} mode') + + def distance(self, a, b): + raise NotImplementedError() + + +class L21Loss (LLoss): + """ Euclidean distance between 3d points """ + + def distance(self, a, b): + return torch.norm(a - b, dim=-1) # normalized L2 distance + + +L21 = L21Loss() + + +class Criterion (nn.Module): + def __init__(self, criterion=None): + super().__init__() + assert isinstance(criterion, BaseCriterion), f'{criterion} is not a proper criterion!' + self.criterion = copy(criterion) + + def get_name(self): + return f'{type(self).__name__}({self.criterion})' + + def with_reduction(self, mode='none'): + res = loss = deepcopy(self) + while loss is not None: + assert isinstance(loss, Criterion) + loss.criterion.reduction = mode # make it return the loss for each sample + loss = loss._loss2 # we assume loss is a Multiloss + return res + + +class MultiLoss (nn.Module): + """ Easily combinable losses (also keep track of individual loss values): + loss = MyLoss1() + 0.1*MyLoss2() + Usage: + Inherit from this class and override get_name() and compute_loss() + """ + + def __init__(self): + super().__init__() + self._alpha = 1 + self._loss2 = None + + def compute_loss(self, *args, **kwargs): + raise NotImplementedError() + + def get_name(self): + raise NotImplementedError() + + def __mul__(self, alpha): + assert isinstance(alpha, (int, float)) + res = copy(self) + res._alpha = alpha + return res + __rmul__ = __mul__ # same + + def __add__(self, loss2): + assert isinstance(loss2, MultiLoss) + res = cur = copy(self) + # find the end of the chain + while cur._loss2 is not None: + cur = cur._loss2 + cur._loss2 = loss2 + return res + + def __repr__(self): + name = self.get_name() + if self._alpha != 1: + name = f'{self._alpha:g}*{name}' + if self._loss2: + name = f'{name} + {self._loss2}' + return name + + def forward(self, *args, **kwargs): + loss = self.compute_loss(*args, **kwargs) + if isinstance(loss, tuple): + loss, details = loss + elif loss.ndim == 0: + details = {self.get_name(): float(loss)} + else: + details = {} + loss = loss * self._alpha + + if self._loss2: + loss2, details2 = self._loss2(*args, **kwargs) + loss = loss + loss2 + details |= details2 + + return loss, details + + +class Regr3D (Criterion, MultiLoss): + """ Ensure that all 3D points are correct. + Asymmetric loss: view1 is supposed to be the anchor. + + P1 = RT1 @ D1 + P2 = RT2 @ D2 + loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1) + loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2) + = (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2) + """ + + def __init__(self, criterion, norm_mode='avg_dis', gt_scale=False): + super().__init__(criterion) + self.norm_mode = norm_mode + self.gt_scale = gt_scale + + def get_all_pts3d(self, gt1, gt2, pred1, pred2, dist_clip=None): + # everything is normalized w.r.t. camera of view1 + in_camera1 = inv(gt1['camera_pose']) + gt_pts1 = geotrf(in_camera1, gt1['pts3d']) # B,H,W,3 + gt_pts2 = geotrf(in_camera1, gt2['pts3d']) # B,H,W,3 + + valid1 = gt1['valid_mask'].clone() + valid2 = gt2['valid_mask'].clone() + + if dist_clip is not None: + # points that are too far-away == invalid + dis1 = gt_pts1.norm(dim=-1) # (B, H, W) + dis2 = gt_pts2.norm(dim=-1) # (B, H, W) + valid1 = valid1 & (dis1 <= dist_clip) + valid2 = valid2 & (dis2 <= dist_clip) + + pr_pts1 = get_pred_pts3d(gt1, pred1, use_pose=False) + pr_pts2 = get_pred_pts3d(gt2, pred2, use_pose=True) + + # normalize 3d points + if self.norm_mode: + pr_pts1, pr_pts2 = normalize_pointcloud(pr_pts1, pr_pts2, self.norm_mode, valid1, valid2) + if self.norm_mode and not self.gt_scale: + gt_pts1, gt_pts2 = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode, valid1, valid2) + + return gt_pts1, gt_pts2, pr_pts1, pr_pts2, valid1, valid2, {} + + def compute_loss(self, gt1, gt2, pred1, pred2, **kw): + gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = \ + self.get_all_pts3d(gt1, gt2, pred1, pred2, **kw) + # loss on img1 side + l1 = self.criterion(pred_pts1[mask1], gt_pts1[mask1]) + # loss on gt2 side + l2 = self.criterion(pred_pts2[mask2], gt_pts2[mask2]) + self_name = type(self).__name__ + details = {self_name + '_pts3d_1': float(l1.mean()), self_name + '_pts3d_2': float(l2.mean())} + return Sum((l1, mask1), (l2, mask2)), (details | monitoring) + + +class ConfLoss (MultiLoss): + """ Weighted regression by learned confidence. + Assuming the input pixel_loss is a pixel-level regression loss. + + Principle: + high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10) + low confidence means low conf = 10 ==> conf_loss = x * 10 - alpha*log(10) + + alpha: hyperparameter + """ + + def __init__(self, pixel_loss, alpha=1): + super().__init__() + assert alpha > 0 + self.alpha = alpha + self.pixel_loss = pixel_loss.with_reduction('none') + + def get_name(self): + return f'ConfLoss({self.pixel_loss})' + + def get_conf_log(self, x): + return x, torch.log(x) + + def compute_loss(self, gt1, gt2, pred1, pred2, **kw): + # compute per-pixel loss + ((loss1, msk1), (loss2, msk2)), details = self.pixel_loss(gt1, gt2, pred1, pred2, **kw) + if loss1.numel() == 0: + print('NO VALID POINTS in img1', force=True) + if loss2.numel() == 0: + print('NO VALID POINTS in img2', force=True) + + # weight by confidence + conf1, log_conf1 = self.get_conf_log(pred1['conf'][msk1]) + conf2, log_conf2 = self.get_conf_log(pred2['conf'][msk2]) + conf_loss1 = loss1 * conf1 - self.alpha * log_conf1 + conf_loss2 = loss2 * conf2 - self.alpha * log_conf2 + + # average + nan protection (in case of no valid pixels at all) + conf_loss1 = conf_loss1.mean() if conf_loss1.numel() > 0 else 0 + conf_loss2 = conf_loss2.mean() if conf_loss2.numel() > 0 else 0 + + return conf_loss1 + conf_loss2, dict(conf_loss_1=float(conf_loss1), conf_loss2=float(conf_loss2), **details) + + +class Regr3D_ShiftInv (Regr3D): + """ Same than Regr3D but invariant to depth shift. + """ + + def get_all_pts3d(self, gt1, gt2, pred1, pred2): + # compute unnormalized points + gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = \ + super().get_all_pts3d(gt1, gt2, pred1, pred2) + + # compute median depth + gt_z1, gt_z2 = gt_pts1[..., 2], gt_pts2[..., 2] + pred_z1, pred_z2 = pred_pts1[..., 2], pred_pts2[..., 2] + gt_shift_z = get_joint_pointcloud_depth(gt_z1, gt_z2, mask1, mask2)[:, None, None] + pred_shift_z = get_joint_pointcloud_depth(pred_z1, pred_z2, mask1, mask2)[:, None, None] + + # subtract the median depth + gt_z1 -= gt_shift_z + gt_z2 -= gt_shift_z + pred_z1 -= pred_shift_z + pred_z2 -= pred_shift_z + + # monitoring = dict(monitoring, gt_shift_z=gt_shift_z.mean().detach(), pred_shift_z=pred_shift_z.mean().detach()) + return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring + + +class Regr3D_ScaleInv (Regr3D): + """ Same than Regr3D but invariant to depth shift. + if gt_scale == True: enforce the prediction to take the same scale than GT + """ + + def get_all_pts3d(self, gt1, gt2, pred1, pred2): + # compute depth-normalized points + gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = super().get_all_pts3d(gt1, gt2, pred1, pred2) + + # measure scene scale + _, gt_scale = get_joint_pointcloud_center_scale(gt_pts1, gt_pts2, mask1, mask2) + _, pred_scale = get_joint_pointcloud_center_scale(pred_pts1, pred_pts2, mask1, mask2) + + # prevent predictions to be in a ridiculous range + pred_scale = pred_scale.clip(min=1e-3, max=1e3) + + # subtract the median depth + if self.gt_scale: + pred_pts1 *= gt_scale / pred_scale + pred_pts2 *= gt_scale / pred_scale + # monitoring = dict(monitoring, pred_scale=(pred_scale/gt_scale).mean()) + else: + gt_pts1 /= gt_scale + gt_pts2 /= gt_scale + pred_pts1 /= pred_scale + pred_pts2 /= pred_scale + # monitoring = dict(monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach()) + + return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring + + +class Regr3D_ScaleShiftInv (Regr3D_ScaleInv, Regr3D_ShiftInv): + # calls Regr3D_ShiftInv first, then Regr3D_ScaleInv + pass diff --git a/modules/dust3r/model.py b/modules/dust3r/model.py new file mode 100644 index 0000000000000000000000000000000000000000..41c3a4f78eb5fbafdeb7ab8523468de320886c64 --- /dev/null +++ b/modules/dust3r/model.py @@ -0,0 +1,210 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# DUSt3R model class +# -------------------------------------------------------- +from copy import deepcopy +import torch +import os +from packaging import version +import huggingface_hub + +from .utils.misc import fill_default_args, freeze_all_params, is_symmetrized, interleave, transpose_to_landscape +from .heads import head_factory +from dust3r.patch_embed import get_patch_embed + +import dust3r.utils.path_to_croco # noqa: F401 +from models.croco import CroCoNet # noqa + +inf = float('inf') + +hf_version_number = huggingface_hub.__version__ +assert version.parse(hf_version_number) >= version.parse("0.22.0"), ("Outdated huggingface_hub version, " + "please reinstall requirements.txt") + + +def load_model(model_path, device, verbose=True): + if verbose: + print('... loading model from', model_path) + ckpt = torch.load(model_path, map_location='cpu') + args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R") + if 'landscape_only' not in args: + args = args[:-1] + ', landscape_only=False)' + else: + args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False') + assert "landscape_only=False" in args + if verbose: + print(f"instantiating : {args}") + net = eval(args) + s = net.load_state_dict(ckpt['model'], strict=False) + if verbose: + print(s) + return net.to(device) + + +class AsymmetricCroCo3DStereo ( + CroCoNet, + huggingface_hub.PyTorchModelHubMixin, + library_name="dust3r", + repo_url="https://github.com/naver/dust3r", + tags=["image-to-3d"], +): + """ Two siamese encoders, followed by two decoders. + The goal is to output 3d points directly, both images in view1's frame + (hence the asymmetry). + """ + + def __init__(self, + output_mode='pts3d', + head_type='linear', + depth_mode=('exp', -inf, inf), + conf_mode=('exp', 1, inf), + freeze='none', + landscape_only=True, + patch_embed_cls='PatchEmbedDust3R', # PatchEmbedDust3R or ManyAR_PatchEmbed + **croco_kwargs): + self.patch_embed_cls = patch_embed_cls + self.croco_args = fill_default_args(croco_kwargs, super().__init__) + super().__init__(**croco_kwargs) + + # dust3r specific initialization + self.dec_blocks2 = deepcopy(self.dec_blocks) + self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs) + self.set_freeze(freeze) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, **kw): + if os.path.isfile(pretrained_model_name_or_path): + return load_model(pretrained_model_name_or_path, device='cpu') + else: + try: + model = super(AsymmetricCroCo3DStereo, cls).from_pretrained(pretrained_model_name_or_path, **kw) + except TypeError as e: + raise Exception(f'tried to load {pretrained_model_name_or_path} from huggingface, but failed') + return model + + def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768): + self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim) + + def load_state_dict(self, ckpt, **kw): + # duplicate all weights for the second decoder if not present + new_ckpt = dict(ckpt) + if not any(k.startswith('dec_blocks2') for k in ckpt): + for key, value in ckpt.items(): + if key.startswith('dec_blocks'): + new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value + return super().load_state_dict(new_ckpt, **kw) + + def set_freeze(self, freeze): # this is for use by downstream models + self.freeze = freeze + to_be_frozen = { + 'none': [], + 'mask': [self.mask_token], + 'encoder': [self.mask_token, self.patch_embed, self.enc_blocks], + } + freeze_all_params(to_be_frozen[freeze]) + + def _set_prediction_head(self, *args, **kwargs): + """ No prediction head """ + return + + def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size, + **kw): + assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \ + f'{img_size=} must be multiple of {patch_size=}' + self.output_mode = output_mode + self.head_type = head_type + self.depth_mode = depth_mode + self.conf_mode = conf_mode + # allocate heads + self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode)) + self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode)) + # magic wrapper + self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only) + self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only) + + def _encode_image(self, image, true_shape): + # embed the image into patches (x has size B x Npatches x C) + x, pos = self.patch_embed(image, true_shape=true_shape) + + # add positional embedding without cls token + assert self.enc_pos_embed is None + + # now apply the transformer encoder and normalization + for blk in self.enc_blocks: + x = blk(x, pos) + + x = self.enc_norm(x) + return x, pos, None + + def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2): + if img1.shape[-2:] == img2.shape[-2:]: + out, pos, _ = self._encode_image(torch.cat((img1, img2), dim=0), + torch.cat((true_shape1, true_shape2), dim=0)) + out, out2 = out.chunk(2, dim=0) + pos, pos2 = pos.chunk(2, dim=0) + else: + out, pos, _ = self._encode_image(img1, true_shape1) + out2, pos2, _ = self._encode_image(img2, true_shape2) + return out, out2, pos, pos2 + + def _encode_symmetrized(self, view1, view2): + img1 = view1['img'] + img2 = view2['img'] + B = img1.shape[0] + # Recover true_shape when available, otherwise assume that the img shape is the true one + shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1)) + shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1)) + # warning! maybe the images have different portrait/landscape orientations + + if is_symmetrized(view1, view2): + # computing half of forward pass!' + feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1[::2], img2[::2], shape1[::2], shape2[::2]) + feat1, feat2 = interleave(feat1, feat2) + pos1, pos2 = interleave(pos1, pos2) + else: + feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1, img2, shape1, shape2) + + return (shape1, shape2), (feat1, feat2), (pos1, pos2) + + def _decoder(self, f1, pos1, f2, pos2): + final_output = [(f1, f2)] # before projection + + # project to decoder dim + f1 = self.decoder_embed(f1) + f2 = self.decoder_embed(f2) + + final_output.append((f1, f2)) + for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2): + # img1 side + f1, _ = blk1(*final_output[-1][::+1], pos1, pos2) + # img2 side + f2, _ = blk2(*final_output[-1][::-1], pos2, pos1) + # store the result + final_output.append((f1, f2)) + + # normalize last output + del final_output[1] # duplicate with final_output[0] + final_output[-1] = tuple(map(self.dec_norm, final_output[-1])) + return zip(*final_output) + + def _downstream_head(self, head_num, decout, img_shape): + B, S, D = decout[-1].shape + # img_shape = tuple(map(int, img_shape)) + head = getattr(self, f'head{head_num}') + return head(decout, img_shape) + + def forward(self, view1, view2): + # encode the two images --> B,S,D + (shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2) + + # combine all ref images into object-centric representation + dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2) + + with torch.cuda.amp.autocast(enabled=False): + res1 = self._downstream_head(1, [tok.float() for tok in dec1], shape1) + res2 = self._downstream_head(2, [tok.float() for tok in dec2], shape2) + + res2['pts3d_in_other_view'] = res2.pop('pts3d') # predict view2's pts3d in view1's frame + return res1, res2 diff --git a/modules/dust3r/optim_factory.py b/modules/dust3r/optim_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..9b9c16e0e0fda3fd03c3def61abc1f354f75c584 --- /dev/null +++ b/modules/dust3r/optim_factory.py @@ -0,0 +1,14 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# optimization functions +# -------------------------------------------------------- + + +def adjust_learning_rate_by_lr(optimizer, lr): + for param_group in optimizer.param_groups: + if "lr_scale" in param_group: + param_group["lr"] = lr * param_group["lr_scale"] + else: + param_group["lr"] = lr diff --git a/modules/dust3r/patch_embed.py b/modules/dust3r/patch_embed.py new file mode 100644 index 0000000000000000000000000000000000000000..07bb184bccb9d16657581576779904065d2dc857 --- /dev/null +++ b/modules/dust3r/patch_embed.py @@ -0,0 +1,70 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# PatchEmbed implementation for DUST3R, +# in particular ManyAR_PatchEmbed that Handle images with non-square aspect ratio +# -------------------------------------------------------- +import torch +import dust3r.utils.path_to_croco # noqa: F401 +from models.blocks import PatchEmbed # noqa + + +def get_patch_embed(patch_embed_cls, img_size, patch_size, enc_embed_dim): + assert patch_embed_cls in ['PatchEmbedDust3R', 'ManyAR_PatchEmbed'] + patch_embed = eval(patch_embed_cls)(img_size, patch_size, 3, enc_embed_dim) + return patch_embed + + +class PatchEmbedDust3R(PatchEmbed): + def forward(self, x, **kw): + B, C, H, W = x.shape + assert H % self.patch_size[0] == 0, f"Input image height ({H}) is not a multiple of patch size ({self.patch_size[0]})." + assert W % self.patch_size[1] == 0, f"Input image width ({W}) is not a multiple of patch size ({self.patch_size[1]})." + x = self.proj(x) + pos = self.position_getter(B, x.size(2), x.size(3), x.device) + if self.flatten: + x = x.flatten(2).transpose(1, 2) # BCHW -> BNC + x = self.norm(x) + return x, pos + + +class ManyAR_PatchEmbed (PatchEmbed): + """ Handle images with non-square aspect ratio. + All images in the same batch have the same aspect ratio. + true_shape = [(height, width) ...] indicates the actual shape of each image. + """ + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True): + self.embed_dim = embed_dim + super().__init__(img_size, patch_size, in_chans, embed_dim, norm_layer, flatten) + + def forward(self, img, true_shape): + B, C, H, W = img.shape + assert W >= H, f'img should be in landscape mode, but got {W=} {H=}' + assert H % self.patch_size[0] == 0, f"Input image height ({H}) is not a multiple of patch size ({self.patch_size[0]})." + assert W % self.patch_size[1] == 0, f"Input image width ({W}) is not a multiple of patch size ({self.patch_size[1]})." + assert true_shape.shape == (B, 2), f"true_shape has the wrong shape={true_shape.shape}" + + # size expressed in tokens + W //= self.patch_size[0] + H //= self.patch_size[1] + n_tokens = H * W + + height, width = true_shape.T + is_landscape = (width >= height) + is_portrait = ~is_landscape + + # allocate result + x = img.new_zeros((B, n_tokens, self.embed_dim)) + pos = img.new_zeros((B, n_tokens, 2), dtype=torch.int64) + + # linear projection, transposed if necessary + x[is_landscape] = self.proj(img[is_landscape]).permute(0, 2, 3, 1).flatten(1, 2).float() + x[is_portrait] = self.proj(img[is_portrait].swapaxes(-1, -2)).permute(0, 2, 3, 1).flatten(1, 2).float() + + pos[is_landscape] = self.position_getter(1, H, W, pos.device) + pos[is_portrait] = self.position_getter(1, W, H, pos.device) + + x = self.norm(x) + return x, pos diff --git a/modules/dust3r/post_process.py b/modules/dust3r/post_process.py new file mode 100644 index 0000000000000000000000000000000000000000..550a9b41025ad003228ef16f97d045fc238746e4 --- /dev/null +++ b/modules/dust3r/post_process.py @@ -0,0 +1,60 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilities for interpreting the DUST3R output +# -------------------------------------------------------- +import numpy as np +import torch +from dust3r.utils.geometry import xy_grid + + +def estimate_focal_knowing_depth(pts3d, pp, focal_mode='median', min_focal=0., max_focal=np.inf): + """ Reprojection method, for when the absolute depth is known: + 1) estimate the camera focal using a robust estimator + 2) reproject points onto true rays, minimizing a certain error + """ + B, H, W, THREE = pts3d.shape + assert THREE == 3 + + # centered pixel grid + pixels = xy_grid(W, H, device=pts3d.device).view(1, -1, 2) - pp.view(-1, 1, 2) # B,HW,2 + pts3d = pts3d.flatten(1, 2) # (B, HW, 3) + + if focal_mode == 'median': + with torch.no_grad(): + # direct estimation of focal + u, v = pixels.unbind(dim=-1) + x, y, z = pts3d.unbind(dim=-1) + fx_votes = (u * z) / x + fy_votes = (v * z) / y + + # assume square pixels, hence same focal for X and Y + f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1) + focal = torch.nanmedian(f_votes, dim=-1).values + + elif focal_mode == 'weiszfeld': + # init focal with l2 closed form + # we try to find focal = argmin Sum | pixel - focal * (x,y)/z| + xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0) # homogeneous (x,y,1) + + dot_xy_px = (xy_over_z * pixels).sum(dim=-1) + dot_xy_xy = xy_over_z.square().sum(dim=-1) + + focal = dot_xy_px.mean(dim=1) / dot_xy_xy.mean(dim=1) + + # iterative re-weighted least-squares + for iter in range(10): + # re-weighting by inverse of distance + dis = (pixels - focal.view(-1, 1, 1) * xy_over_z).norm(dim=-1) + # print(dis.nanmean(-1)) + w = dis.clip(min=1e-8).reciprocal() + # update the scaling with the new weights + focal = (w * dot_xy_px).mean(dim=1) / (w * dot_xy_xy).mean(dim=1) + else: + raise ValueError(f'bad {focal_mode=}') + + focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515 + focal = focal.clip(min=min_focal*focal_base, max=max_focal*focal_base) + # print(focal) + return focal diff --git a/modules/dust3r/training.py b/modules/dust3r/training.py new file mode 100644 index 0000000000000000000000000000000000000000..53af9764ebb03a0083c22294298ed674e9164edc --- /dev/null +++ b/modules/dust3r/training.py @@ -0,0 +1,377 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# training code for DUSt3R +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- +import argparse +import datetime +import json +import numpy as np +import os +import sys +import time +import math +from collections import defaultdict +from pathlib import Path +from typing import Sized + +import torch +import torch.backends.cudnn as cudnn +from torch.utils.tensorboard import SummaryWriter +torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 + +from dust3r.model import AsymmetricCroCo3DStereo, inf # noqa: F401, needed when loading the model +from dust3r.datasets import get_data_loader # noqa +from dust3r.losses import * # noqa: F401, needed when loading the model +from dust3r.inference import loss_of_one_batch # noqa + +import dust3r.utils.path_to_croco # noqa: F401 +import croco.utils.misc as misc # noqa +from croco.utils.misc import NativeScalerWithGradNormCount as NativeScaler # noqa + + +def get_args_parser(): + parser = argparse.ArgumentParser('DUST3R training', add_help=False) + # model and criterion + parser.add_argument('--model', default="AsymmetricCroCo3DStereo(patch_embed_cls='ManyAR_PatchEmbed')", + type=str, help="string containing the model to build") + parser.add_argument('--pretrained', default=None, help='path of a starting checkpoint') + parser.add_argument('--train_criterion', default="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)", + type=str, help="train criterion") + parser.add_argument('--test_criterion', default=None, type=str, help="test criterion") + + # dataset + parser.add_argument('--train_dataset', required=True, type=str, help="training set") + parser.add_argument('--test_dataset', default='[None]', type=str, help="testing set") + + # training + parser.add_argument('--seed', default=0, type=int, help="Random seed") + parser.add_argument('--batch_size', default=64, type=int, + help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus") + parser.add_argument('--accum_iter', default=1, type=int, + help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)") + parser.add_argument('--epochs', default=800, type=int, help="Maximum number of epochs for the scheduler") + + parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)") + parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') + parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR', + help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') + parser.add_argument('--min_lr', type=float, default=0., metavar='LR', + help='lower lr bound for cyclic schedulers that hit 0') + parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR') + + parser.add_argument('--amp', type=int, default=0, + choices=[0, 1], help="Use Automatic Mixed Precision for pretraining") + parser.add_argument("--disable_cudnn_benchmark", action='store_true', default=False, + help="set cudnn.benchmark = False") + # others + parser.add_argument('--num_workers', default=8, type=int) + parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') + parser.add_argument('--local_rank', default=-1, type=int) + parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') + + parser.add_argument('--eval_freq', type=int, default=1, help='Test loss evaluation frequency') + parser.add_argument('--save_freq', default=1, type=int, + help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth') + parser.add_argument('--keep_freq', default=20, type=int, + help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth') + parser.add_argument('--print_freq', default=20, type=int, + help='frequence (number of iterations) to print infos while training') + + # output dir + parser.add_argument('--output_dir', default='./output/', type=str, help="path where to save the output") + return parser + + +def train(args): + misc.init_distributed_mode(args) + global_rank = misc.get_rank() + world_size = misc.get_world_size() + + print("output_dir: " + args.output_dir) + if args.output_dir: + Path(args.output_dir).mkdir(parents=True, exist_ok=True) + + # auto resume + last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth') + args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None + + print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) + print("{}".format(args).replace(', ', ',\n')) + + device = "cuda" if torch.cuda.is_available() else "cpu" + device = torch.device(device) + + # fix the seed + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + + cudnn.benchmark = not args.disable_cudnn_benchmark + + # training dataset and loader + print('Building train dataset {:s}'.format(args.train_dataset)) + # dataset and loader + data_loader_train = build_dataset(args.train_dataset, args.batch_size, args.num_workers, test=False) + print('Building test dataset {:s}'.format(args.train_dataset)) + data_loader_test = {dataset.split('(')[0]: build_dataset(dataset, args.batch_size, args.num_workers, test=True) + for dataset in args.test_dataset.split('+')} + + # model + print('Loading model: {:s}'.format(args.model)) + model = eval(args.model) + print(f'>> Creating train criterion = {args.train_criterion}') + train_criterion = eval(args.train_criterion).to(device) + print(f'>> Creating test criterion = {args.test_criterion or args.train_criterion}') + test_criterion = eval(args.test_criterion or args.criterion).to(device) + + model.to(device) + model_without_ddp = model + print("Model = %s" % str(model_without_ddp)) + + if args.pretrained and not args.resume: + print('Loading pretrained: ', args.pretrained) + ckpt = torch.load(args.pretrained, map_location=device) + print(model.load_state_dict(ckpt['model'], strict=False)) + del ckpt # in case it occupies memory + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + if args.lr is None: # only base_lr is specified + args.lr = args.blr * eff_batch_size / 256 + print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) + print("actual lr: %.2e" % args.lr) + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel( + model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True) + model_without_ddp = model.module + + # following timm: set wd as 0 for bias and norm layers + param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) + optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) + print(optimizer) + loss_scaler = NativeScaler() + + def write_log_stats(epoch, train_stats, test_stats): + if misc.is_main_process(): + if log_writer is not None: + log_writer.flush() + + log_stats = dict(epoch=epoch, **{f'train_{k}': v for k, v in train_stats.items()}) + for test_name in data_loader_test: + if test_name not in test_stats: + continue + log_stats.update({test_name + '_' + k: v for k, v in test_stats[test_name].items()}) + + with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: + f.write(json.dumps(log_stats) + "\n") + + def save_model(epoch, fname, best_so_far): + misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch, fname=fname, best_so_far=best_so_far) + + best_so_far = misc.load_model(args=args, model_without_ddp=model_without_ddp, + optimizer=optimizer, loss_scaler=loss_scaler) + if best_so_far is None: + best_so_far = float('inf') + if global_rank == 0 and args.output_dir is not None: + log_writer = SummaryWriter(log_dir=args.output_dir) + else: + log_writer = None + + print(f"Start training for {args.epochs} epochs") + start_time = time.time() + train_stats = test_stats = {} + for epoch in range(args.start_epoch, args.epochs + 1): + + # Save immediately the last checkpoint + if epoch > args.start_epoch: + if args.save_freq and epoch % args.save_freq == 0 or epoch == args.epochs: + save_model(epoch - 1, 'last', best_so_far) + + # Test on multiple datasets + new_best = False + if (epoch > 0 and args.eval_freq > 0 and epoch % args.eval_freq == 0): + test_stats = {} + for test_name, testset in data_loader_test.items(): + stats = test_one_epoch(model, test_criterion, testset, + device, epoch, log_writer=log_writer, args=args, prefix=test_name) + test_stats[test_name] = stats + + # Save best of all + if stats['loss_med'] < best_so_far: + best_so_far = stats['loss_med'] + new_best = True + + # Save more stuff + write_log_stats(epoch, train_stats, test_stats) + + if epoch > args.start_epoch: + if args.keep_freq and epoch % args.keep_freq == 0: + save_model(epoch - 1, str(epoch), best_so_far) + if new_best: + save_model(epoch - 1, 'best', best_so_far) + if epoch >= args.epochs: + break # exit after writing last test to disk + + # Train + train_stats = train_one_epoch( + model, train_criterion, data_loader_train, + optimizer, device, epoch, loss_scaler, + log_writer=log_writer, + args=args) + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('Training time {}'.format(total_time_str)) + + save_final_model(args, args.epochs, model_without_ddp, best_so_far=best_so_far) + + +def save_final_model(args, epoch, model_without_ddp, best_so_far=None): + output_dir = Path(args.output_dir) + checkpoint_path = output_dir / 'checkpoint-final.pth' + to_save = { + 'args': args, + 'model': model_without_ddp if isinstance(model_without_ddp, dict) else model_without_ddp.cpu().state_dict(), + 'epoch': epoch + } + if best_so_far is not None: + to_save['best_so_far'] = best_so_far + print(f'>> Saving model to {checkpoint_path} ...') + misc.save_on_master(to_save, checkpoint_path) + + +def build_dataset(dataset, batch_size, num_workers, test=False): + split = ['Train', 'Test'][test] + print(f'Building {split} Data loader for dataset: ', dataset) + loader = get_data_loader(dataset, + batch_size=batch_size, + num_workers=num_workers, + pin_mem=True, + shuffle=not (test), + drop_last=not (test)) + + print(f"{split} dataset length: ", len(loader)) + return loader + + +def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, + data_loader: Sized, optimizer: torch.optim.Optimizer, + device: torch.device, epoch: int, loss_scaler, + args, + log_writer=None): + assert torch.backends.cuda.matmul.allow_tf32 == True + + model.train(True) + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) + header = 'Epoch: [{}]'.format(epoch) + accum_iter = args.accum_iter + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'): + data_loader.dataset.set_epoch(epoch) + if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'): + data_loader.sampler.set_epoch(epoch) + + optimizer.zero_grad() + + for data_iter_step, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)): + epoch_f = epoch + data_iter_step / len(data_loader) + + # we use a per iteration (instead of per epoch) lr scheduler + if data_iter_step % accum_iter == 0: + misc.adjust_learning_rate(optimizer, epoch_f, args) + + loss_tuple = loss_of_one_batch(batch, model, criterion, device, + symmetrize_batch=True, + use_amp=bool(args.amp), ret='loss') + loss, loss_details = loss_tuple # criterion returns two values + loss_value = float(loss) + + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value), force=True) + sys.exit(1) + + loss /= accum_iter + loss_scaler(loss, optimizer, parameters=model.parameters(), + update_grad=(data_iter_step + 1) % accum_iter == 0) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + del loss + del batch + + lr = optimizer.param_groups[0]["lr"] + metric_logger.update(epoch=epoch_f) + metric_logger.update(lr=lr) + metric_logger.update(loss=loss_value, **loss_details) + + if (data_iter_step + 1) % accum_iter == 0 and ((data_iter_step + 1) % (accum_iter * args.print_freq)) == 0: + loss_value_reduce = misc.all_reduce_mean(loss_value) # MUST BE EXECUTED BY ALL NODES + if log_writer is None: + continue + """ We use epoch_1000x as the x-axis in tensorboard. + This calibrates different curves when batch size changes. + """ + epoch_1000x = int(epoch_f * 1000) + log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x) + log_writer.add_scalar('train_lr', lr, epoch_1000x) + log_writer.add_scalar('train_iter', epoch_1000x, epoch_1000x) + for name, val in loss_details.items(): + log_writer.add_scalar('train_' + name, val, epoch_1000x) + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} + + +@torch.no_grad() +def test_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, + data_loader: Sized, device: torch.device, epoch: int, + args, log_writer=None, prefix='test'): + + model.eval() + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.meters = defaultdict(lambda: misc.SmoothedValue(window_size=9**9)) + header = 'Test Epoch: [{}]'.format(epoch) + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'): + data_loader.dataset.set_epoch(epoch) + if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'): + data_loader.sampler.set_epoch(epoch) + + for _, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)): + loss_tuple = loss_of_one_batch(batch, model, criterion, device, + symmetrize_batch=True, + use_amp=bool(args.amp), ret='loss') + loss_value, loss_details = loss_tuple # criterion returns two values + metric_logger.update(loss=float(loss_value), **loss_details) + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + + aggs = [('avg', 'global_avg'), ('med', 'median')] + results = {f'{k}_{tag}': getattr(meter, attr) for k, meter in metric_logger.meters.items() for tag, attr in aggs} + + if log_writer is not None: + for name, val in results.items(): + log_writer.add_scalar(prefix + '_' + name, val, 1000 * epoch) + + return results diff --git a/modules/dust3r/utils/__init__.py b/modules/dust3r/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/modules/dust3r/utils/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/modules/dust3r/utils/__pycache__/__init__.cpython-312.pyc b/modules/dust3r/utils/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c1ddb48f5f6c9c207d62e221b90ded46c71276da Binary files /dev/null and b/modules/dust3r/utils/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/dust3r/utils/__pycache__/device.cpython-312.pyc b/modules/dust3r/utils/__pycache__/device.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f1623880fb7c76b89a1fd774c584b0c1d1cf3536 Binary files /dev/null and b/modules/dust3r/utils/__pycache__/device.cpython-312.pyc differ diff --git a/modules/dust3r/utils/__pycache__/geometry.cpython-312.pyc b/modules/dust3r/utils/__pycache__/geometry.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f3d819820f47e3e3be9dd3caedc4454e24e960a Binary files /dev/null and b/modules/dust3r/utils/__pycache__/geometry.cpython-312.pyc differ diff --git a/modules/dust3r/utils/__pycache__/image.cpython-312.pyc b/modules/dust3r/utils/__pycache__/image.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..185cc17e3d88a3e0b364701bdb2cdd964f40cdfd Binary files /dev/null and b/modules/dust3r/utils/__pycache__/image.cpython-312.pyc differ diff --git a/modules/dust3r/utils/__pycache__/misc.cpython-312.pyc b/modules/dust3r/utils/__pycache__/misc.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..17bcc95c6a2c18c774378dec562aad7ea18cae0e Binary files /dev/null and b/modules/dust3r/utils/__pycache__/misc.cpython-312.pyc differ diff --git a/modules/dust3r/utils/__pycache__/path_to_croco.cpython-312.pyc b/modules/dust3r/utils/__pycache__/path_to_croco.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..135b7be1fedbc70c4af9cd952e176843453dfcc4 Binary files /dev/null and b/modules/dust3r/utils/__pycache__/path_to_croco.cpython-312.pyc differ diff --git a/modules/dust3r/utils/device.py b/modules/dust3r/utils/device.py new file mode 100644 index 0000000000000000000000000000000000000000..e3b6a74dac05a2e1ba3a2b2f0faa8cea08ece745 --- /dev/null +++ b/modules/dust3r/utils/device.py @@ -0,0 +1,76 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for DUSt3R +# -------------------------------------------------------- +import numpy as np +import torch + + +def todevice(batch, device, callback=None, non_blocking=False): + ''' Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy). + + batch: list, tuple, dict of tensors or other things + device: pytorch device or 'numpy' + callback: function that would be called on every sub-elements. + ''' + if callback: + batch = callback(batch) + + if isinstance(batch, dict): + return {k: todevice(v, device) for k, v in batch.items()} + + if isinstance(batch, (tuple, list)): + return type(batch)(todevice(x, device) for x in batch) + + x = batch + if device == 'numpy': + if isinstance(x, torch.Tensor): + x = x.detach().cpu().numpy() + elif x is not None: + if isinstance(x, np.ndarray): + x = torch.from_numpy(x) + if torch.is_tensor(x): + x = x.to(device, non_blocking=non_blocking) + return x + + +to_device = todevice # alias + + +def to_numpy(x): return todevice(x, 'numpy') +def to_cpu(x): return todevice(x, 'cpu') +def to_cuda(x): return todevice(x, 'cuda') + + +def collate_with_cat(whatever, lists=False): + if isinstance(whatever, dict): + return {k: collate_with_cat(vals, lists=lists) for k, vals in whatever.items()} + + elif isinstance(whatever, (tuple, list)): + if len(whatever) == 0: + return whatever + elem = whatever[0] + T = type(whatever) + + if elem is None: + return None + if isinstance(elem, (bool, float, int, str)): + return whatever + if isinstance(elem, tuple): + return T(collate_with_cat(x, lists=lists) for x in zip(*whatever)) + if isinstance(elem, dict): + return {k: collate_with_cat([e[k] for e in whatever], lists=lists) for k in elem} + + if isinstance(elem, torch.Tensor): + return listify(whatever) if lists else torch.cat(whatever) + if isinstance(elem, np.ndarray): + return listify(whatever) if lists else torch.cat([torch.from_numpy(x) for x in whatever]) + + # otherwise, we just chain lists + return sum(whatever, T()) + + +def listify(elems): + return [x for e in elems for x in e] diff --git a/modules/dust3r/utils/geometry.py b/modules/dust3r/utils/geometry.py new file mode 100644 index 0000000000000000000000000000000000000000..ce365faf2acb97ffaafa1b80cb8ee0c28de0b6d6 --- /dev/null +++ b/modules/dust3r/utils/geometry.py @@ -0,0 +1,366 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# geometry utilitary functions +# -------------------------------------------------------- +import torch +import numpy as np +from scipy.spatial import cKDTree as KDTree + +from dust3r.utils.misc import invalid_to_zeros, invalid_to_nans +from dust3r.utils.device import to_numpy + + +def xy_grid(W, H, device=None, origin=(0, 0), unsqueeze=None, cat_dim=-1, homogeneous=False, **arange_kw): + """ Output a (H,W,2) array of int32 + with output[j,i,0] = i + origin[0] + output[j,i,1] = j + origin[1] + """ + if device is None: + # numpy + arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones + else: + # torch + arange = lambda *a, **kw: torch.arange(*a, device=device, **kw) + meshgrid, stack = torch.meshgrid, torch.stack + ones = lambda *a: torch.ones(*a, device=device) + + tw, th = [arange(o, o + s, **arange_kw) for s, o in zip((W, H), origin)] + grid = meshgrid(tw, th, indexing='xy') + if homogeneous: + grid = grid + (ones((H, W)),) + if unsqueeze is not None: + grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze)) + if cat_dim is not None: + grid = stack(grid, cat_dim) + return grid + + +def geotrf(Trf, pts, ncol=None, norm=False): + """ Apply a geometric transformation to a list of 3-D points. + + H: 3x3 or 4x4 projection matrix (typically a Homography) + p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3) + + ncol: int. number of columns of the result (2 or 3) + norm: float. if != 0, the resut is projected on the z=norm plane. + + Returns an array of projected 2d points. + """ + assert Trf.ndim >= 2 + if isinstance(Trf, np.ndarray): + pts = np.asarray(pts) + elif isinstance(Trf, torch.Tensor): + pts = torch.as_tensor(pts, dtype=Trf.dtype) + + # adapt shape if necessary + output_reshape = pts.shape[:-1] + ncol = ncol or pts.shape[-1] + + # optimized code + if (isinstance(Trf, torch.Tensor) and isinstance(pts, torch.Tensor) and + Trf.ndim == 3 and pts.ndim == 4): + d = pts.shape[3] + if Trf.shape[-1] == d: + pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts) + elif Trf.shape[-1] == d + 1: + pts = torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts) + Trf[:, None, None, :d, d] + else: + raise ValueError(f'bad shape, not ending with 3 or 4, for {pts.shape=}') + else: + if Trf.ndim >= 3: + n = Trf.ndim - 2 + assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match' + Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1]) + + if pts.ndim > Trf.ndim: + # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d) + pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1]) + elif pts.ndim == 2: + # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d) + pts = pts[:, None, :] + + if pts.shape[-1] + 1 == Trf.shape[-1]: + Trf = Trf.swapaxes(-1, -2) # transpose Trf + pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :] + elif pts.shape[-1] == Trf.shape[-1]: + Trf = Trf.swapaxes(-1, -2) # transpose Trf + pts = pts @ Trf + else: + pts = Trf @ pts.T + if pts.ndim >= 2: + pts = pts.swapaxes(-1, -2) + + if norm: + pts = pts / pts[..., -1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG + if norm != 1: + pts *= norm + + res = pts[..., :ncol].reshape(*output_reshape, ncol) + return res + + +def inv(mat): + """ Invert a torch or numpy matrix + """ + if isinstance(mat, torch.Tensor): + return torch.linalg.inv(mat) + if isinstance(mat, np.ndarray): + return np.linalg.inv(mat) + raise ValueError(f'bad matrix type = {type(mat)}') + + +def depthmap_to_pts3d(depth, pseudo_focal, pp=None, **_): + """ + Args: + - depthmap (BxHxW array): + - pseudo_focal: [B,H,W] ; [B,2,H,W] or [B,1,H,W] + Returns: + pointmap of absolute coordinates (BxHxWx3 array) + """ + + if len(depth.shape) == 4: + B, H, W, n = depth.shape + else: + B, H, W = depth.shape + n = None + + if len(pseudo_focal.shape) == 3: # [B,H,W] + pseudo_focalx = pseudo_focaly = pseudo_focal + elif len(pseudo_focal.shape) == 4: # [B,2,H,W] or [B,1,H,W] + pseudo_focalx = pseudo_focal[:, 0] + if pseudo_focal.shape[1] == 2: + pseudo_focaly = pseudo_focal[:, 1] + else: + pseudo_focaly = pseudo_focalx + else: + raise NotImplementedError("Error, unknown input focal shape format.") + + assert pseudo_focalx.shape == depth.shape[:3] + assert pseudo_focaly.shape == depth.shape[:3] + grid_x, grid_y = xy_grid(W, H, cat_dim=0, device=depth.device)[:, None] + + # set principal point + if pp is None: + grid_x = grid_x - (W - 1) / 2 + grid_y = grid_y - (H - 1) / 2 + else: + grid_x = grid_x.expand(B, -1, -1) - pp[:, 0, None, None] + grid_y = grid_y.expand(B, -1, -1) - pp[:, 1, None, None] + + if n is None: + pts3d = torch.empty((B, H, W, 3), device=depth.device) + pts3d[..., 0] = depth * grid_x / pseudo_focalx + pts3d[..., 1] = depth * grid_y / pseudo_focaly + pts3d[..., 2] = depth + else: + pts3d = torch.empty((B, H, W, 3, n), device=depth.device) + pts3d[..., 0, :] = depth * (grid_x / pseudo_focalx)[..., None] + pts3d[..., 1, :] = depth * (grid_y / pseudo_focaly)[..., None] + pts3d[..., 2, :] = depth + return pts3d + + +def depthmap_to_camera_coordinates(depthmap, camera_intrinsics, pseudo_focal=None): + """ + Args: + - depthmap (HxW array): + - camera_intrinsics: a 3x3 matrix + Returns: + pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels. + """ + camera_intrinsics = np.float32(camera_intrinsics) + H, W = depthmap.shape + + # Compute 3D ray associated with each pixel + # Strong assumption: there are no skew terms + assert camera_intrinsics[0, 1] == 0.0 + assert camera_intrinsics[1, 0] == 0.0 + if pseudo_focal is None: + fu = camera_intrinsics[0, 0] + fv = camera_intrinsics[1, 1] + else: + assert pseudo_focal.shape == (H, W) + fu = fv = pseudo_focal + cu = camera_intrinsics[0, 2] + cv = camera_intrinsics[1, 2] + + u, v = np.meshgrid(np.arange(W), np.arange(H)) + z_cam = depthmap + x_cam = (u - cu) * z_cam / fu + y_cam = (v - cv) * z_cam / fv + X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1).astype(np.float32) + + # Mask for valid coordinates + valid_mask = (depthmap > 0.0) + return X_cam, valid_mask + + +def depthmap_to_absolute_camera_coordinates(depthmap, camera_intrinsics, camera_pose, **kw): + """ + Args: + - depthmap (HxW array): + - camera_intrinsics: a 3x3 matrix + - camera_pose: a 4x3 or 4x4 cam2world matrix + Returns: + pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels.""" + X_cam, valid_mask = depthmap_to_camera_coordinates(depthmap, camera_intrinsics) + + X_world = X_cam # default + if camera_pose is not None: + # R_cam2world = np.float32(camera_params["R_cam2world"]) + # t_cam2world = np.float32(camera_params["t_cam2world"]).squeeze() + R_cam2world = camera_pose[:3, :3] + t_cam2world = camera_pose[:3, 3] + + # Express in absolute coordinates (invalid depth values) + X_world = np.einsum("ik, vuk -> vui", R_cam2world, X_cam) + t_cam2world[None, None, :] + + return X_world, valid_mask + + +def colmap_to_opencv_intrinsics(K): + """ + Modify camera intrinsics to follow a different convention. + Coordinates of the center of the top-left pixels are by default: + - (0.5, 0.5) in Colmap + - (0,0) in OpenCV + """ + K = K.copy() + K[0, 2] -= 0.5 + K[1, 2] -= 0.5 + return K + + +def opencv_to_colmap_intrinsics(K): + """ + Modify camera intrinsics to follow a different convention. + Coordinates of the center of the top-left pixels are by default: + - (0.5, 0.5) in Colmap + - (0,0) in OpenCV + """ + K = K.copy() + K[0, 2] += 0.5 + K[1, 2] += 0.5 + return K + + +def normalize_pointcloud(pts1, pts2, norm_mode='avg_dis', valid1=None, valid2=None, ret_factor=False): + """ renorm pointmaps pts1, pts2 with norm_mode + """ + assert pts1.ndim >= 3 and pts1.shape[-1] == 3 + assert pts2 is None or (pts2.ndim >= 3 and pts2.shape[-1] == 3) + norm_mode, dis_mode = norm_mode.split('_') + + if norm_mode == 'avg': + # gather all points together (joint normalization) + nan_pts1, nnz1 = invalid_to_zeros(pts1, valid1, ndim=3) + nan_pts2, nnz2 = invalid_to_zeros(pts2, valid2, ndim=3) if pts2 is not None else (None, 0) + all_pts = torch.cat((nan_pts1, nan_pts2), dim=1) if pts2 is not None else nan_pts1 + + # compute distance to origin + all_dis = all_pts.norm(dim=-1) + if dis_mode == 'dis': + pass # do nothing + elif dis_mode == 'log1p': + all_dis = torch.log1p(all_dis) + elif dis_mode == 'warp-log1p': + # actually warp input points before normalizing them + log_dis = torch.log1p(all_dis) + warp_factor = log_dis / all_dis.clip(min=1e-8) + H1, W1 = pts1.shape[1:-1] + pts1 = pts1 * warp_factor[:, :W1 * H1].view(-1, H1, W1, 1) + if pts2 is not None: + H2, W2 = pts2.shape[1:-1] + pts2 = pts2 * warp_factor[:, W1 * H1:].view(-1, H2, W2, 1) + all_dis = log_dis # this is their true distance afterwards + else: + raise ValueError(f'bad {dis_mode=}') + + norm_factor = all_dis.sum(dim=1) / (nnz1 + nnz2 + 1e-8) + else: + # gather all points together (joint normalization) + nan_pts1 = invalid_to_nans(pts1, valid1, ndim=3) + nan_pts2 = invalid_to_nans(pts2, valid2, ndim=3) if pts2 is not None else None + all_pts = torch.cat((nan_pts1, nan_pts2), dim=1) if pts2 is not None else nan_pts1 + + # compute distance to origin + all_dis = all_pts.norm(dim=-1) + + if norm_mode == 'avg': + norm_factor = all_dis.nanmean(dim=1) + elif norm_mode == 'median': + norm_factor = all_dis.nanmedian(dim=1).values.detach() + elif norm_mode == 'sqrt': + norm_factor = all_dis.sqrt().nanmean(dim=1)**2 + else: + raise ValueError(f'bad {norm_mode=}') + + norm_factor = norm_factor.clip(min=1e-8) + while norm_factor.ndim < pts1.ndim: + norm_factor.unsqueeze_(-1) + + res = pts1 / norm_factor + if pts2 is not None: + res = (res, pts2 / norm_factor) + if ret_factor: + res = res + (norm_factor,) + return res + + +@torch.no_grad() +def get_joint_pointcloud_depth(z1, z2, valid_mask1, valid_mask2=None, quantile=0.5): + # set invalid points to NaN + _z1 = invalid_to_nans(z1, valid_mask1).reshape(len(z1), -1) + _z2 = invalid_to_nans(z2, valid_mask2).reshape(len(z2), -1) if z2 is not None else None + _z = torch.cat((_z1, _z2), dim=-1) if z2 is not None else _z1 + + # compute median depth overall (ignoring nans) + if quantile == 0.5: + shift_z = torch.nanmedian(_z, dim=-1).values + else: + shift_z = torch.nanquantile(_z, quantile, dim=-1) + return shift_z # (B,) + + +@torch.no_grad() +def get_joint_pointcloud_center_scale(pts1, pts2, valid_mask1=None, valid_mask2=None, z_only=False, center=True): + # set invalid points to NaN + _pts1 = invalid_to_nans(pts1, valid_mask1).reshape(len(pts1), -1, 3) + _pts2 = invalid_to_nans(pts2, valid_mask2).reshape(len(pts2), -1, 3) if pts2 is not None else None + _pts = torch.cat((_pts1, _pts2), dim=1) if pts2 is not None else _pts1 + + # compute median center + _center = torch.nanmedian(_pts, dim=1, keepdim=True).values # (B,1,3) + if z_only: + _center[..., :2] = 0 # do not center X and Y + + # compute median norm + _norm = ((_pts - _center) if center else _pts).norm(dim=-1) + scale = torch.nanmedian(_norm, dim=1).values + return _center[:, None, :, :], scale[:, None, None, None] + + +def find_reciprocal_matches(P1, P2): + """ + returns 3 values: + 1 - reciprocal_in_P2: a boolean array of size P2.shape[0], a "True" value indicates a match + 2 - nn2_in_P1: a int array of size P2.shape[0], it contains the indexes of the closest points in P1 + 3 - reciprocal_in_P2.sum(): the number of matches + """ + tree1 = KDTree(P1) + tree2 = KDTree(P2) + + _, nn1_in_P2 = tree2.query(P1, workers=8) + _, nn2_in_P1 = tree1.query(P2, workers=8) + + reciprocal_in_P1 = (nn2_in_P1[nn1_in_P2] == np.arange(len(nn1_in_P2))) + reciprocal_in_P2 = (nn1_in_P2[nn2_in_P1] == np.arange(len(nn2_in_P1))) + assert reciprocal_in_P1.sum() == reciprocal_in_P2.sum() + return reciprocal_in_P2, nn2_in_P1, reciprocal_in_P2.sum() + + +def get_med_dist_between_poses(poses): + from scipy.spatial.distance import pdist + return np.median(pdist([to_numpy(p[:3, 3]) for p in poses])) diff --git a/modules/dust3r/utils/image.py b/modules/dust3r/utils/image.py new file mode 100644 index 0000000000000000000000000000000000000000..24c63b9109e08d74ba6cee0a026774c8e54e799c --- /dev/null +++ b/modules/dust3r/utils/image.py @@ -0,0 +1,166 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions about images (loading/converting...) +# -------------------------------------------------------- +import os +import torch +import numpy as np +import PIL.Image +from PIL.ImageOps import exif_transpose +import torchvision.transforms as tvf +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 # noqa + +try: + from pillow_heif import register_heif_opener # noqa + register_heif_opener() + heif_support_enabled = True +except ImportError: + heif_support_enabled = False + +ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + + +def img_to_arr( img ): + if isinstance(img, str): + img = imread_cv2(img) + return img + +def imread_cv2(path, options=cv2.IMREAD_COLOR): + """ Open an image or a depthmap with opencv-python. + """ + if path.endswith(('.exr', 'EXR')): + options = cv2.IMREAD_ANYDEPTH + img = cv2.imread(path, options) + if img is None: + raise IOError(f'Could not load image={path} with {options=}') + if img.ndim == 3: + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + return img + + +def rgb(ftensor, true_shape=None): + if isinstance(ftensor, list): + return [rgb(x, true_shape=true_shape) for x in ftensor] + if isinstance(ftensor, torch.Tensor): + ftensor = ftensor.detach().cpu().numpy() # H,W,3 + if ftensor.ndim == 3 and ftensor.shape[0] == 3: + ftensor = ftensor.transpose(1, 2, 0) + elif ftensor.ndim == 4 and ftensor.shape[1] == 3: + ftensor = ftensor.transpose(0, 2, 3, 1) + if true_shape is not None: + H, W = true_shape + ftensor = ftensor[:H, :W] + if ftensor.dtype == np.uint8: + img = np.float32(ftensor) / 255 + else: + img = (ftensor * 0.5) + 0.5 + return img.clip(min=0, max=1) + + +def _resize_pil_image(img, long_edge_size): + S = max(img.size) + if S > long_edge_size: + interp = PIL.Image.LANCZOS + elif S <= long_edge_size: + interp = PIL.Image.BICUBIC + new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size) + return img.resize(new_size, interp) + + +def load_images(images, cog_seg_maps, size, square_ok=False, verbose=True): + """ open and convert all images in a list or folder to proper input format for DUSt3R + """ + # if isinstance(folder_or_list, str): + # if verbose: + # print(f'>> Loading images from {folder_or_list}') + # root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) + + # elif isinstance(folder_or_list, list): + # if verbose: + # print(f'>> Loading a list of {len(folder_or_list)} images') + # root, folder_content = '', folder_or_list + + # else: + # raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})') + + # supported_images_extensions = ['.jpg', '.jpeg', '.png'] + # if heif_support_enabled: + # supported_images_extensions += ['.heic', '.heif'] + # supported_images_extensions = tuple(supported_images_extensions) + pil_images = images.pil_images + + mean_colors = {} + mean_colors_cnt = {} + for i, img in enumerate(pil_images): + + img_np = np.array(img) + seg_map = cog_seg_maps[i] + unique_labels = np.unique(seg_map) + for label in unique_labels: + if label == -1: + continue + mask = (seg_map == label) + mean_color = img_np[mask].mean(axis=0) + if label in mean_colors.keys(): + mean_colors[label] += mean_color + mean_colors_cnt[label] += 1 + else: + mean_colors[label] = mean_color + mean_colors_cnt[label] = 1 + + for key in mean_colors.keys(): + mean_colors[key] /= mean_colors_cnt[key] + + imgs = [] + for i, img in enumerate(pil_images): + img = pil_images[i] + + img_np = np.array(img) + smoothed_image = np.zeros_like(img_np) + seg_map = cog_seg_maps[i] + unique_labels = np.unique(seg_map) + for label in unique_labels: + mask = (seg_map == label) + if label == -1: + smoothed_image[mask] = img_np[mask] + continue + smoothed_image[mask] = mean_colors[label] + smoothed_image = cv2.addWeighted(img_np, 0.05, smoothed_image, 0.95, 0) + smoothed_image = PIL.Image.fromarray(smoothed_image) + + W1, H1 = img.size + if size == 224: + # resize short side to 224 (then crop) + img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1))) + smoothed_image = _resize_pil_image(smoothed_image, round(size * max(W1/H1, H1/W1))) + else: + # resize long side to 512 + img = _resize_pil_image(img, size) + smoothed_image = _resize_pil_image(smoothed_image, size) + + W, H = img.size + cx, cy = W//2, H//2 + if size == 224: + half = min(cx, cy) + img = img.crop((cx-half, cy-half, cx+half, cy+half)) + smoothed_image = smoothed_image.crop((cx-half, cy-half, cx+half, cy+half)) + else: + halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8 + if not (square_ok) and W == H: + halfh = 3*halfw/4 + img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) + smoothed_image = smoothed_image.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) + + # W2, H2 = img.size + # if verbose: + # print(f' - adding image {i} with resolution {W1}x{H1} --> {W2}x{H2}') + + imgs.append(dict(img=ImgNorm(img)[None], ori_img=ImgNorm(img)[None], smoothed_img=ImgNorm(smoothed_image)[None], true_shape=np.int32( + [img.size[::-1]]), idx=len(imgs), instance=str(len(imgs)))) + + if verbose: + print(f' (Found {len(imgs)} images)') + return imgs diff --git a/modules/dust3r/utils/image.py.bak b/modules/dust3r/utils/image.py.bak new file mode 100644 index 0000000000000000000000000000000000000000..f823445cefcca8bea22421592cee4a100dea09c4 --- /dev/null +++ b/modules/dust3r/utils/image.py.bak @@ -0,0 +1,163 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions about images (loading/converting...) +# -------------------------------------------------------- +import os +import torch +import numpy as np +import PIL.Image +from PIL.ImageOps import exif_transpose +import torchvision.transforms as tvf +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 # noqa + +try: + from pillow_heif import register_heif_opener # noqa + register_heif_opener() + heif_support_enabled = True +except ImportError: + heif_support_enabled = False + +ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + + +def img_to_arr( img ): + if isinstance(img, str): + img = imread_cv2(img) + return img + +def imread_cv2(path, options=cv2.IMREAD_COLOR): + """ Open an image or a depthmap with opencv-python. + """ + if path.endswith(('.exr', 'EXR')): + options = cv2.IMREAD_ANYDEPTH + img = cv2.imread(path, options) + if img is None: + raise IOError(f'Could not load image={path} with {options=}') + if img.ndim == 3: + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + return img + + +def rgb(ftensor, true_shape=None): + if isinstance(ftensor, list): + return [rgb(x, true_shape=true_shape) for x in ftensor] + if isinstance(ftensor, torch.Tensor): + ftensor = ftensor.detach().cpu().numpy() # H,W,3 + if ftensor.ndim == 3 and ftensor.shape[0] == 3: + ftensor = ftensor.transpose(1, 2, 0) + elif ftensor.ndim == 4 and ftensor.shape[1] == 3: + ftensor = ftensor.transpose(0, 2, 3, 1) + if true_shape is not None: + H, W = true_shape + ftensor = ftensor[:H, :W] + if ftensor.dtype == np.uint8: + img = np.float32(ftensor) / 255 + else: + img = (ftensor * 0.5) + 0.5 + return img.clip(min=0, max=1) + + +def _resize_pil_image(img, long_edge_size): + S = max(img.size) + if S > long_edge_size: + interp = PIL.Image.LANCZOS + elif S <= long_edge_size: + interp = PIL.Image.BICUBIC + new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size) + return img.resize(new_size, interp) + + +def load_images(folder_or_list, cog_seg_maps, size, square_ok=False, verbose=True): + """ open and convert all images in a list or folder to proper input format for DUSt3R + """ + if isinstance(folder_or_list, str): + if verbose: + print(f'>> Loading images from {folder_or_list}') + root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) + + elif isinstance(folder_or_list, list): + if verbose: + print(f'>> Loading a list of {len(folder_or_list)} images') + root, folder_content = '', folder_or_list + + else: + raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})') + + supported_images_extensions = ['.jpg', '.jpeg', '.png'] + if heif_support_enabled: + supported_images_extensions += ['.heic', '.heif'] + supported_images_extensions = tuple(supported_images_extensions) + + imgs = [] + for path in enumerate(folder_content): + if not path.lower().endswith(supported_images_extensions): + continue + img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB') + + W1, H1 = img.size + if size == 224: + # resize short side to 224 (then crop) + img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1))) + else: + # resize long side to 512 + img = _resize_pil_image(img, size) + + W, H = img.size + cx, cy = W//2, H//2 + if size == 224: + half = min(cx, cy) + img = img.crop((cx-half, cy-half, cx+half, cy+half)) + else: + halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8 + if not (square_ok) and W == H: + halfh = 3*halfw/4 + img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) + + W2, H2 = img.size + if verbose: + print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}') + imgs.append(dict(img=img, ori_img=ImgNorm(img)[None], true_shape=np.int32( + [img.size[::-1]]), idx=len(imgs), instance=str(len(imgs)))) + + mean_colors = {} + mean_colors_cnt = {} + for i in range(len(imgs)): + img_np = imgs[i]['img'] + seg_map = cog_seg_maps[i] + unique_labels = np.unique(seg_map) + for label in unique_labels: + if label == -1: + continue + mask = (seg_map == label) + mean_color = img_np[mask].mean(axis=0) + if label in mean_colors.keys(): + mean_colors[label] += mean_color + mean_colors_cnt[label] += 1 + else: + mean_colors[label] = mean_color + mean_colors_cnt[label] = 1 + for key in mean_colors.keys(): + mean_colors[key] /= mean_colors_cnt[key] + + for i in range(len(imgs)): + img_np = np.array(imgs[i]['img']) + smoothed_image = np.zeros_like(img_np) + seg_map = cog_seg_maps[i] + unique_labels = np.unique(seg_map) + for label in unique_labels: + if label == -1: + continue + mask = (seg_map == label) + mean_color = mean_colors[label] + smoothed_image[mask] = mean_color + smoothed_image = cv2.addWeighted(img_np, 0.1, smoothed_image, 0.9, 0) + smoothed_image = PIL.Image.fromarray(smoothed_image) + imgs[i]['img'] = ImgNorm(smoothed_image)[None] + + assert imgs, 'no images foud at '+root + if verbose: + print(f' (Found {len(imgs)} images)') + return imgs diff --git a/modules/dust3r/utils/image.py.ori b/modules/dust3r/utils/image.py.ori new file mode 100644 index 0000000000000000000000000000000000000000..0d69eafcdcdb75fb4723cf004a8ce35c9085a97a --- /dev/null +++ b/modules/dust3r/utils/image.py.ori @@ -0,0 +1,143 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions about images (loading/converting...) +# -------------------------------------------------------- +import os +import torch +import numpy as np +import PIL.Image +from PIL.ImageOps import exif_transpose +import torchvision.transforms as tvf +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 # noqa + +try: + from pillow_heif import register_heif_opener # noqa + register_heif_opener() + heif_support_enabled = True +except ImportError: + heif_support_enabled = False + +ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + + +def img_to_arr( img ): + if isinstance(img, str): + img = imread_cv2(img) + return img + +def imread_cv2(path, options=cv2.IMREAD_COLOR): + """ Open an image or a depthmap with opencv-python. + """ + if path.endswith(('.exr', 'EXR')): + options = cv2.IMREAD_ANYDEPTH + img = cv2.imread(path, options) + if img is None: + raise IOError(f'Could not load image={path} with {options=}') + if img.ndim == 3: + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + return img + + +def rgb(ftensor, true_shape=None): + if isinstance(ftensor, list): + return [rgb(x, true_shape=true_shape) for x in ftensor] + if isinstance(ftensor, torch.Tensor): + ftensor = ftensor.detach().cpu().numpy() # H,W,3 + if ftensor.ndim == 3 and ftensor.shape[0] == 3: + ftensor = ftensor.transpose(1, 2, 0) + elif ftensor.ndim == 4 and ftensor.shape[1] == 3: + ftensor = ftensor.transpose(0, 2, 3, 1) + if true_shape is not None: + H, W = true_shape + ftensor = ftensor[:H, :W] + if ftensor.dtype == np.uint8: + img = np.float32(ftensor) / 255 + else: + img = (ftensor * 0.5) + 0.5 + return img.clip(min=0, max=1) + + +def _resize_pil_image(img, long_edge_size): + S = max(img.size) + if S > long_edge_size: + interp = PIL.Image.LANCZOS + elif S <= long_edge_size: + interp = PIL.Image.BICUBIC + new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size) + return img.resize(new_size, interp) + + +def load_images(folder_or_list, cog_seg_maps, size, square_ok=False, verbose=True): + """ open and convert all images in a list or folder to proper input format for DUSt3R + """ + if isinstance(folder_or_list, str): + if verbose: + print(f'>> Loading images from {folder_or_list}') + root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) + + elif isinstance(folder_or_list, list): + if verbose: + print(f'>> Loading a list of {len(folder_or_list)} images') + root, folder_content = '', folder_or_list + + else: + raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})') + + supported_images_extensions = ['.jpg', '.jpeg', '.png'] + if heif_support_enabled: + supported_images_extensions += ['.heic', '.heif'] + supported_images_extensions = tuple(supported_images_extensions) + + imgs = [] + for i, path in enumerate(folder_content): + if not path.lower().endswith(supported_images_extensions): + continue + img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB') + + img_np = np.array(img) + smoothed_image = np.zeros_like(img_np) + seg_map = cog_seg_maps[i] + unique_labels = np.unique(seg_map) + for label in unique_labels: + mask = (seg_map == label) + mean_color = img_np[mask].mean(axis=0) + smoothed_image[mask] = mean_color + smoothed_image = cv2.addWeighted(img_np, 0.05, smoothed_image, 0.95, 0) + smoothed_image = PIL.Image.fromarray(smoothed_image) + + W1, H1 = img.size + if size == 224: + # resize short side to 224 (then crop) + img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1))) + smoothed_image = _resize_pil_image(smoothed_image, round(size * max(W1/H1, H1/W1))) + else: + # resize long side to 512 + img = _resize_pil_image(img, size) + smoothed_image = _resize_pil_image(smoothed_image, size) + + W, H = img.size + cx, cy = W//2, H//2 + if size == 224: + half = min(cx, cy) + img = img.crop((cx-half, cy-half, cx+half, cy+half)) + smoothed_image = smoothed_image.crop((cx-half, cy-half, cx+half, cy+half)) + else: + halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8 + if not (square_ok) and W == H: + halfh = 3*halfw/4 + img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) + smoothed_image = smoothed_image.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) + + W2, H2 = img.size + if verbose: + print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}') + imgs.append(dict(img=ImgNorm(smoothed_image)[None], ori_img=ImgNorm(img)[None], true_shape=np.int32( + [img.size[::-1]]), idx=len(imgs), instance=str(len(imgs)))) + + assert imgs, 'no images foud at '+root + if verbose: + print(f' (Found {len(imgs)} images)') + return imgs diff --git a/modules/dust3r/utils/misc.py b/modules/dust3r/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..88c4d2dab6d5c14021ed9ed6646c3159a3a4637b --- /dev/null +++ b/modules/dust3r/utils/misc.py @@ -0,0 +1,121 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for DUSt3R +# -------------------------------------------------------- +import torch + + +def fill_default_args(kwargs, func): + import inspect # a bit hacky but it works reliably + signature = inspect.signature(func) + + for k, v in signature.parameters.items(): + if v.default is inspect.Parameter.empty: + continue + kwargs.setdefault(k, v.default) + + return kwargs + + +def freeze_all_params(modules): + for module in modules: + try: + for n, param in module.named_parameters(): + param.requires_grad = False + except AttributeError: + # module is directly a parameter + module.requires_grad = False + + +def is_symmetrized(gt1, gt2): + x = gt1['instance'] + y = gt2['instance'] + if len(x) == len(y) and len(x) == 1: + return False # special case of batchsize 1 + ok = True + for i in range(0, len(x), 2): + ok = ok and (x[i] == y[i + 1]) and (x[i + 1] == y[i]) + return ok + + +def flip(tensor): + """ flip so that tensor[0::2] <=> tensor[1::2] """ + return torch.stack((tensor[1::2], tensor[0::2]), dim=1).flatten(0, 1) + + +def interleave(tensor1, tensor2): + res1 = torch.stack((tensor1, tensor2), dim=1).flatten(0, 1) + res2 = torch.stack((tensor2, tensor1), dim=1).flatten(0, 1) + return res1, res2 + + +def transpose_to_landscape(head, activate=True): + """ Predict in the correct aspect-ratio, + then transpose the result in landscape + and stack everything back together. + """ + def wrapper_no(decout, true_shape): + B = len(true_shape) + assert true_shape[0:1].allclose(true_shape), 'true_shape must be all identical' + H, W = true_shape[0].cpu().tolist() + res = head(decout, (H, W)) + return res + + def wrapper_yes(decout, true_shape): + B = len(true_shape) + # by definition, the batch is in landscape mode so W >= H + H, W = int(true_shape.min()), int(true_shape.max()) + + height, width = true_shape.T + is_landscape = (width >= height) + is_portrait = ~is_landscape + + # true_shape = true_shape.cpu() + if is_landscape.all(): + return head(decout, (H, W)) + if is_portrait.all(): + return transposed(head(decout, (W, H))) + + # batch is a mix of both portraint & landscape + def selout(ar): return [d[ar] for d in decout] + l_result = head(selout(is_landscape), (H, W)) + p_result = transposed(head(selout(is_portrait), (W, H))) + + # allocate full result + result = {} + for k in l_result | p_result: + x = l_result[k].new(B, *l_result[k].shape[1:]) + x[is_landscape] = l_result[k] + x[is_portrait] = p_result[k] + result[k] = x + + return result + + return wrapper_yes if activate else wrapper_no + + +def transposed(dic): + return {k: v.swapaxes(1, 2) for k, v in dic.items()} + + +def invalid_to_nans(arr, valid_mask, ndim=999): + if valid_mask is not None: + arr = arr.clone() + arr[~valid_mask] = float('nan') + if arr.ndim > ndim: + arr = arr.flatten(-2 - (arr.ndim - ndim), -2) + return arr + + +def invalid_to_zeros(arr, valid_mask, ndim=999): + if valid_mask is not None: + arr = arr.clone() + arr[~valid_mask] = 0 + nnz = valid_mask.view(len(valid_mask), -1).sum(1) + else: + nnz = arr.numel() // len(arr) if len(arr) else 0 # number of point per image + if arr.ndim > ndim: + arr = arr.flatten(-2 - (arr.ndim - ndim), -2) + return arr, nnz diff --git a/modules/dust3r/utils/parallel.py b/modules/dust3r/utils/parallel.py new file mode 100644 index 0000000000000000000000000000000000000000..06ae7fefdb9d2298929f0cbc20dfbc57eb7d7f7b --- /dev/null +++ b/modules/dust3r/utils/parallel.py @@ -0,0 +1,79 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for multiprocessing +# -------------------------------------------------------- +from tqdm import tqdm +from multiprocessing.dummy import Pool as ThreadPool +from multiprocessing import cpu_count + + +def parallel_threads(function, args, workers=0, star_args=False, kw_args=False, front_num=1, Pool=ThreadPool, **tqdm_kw): + """ tqdm but with parallel execution. + + Will essentially return + res = [ function(arg) # default + function(*arg) # if star_args is True + function(**arg) # if kw_args is True + for arg in args] + + Note: + the first elements of args will not be parallelized. + This can be useful for debugging. + """ + while workers <= 0: + workers += cpu_count() + if workers == 1: + front_num = float('inf') + + # convert into an iterable + try: + n_args_parallel = len(args) - front_num + except TypeError: + n_args_parallel = None + args = iter(args) + + # sequential execution first + front = [] + while len(front) < front_num: + try: + a = next(args) + except StopIteration: + return front # end of the iterable + front.append(function(*a) if star_args else function(**a) if kw_args else function(a)) + + # then parallel execution + out = [] + with Pool(workers) as pool: + # Pass the elements of args into function + if star_args: + futures = pool.imap(starcall, [(function, a) for a in args]) + elif kw_args: + futures = pool.imap(starstarcall, [(function, a) for a in args]) + else: + futures = pool.imap(function, args) + # Print out the progress as tasks complete + for f in tqdm(futures, total=n_args_parallel, **tqdm_kw): + out.append(f) + return front + out + + +def parallel_processes(*args, **kwargs): + """ Same as parallel_threads, with processes + """ + import multiprocessing as mp + kwargs['Pool'] = mp.Pool + return parallel_threads(*args, **kwargs) + + +def starcall(args): + """ convenient wrapper for Process.Pool """ + function, args = args + return function(*args) + + +def starstarcall(args): + """ convenient wrapper for Process.Pool """ + function, args = args + return function(**args) diff --git a/modules/dust3r/utils/path_to_croco.py b/modules/dust3r/utils/path_to_croco.py new file mode 100644 index 0000000000000000000000000000000000000000..39226ce6bc0e1993ba98a22096de32cb6fa916b4 --- /dev/null +++ b/modules/dust3r/utils/path_to_croco.py @@ -0,0 +1,19 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# CroCo submodule import +# -------------------------------------------------------- + +import sys +import os.path as path +HERE_PATH = path.normpath(path.dirname(__file__)) +CROCO_REPO_PATH = path.normpath(path.join(HERE_PATH, '../../croco')) +CROCO_MODELS_PATH = path.join(CROCO_REPO_PATH, 'models') +# check the presence of models directory in repo to be sure its cloned +if path.isdir(CROCO_MODELS_PATH): + # workaround for sibling import + sys.path.insert(0, CROCO_REPO_PATH) +else: + raise ImportError(f"croco is not initialized, could not find: {CROCO_MODELS_PATH}.\n " + "Did you forget to run 'git submodule update --init --recursive' ?") diff --git a/modules/dust3r/viz.py b/modules/dust3r/viz.py new file mode 100644 index 0000000000000000000000000000000000000000..9150e8b850d9f1e6bf9ddf6e865d34fc743e276a --- /dev/null +++ b/modules/dust3r/viz.py @@ -0,0 +1,381 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Visualization utilities using trimesh +# -------------------------------------------------------- +import PIL.Image +import numpy as np +from scipy.spatial.transform import Rotation +import torch + +from dust3r.utils.geometry import geotrf, get_med_dist_between_poses, depthmap_to_absolute_camera_coordinates +from dust3r.utils.device import to_numpy +from dust3r.utils.image import rgb, img_to_arr + +try: + import trimesh +except ImportError: + print('/!\\ module trimesh is not installed, cannot visualize results /!\\') + + + +def cat_3d(vecs): + if isinstance(vecs, (np.ndarray, torch.Tensor)): + vecs = [vecs] + return np.concatenate([p.reshape(-1, 3) for p in to_numpy(vecs)]) + + +def show_raw_pointcloud(pts3d, colors, point_size=2): + scene = trimesh.Scene() + + pct = trimesh.PointCloud(cat_3d(pts3d), colors=cat_3d(colors)) + scene.add_geometry(pct) + + scene.show(line_settings={'point_size': point_size}) + + +def pts3d_to_trimesh(img, pts3d, valid=None): + H, W, THREE = img.shape + assert THREE == 3 + assert img.shape == pts3d.shape + + vertices = pts3d.reshape(-1, 3) + + # make squares: each pixel == 2 triangles + idx = np.arange(len(vertices)).reshape(H, W) + idx1 = idx[:-1, :-1].ravel() # top-left corner + idx2 = idx[:-1, +1:].ravel() # right-left corner + idx3 = idx[+1:, :-1].ravel() # bottom-left corner + idx4 = idx[+1:, +1:].ravel() # bottom-right corner + faces = np.concatenate(( + np.c_[idx1, idx2, idx3], + np.c_[idx3, idx2, idx1], # same triangle, but backward (cheap solution to cancel face culling) + np.c_[idx2, idx3, idx4], + np.c_[idx4, idx3, idx2], # same triangle, but backward (cheap solution to cancel face culling) + ), axis=0) + + # prepare triangle colors + face_colors = np.concatenate(( + img[:-1, :-1].reshape(-1, 3), + img[:-1, :-1].reshape(-1, 3), + img[+1:, +1:].reshape(-1, 3), + img[+1:, +1:].reshape(-1, 3) + ), axis=0) + + # remove invalid faces + if valid is not None: + assert valid.shape == (H, W) + valid_idxs = valid.ravel() + valid_faces = valid_idxs[faces].all(axis=-1) + faces = faces[valid_faces] + face_colors = face_colors[valid_faces] + + assert len(faces) == len(face_colors) + return dict(vertices=vertices, face_colors=face_colors, faces=faces) + + +def cat_meshes(meshes): + vertices, faces, colors = zip(*[(m['vertices'], m['faces'], m['face_colors']) for m in meshes]) + n_vertices = np.cumsum([0]+[len(v) for v in vertices]) + for i in range(len(faces)): + faces[i][:] += n_vertices[i] + + vertices = np.concatenate(vertices) + colors = np.concatenate(colors) + faces = np.concatenate(faces) + return dict(vertices=vertices, face_colors=colors, faces=faces) + + +def show_duster_pairs(view1, view2, pred1, pred2): + import matplotlib.pyplot as pl + pl.ion() + + for e in range(len(view1['instance'])): + i = view1['idx'][e] + j = view2['idx'][e] + img1 = rgb(view1['img'][e]) + img2 = rgb(view2['img'][e]) + conf1 = pred1['conf'][e].squeeze() + conf2 = pred2['conf'][e].squeeze() + score = conf1.mean()*conf2.mean() + print(f">> Showing pair #{e} {i}-{j} {score=:g}") + pl.clf() + pl.subplot(221).imshow(img1) + pl.subplot(223).imshow(img2) + pl.subplot(222).imshow(conf1, vmin=1, vmax=30) + pl.subplot(224).imshow(conf2, vmin=1, vmax=30) + pts1 = pred1['pts3d'][e] + pts2 = pred2['pts3d_in_other_view'][e] + pl.subplots_adjust(0, 0, 1, 1, 0, 0) + if input('show pointcloud? (y/n) ') == 'y': + show_raw_pointcloud(cat(pts1, pts2), cat(img1, img2), point_size=5) + + +def auto_cam_size(im_poses): + return 0.1 * get_med_dist_between_poses(im_poses) + + +class SceneViz: + def __init__(self): + self.scene = trimesh.Scene() + + def add_rgbd(self, image, depth, intrinsics=None, cam2world=None, zfar=np.inf, mask=None): + image = img_to_arr(image) + + # make up some intrinsics + if intrinsics is None: + H, W, THREE = image.shape + focal = max(H, W) + intrinsics = np.float32([[focal, 0, W/2], [0, focal, H/2], [0, 0, 1]]) + + # compute 3d points + pts3d = depthmap_to_pts3d(depth, intrinsics, cam2world=cam2world) + + return self.add_pointcloud(pts3d, image, mask=(depth 150) + mask |= (hsv[:, :, 1] < 30) & (hsv[:, :, 2] > 180) + mask |= (hsv[:, :, 1] < 50) & (hsv[:, :, 2] > 220) + + # Morphological operations + kernel = np.ones((5, 5), np.uint8) + mask2 = ndimage.binary_opening(mask, structure=kernel) + + # keep only largest CC + _, labels, stats, _ = cv2.connectedComponentsWithStats(mask2.view(np.uint8), connectivity=8) + cc_sizes = stats[1:, cv2.CC_STAT_AREA] + order = cc_sizes.argsort()[::-1] # bigger first + i = 0 + selection = [] + while i < len(order) and cc_sizes[order[i]] > cc_sizes[order[0]] / 2: + selection.append(1 + order[i]) + i += 1 + mask3 = np.in1d(labels, selection).reshape(labels.shape) + + # Apply mask + return torch.from_numpy(mask3) diff --git a/modules/mast3r/__init__.py b/modules/mast3r/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d7dd877d649ce4dbd749dd7195a8b34c0f91d4f0 --- /dev/null +++ b/modules/mast3r/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). \ No newline at end of file diff --git a/modules/mast3r/__pycache__/__init__.cpython-312.pyc b/modules/mast3r/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2a395a750836b80aea9e6d1ff3e1828ae7a26b14 Binary files /dev/null and b/modules/mast3r/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/mast3r/__pycache__/catmlp_dpt_head.cpython-312.pyc b/modules/mast3r/__pycache__/catmlp_dpt_head.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c9c806a348f46f34a6222e13060c9a59bfc7cc27 Binary files /dev/null and b/modules/mast3r/__pycache__/catmlp_dpt_head.cpython-312.pyc differ diff --git a/modules/mast3r/__pycache__/demo.cpython-312.pyc b/modules/mast3r/__pycache__/demo.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4174d1220407ae82608d34f26ee241a2a339d2f2 Binary files /dev/null and b/modules/mast3r/__pycache__/demo.cpython-312.pyc differ diff --git a/modules/mast3r/__pycache__/fast_nn.cpython-312.pyc b/modules/mast3r/__pycache__/fast_nn.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c2c975490f80e0ebce23d29b13d93c1dff58e247 Binary files /dev/null and b/modules/mast3r/__pycache__/fast_nn.cpython-312.pyc differ diff --git a/modules/mast3r/__pycache__/model.cpython-312.pyc b/modules/mast3r/__pycache__/model.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..216d57c2706a3cf9485e452c02494411bbc5541a Binary files /dev/null and b/modules/mast3r/__pycache__/model.cpython-312.pyc differ diff --git a/modules/mast3r/catmlp_dpt_head.py b/modules/mast3r/catmlp_dpt_head.py new file mode 100644 index 0000000000000000000000000000000000000000..ac4457908f97e7e25c4c59cc696fb059791fbff8 --- /dev/null +++ b/modules/mast3r/catmlp_dpt_head.py @@ -0,0 +1,123 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# MASt3R heads +# -------------------------------------------------------- +import torch +import torch.nn.functional as F + +import mast3r.utils.path_to_dust3r # noqa +from dust3r.heads.postprocess import reg_dense_depth, reg_dense_conf # noqa +from dust3r.heads.dpt_head import PixelwiseTaskWithDPT # noqa +import dust3r.utils.path_to_croco # noqa +from models.blocks import Mlp # noqa + + +def reg_desc(desc, mode): + if 'norm' in mode: + desc = desc / desc.norm(dim=-1, keepdim=True) + else: + raise ValueError(f"Unknown desc mode {mode}") + return desc + + +def postprocess(out, depth_mode, conf_mode, desc_dim=None, desc_mode='norm', two_confs=False, desc_conf_mode=None): + if desc_conf_mode is None: + desc_conf_mode = conf_mode + fmap = out.permute(0, 2, 3, 1) # B,H,W,D + res = dict(pts3d=reg_dense_depth(fmap[..., 0:3], mode=depth_mode)) + if conf_mode is not None: + res['conf'] = reg_dense_conf(fmap[..., 3], mode=conf_mode) + if desc_dim is not None: + start = 3 + int(conf_mode is not None) + res['desc'] = reg_desc(fmap[..., start:start + desc_dim], mode=desc_mode) + if two_confs: + res['desc_conf'] = reg_dense_conf(fmap[..., start + desc_dim], mode=desc_conf_mode) + else: + res['desc_conf'] = res['conf'].clone() + return res + + +class Cat_MLP_LocalFeatures_DPT_Pts3d(PixelwiseTaskWithDPT): + """ Mixture between MLP and DPT head that outputs 3d points and local features (with MLP). + The input for both heads is a concatenation of Encoder and Decoder outputs + """ + + def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None, + num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs): + super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx, + dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type) + self.local_feat_dim = local_feat_dim + + patch_size = net.patch_embed.patch_size + if isinstance(patch_size, tuple): + assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance( + patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints." + assert patch_size[0] == patch_size[1], "Error, non square patches not managed" + patch_size = patch_size[0] + self.patch_size = patch_size + + self.desc_mode = net.desc_mode + self.has_conf = has_conf + self.two_confs = net.two_confs # independent confs for 3D regr and descs + self.desc_conf_mode = net.desc_conf_mode + idim = net.enc_embed_dim + net.dec_embed_dim + + self.head_local_features = Mlp(in_features=idim, + hidden_features=int(hidden_dim_factor * idim), + out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2) + + def forward(self, decout, img_shape): + # pass through the heads + pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1])) + + # recover encoder and decoder outputs + enc_output, dec_output = decout[0], decout[-1] + cat_output = torch.cat([enc_output, dec_output], dim=-1) # concatenate + H, W = img_shape + B, S, D = cat_output.shape + + # extract local_features + local_features = self.head_local_features(cat_output) # B,S,D + local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size) + local_features = F.pixel_shuffle(local_features, self.patch_size) # B,d,H,W + + # post process 3D pts, descriptors and confidences + out = torch.cat([pts3d, local_features], dim=1) + if self.postprocess: + out = self.postprocess(out, + depth_mode=self.depth_mode, + conf_mode=self.conf_mode, + desc_dim=self.local_feat_dim, + desc_mode=self.desc_mode, + two_confs=self.two_confs, + desc_conf_mode=self.desc_conf_mode) + return out + + +def mast3r_head_factory(head_type, output_mode, net, has_conf=False): + """" build a prediction head for the decoder + """ + if head_type == 'catmlp+dpt' and output_mode.startswith('pts3d+desc'): + local_feat_dim = int(output_mode[10:]) + assert net.dec_depth > 9 + l2 = net.dec_depth + feature_dim = 256 + last_dim = feature_dim // 2 + out_nchan = 3 + ed = net.enc_embed_dim + dd = net.dec_embed_dim + return Cat_MLP_LocalFeatures_DPT_Pts3d(net, local_feat_dim=local_feat_dim, has_conf=has_conf, + num_channels=out_nchan + has_conf, + feature_dim=feature_dim, + last_dim=last_dim, + hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2], + dim_tokens=[ed, dd, dd, dd], + postprocess=postprocess, + depth_mode=net.depth_mode, + conf_mode=net.conf_mode, + head_type='regression') + else: + raise NotImplementedError( + f"unexpected {head_type=} and {output_mode=}") diff --git a/modules/mast3r/cloud_opt/__init__.py b/modules/mast3r/cloud_opt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d7dd877d649ce4dbd749dd7195a8b34c0f91d4f0 --- /dev/null +++ b/modules/mast3r/cloud_opt/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). \ No newline at end of file diff --git a/modules/mast3r/cloud_opt/__pycache__/__init__.cpython-312.pyc b/modules/mast3r/cloud_opt/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..147d3ccea6436a3d0c599dd11741e48369c2c841 Binary files /dev/null and b/modules/mast3r/cloud_opt/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/mast3r/cloud_opt/__pycache__/sparse_ga.cpython-312.pyc b/modules/mast3r/cloud_opt/__pycache__/sparse_ga.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..10e57fc8d69ece65aa17249b62b0978cb88d69ae Binary files /dev/null and b/modules/mast3r/cloud_opt/__pycache__/sparse_ga.cpython-312.pyc differ diff --git a/modules/mast3r/cloud_opt/__pycache__/tsdf_optimizer.cpython-312.pyc b/modules/mast3r/cloud_opt/__pycache__/tsdf_optimizer.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..54a61a60cc5ba7856dcaa896f26bf6d3812baefb Binary files /dev/null and b/modules/mast3r/cloud_opt/__pycache__/tsdf_optimizer.cpython-312.pyc differ diff --git a/modules/mast3r/cloud_opt/sparse_ga.py b/modules/mast3r/cloud_opt/sparse_ga.py new file mode 100644 index 0000000000000000000000000000000000000000..eb1eb6b4d264e458d4efdc4e50281f1d0c7c4012 --- /dev/null +++ b/modules/mast3r/cloud_opt/sparse_ga.py @@ -0,0 +1,1040 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# MASt3R Sparse Global Alignement +# -------------------------------------------------------- +from tqdm import tqdm +import roma +import torch +import torch.nn as nn +import torch.nn.functional as F +import numpy as np +import os +from collections import namedtuple +from functools import lru_cache +from scipy import sparse as sp +import copy + +from mast3r.utils.misc import mkdir_for, hash_md5 +from mast3r.cloud_opt.utils.losses import gamma_loss +from mast3r.cloud_opt.utils.schedules import linear_schedule, cosine_schedule +from mast3r.fast_nn import fast_reciprocal_NNs, merge_corres + +import mast3r.utils.path_to_dust3r # noqa +from dust3r.utils.geometry import inv, geotrf # noqa +from dust3r.utils.device import to_cpu, to_numpy, todevice # noqa +from dust3r.post_process import estimate_focal_knowing_depth # noqa +from dust3r.optim_factory import adjust_learning_rate_by_lr # noqa +from dust3r.cloud_opt.base_opt import clean_pointcloud +from dust3r.viz import SceneViz + + +class SparseGA(): + def __init__(self, img_paths, pairs_in, res_fine, anchors, canonical_paths=None): + def fetch_img(im): + def torgb(x): return (x[0].permute(1, 2, 0).numpy() * .5 + .5).clip(min=0., max=1.) + for im1, im2 in pairs_in: + if im1['instance'] == im: + return torgb(im1['img']) + if im2['instance'] == im: + return torgb(im2['img']) + self.canonical_paths = canonical_paths + self.img_paths = img_paths + self.imgs = [fetch_img(img) for img in img_paths] + self.intrinsics = res_fine['intrinsics'] + self.cam2w = res_fine['cam2w'] + self.depthmaps = res_fine['depthmaps'] + self.pts3d = res_fine['pts3d'] + self.pts3d_colors = [] + self.working_device = self.cam2w.device + for i in range(len(self.imgs)): + im = self.imgs[i] + x, y = anchors[i][0][..., :2].detach().cpu().numpy().T + self.pts3d_colors.append(im[y, x]) + assert self.pts3d_colors[-1].shape == self.pts3d[i].shape + self.n_imgs = len(self.imgs) + + def get_focals(self): + return torch.tensor([ff[0, 0] for ff in self.intrinsics]).to(self.working_device) + + def get_principal_points(self): + return torch.stack([ff[:2, -1] for ff in self.intrinsics]).to(self.working_device) + + def get_im_poses(self): + return self.cam2w + + def get_sparse_pts3d(self): + return self.pts3d + + def get_dense_pts3d(self, clean_depth=True, subsample=8): + assert self.canonical_paths, 'cache_path is required for dense 3d points' + device = self.cam2w.device + confs = [] + base_focals = [] + anchors = {} + for i, canon_path in enumerate(self.canonical_paths): + (canon, canon2, conf), focal = torch.load(canon_path, map_location=device) + confs.append(conf) + base_focals.append(focal) + + H, W = conf.shape + pixels = torch.from_numpy(np.mgrid[:W, :H].T.reshape(-1, 2)).float().to(device) + idxs, offsets = anchor_depth_offsets(canon2, {i: (pixels, None)}, subsample=subsample) + anchors[i] = (pixels, idxs[i], offsets[i]) + + # densify sparse depthmaps + pts3d, depthmaps = make_pts3d(anchors, self.intrinsics, self.cam2w, [ + d.ravel() for d in self.depthmaps], base_focals=base_focals, ret_depth=True) + + if clean_depth: + confs = clean_pointcloud(confs, self.intrinsics, inv(self.cam2w), depthmaps, pts3d) + + return pts3d, depthmaps, confs + + def get_pts3d_colors(self): + return self.pts3d_colors + + def get_depthmaps(self): + return self.depthmaps + + def get_masks(self): + return [slice(None, None) for _ in range(len(self.imgs))] + + def show(self, show_cams=True): + pts3d, _, confs = self.get_dense_pts3d() + show_reconstruction(self.imgs, self.intrinsics if show_cams else None, self.cam2w, + [p.clip(min=-50, max=50) for p in pts3d], + masks=[c > 1 for c in confs]) + + +def convert_dust3r_pairs_naming(imgs, pairs_in): + for pair_id in range(len(pairs_in)): + for i in range(2): + pairs_in[pair_id][i]['instance'] = imgs[pairs_in[pair_id][i]['idx']] + return pairs_in + + +def sparse_global_alignment(imgs, pairs_in, cache_path, model, subsample=8, desc_conf='desc_conf', + device='cuda', dtype=torch.float32, shared_intrinsics=False, **kw): + """ Sparse alignment with MASt3R + imgs: list of image paths + cache_path: path where to dump temporary files (str) + + lr1, niter1: learning rate and #iterations for coarse global alignment (3D matching) + lr2, niter2: learning rate and #iterations for refinement (2D reproj error) + + lora_depth: smart dimensionality reduction with depthmaps + """ + # Convert pair naming convention from dust3r to mast3r + pairs_in = convert_dust3r_pairs_naming(imgs, pairs_in) + # forward pass + pairs, cache_path = forward_mast3r(pairs_in, model, + cache_path=cache_path, subsample=subsample, + desc_conf=desc_conf, device=device) + + # extract canonical pointmaps + tmp_pairs, pairwise_scores, canonical_views, canonical_paths, preds_21 = \ + prepare_canonical_data(imgs, pairs, subsample, cache_path=cache_path, mode='avg-angle', device=device) + + # compute minimal spanning tree + mst = compute_min_spanning_tree(pairwise_scores) + + # remove all edges not in the spanning tree? + # min_spanning_tree = {(imgs[i],imgs[j]) for i,j in mst[1]} + # tmp_pairs = {(a,b):v for (a,b),v in tmp_pairs.items() if {(a,b),(b,a)} & min_spanning_tree} + + # smartly combine all useful data + imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, preds_21 = \ + condense_data(imgs, tmp_pairs, canonical_views, preds_21, dtype) + + imgs, res_coarse, res_fine = sparse_scene_optimizer( + imgs, subsample, imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, preds_21, canonical_paths, mst, + shared_intrinsics=shared_intrinsics, cache_path=cache_path, device=device, dtype=dtype, **kw) + + return SparseGA(imgs, pairs_in, res_fine or res_coarse, anchors, canonical_paths) + + +def sparse_scene_optimizer(imgs, subsample, imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, + preds_21, canonical_paths, mst, cache_path, + lr1=0.2, niter1=500, loss1=gamma_loss(1.1), + lr2=0.02, niter2=500, loss2=gamma_loss(0.4), + lossd=gamma_loss(1.1), + opt_pp=True, opt_depth=True, + schedule=cosine_schedule, depth_mode='add', exp_depth=False, + lora_depth=False, # dict(k=96, gamma=15, min_norm=.5), + shared_intrinsics=False, + init={}, device='cuda', dtype=torch.float32, + matching_conf_thr=5., loss_dust3r_w=0.01, + verbose=True, dbg=()): + init = copy.deepcopy(init) + # extrinsic parameters + vec0001 = torch.tensor((0, 0, 0, 1), dtype=dtype, device=device) + quats = [nn.Parameter(vec0001.clone()) for _ in range(len(imgs))] + trans = [nn.Parameter(torch.zeros(3, device=device, dtype=dtype)) for _ in range(len(imgs))] + + # initialize + ones = torch.ones((len(imgs), 1), device=device, dtype=dtype) + median_depths = torch.ones(len(imgs), device=device, dtype=dtype) + for img in imgs: + idx = imgs.index(img) + init_values = init.setdefault(img, {}) + if verbose and init_values: + print(f' >> initializing img=...{img[-25:]} [{idx}] for {set(init_values)}') + + K = init_values.get('intrinsics') + if K is not None: + K = K.detach() + focal = K[:2, :2].diag().mean() + pp = K[:2, 2] + base_focals[idx] = focal + pps[idx] = pp + pps[idx] /= imsizes[idx] # default principal_point would be (0.5, 0.5) + + depth = init_values.get('depthmap') + if depth is not None: + core_depth[idx] = depth.detach() + + median_depths[idx] = med_depth = core_depth[idx].median() + core_depth[idx] /= med_depth + + cam2w = init_values.get('cam2w') + if cam2w is not None: + rot = cam2w[:3, :3].detach() + cam_center = cam2w[:3, 3].detach() + quats[idx].data[:] = roma.rotmat_to_unitquat(rot) + trans_offset = med_depth * torch.cat((imsizes[idx] / base_focals[idx] * (0.5 - pps[idx]), ones[:1, 0])) + trans[idx].data[:] = cam_center + rot @ trans_offset + del rot + assert False, 'inverse kinematic chain not yet implemented' + + # intrinsics parameters + if shared_intrinsics: + # Optimize a single set of intrinsics for all cameras. Use averages as init. + confs = torch.stack([torch.load(pth)[0][2].mean() for pth in canonical_paths]).to(pps) + weighting = confs / confs.sum() + pp = nn.Parameter((weighting @ pps).to(dtype)) + pps = [pp for _ in range(len(imgs))] + focal_m = weighting @ base_focals + log_focal = nn.Parameter(focal_m.view(1).log().to(dtype)) + log_focals = [log_focal for _ in range(len(imgs))] + else: + pps = [nn.Parameter(pp.to(dtype)) for pp in pps] + log_focals = [nn.Parameter(f.view(1).log().to(dtype)) for f in base_focals] + + diags = imsizes.float().norm(dim=1) + min_focals = 0.25 * diags # diag = 1.2~1.4*max(W,H) => beta >= 1/(2*1.2*tan(fov/2)) ~= 0.26 + max_focals = 10 * diags + + assert len(mst[1]) == len(pps) - 1 + + def make_K_cam_depth(log_focals, pps, trans, quats, log_sizes, core_depth): + # make intrinsics + focals = torch.cat(log_focals).exp().clip(min=min_focals, max=max_focals) + pps = torch.stack(pps) + K = torch.eye(3, dtype=dtype, device=device)[None].expand(len(imgs), 3, 3).clone() + K[:, 0, 0] = K[:, 1, 1] = focals + K[:, 0:2, 2] = pps * imsizes + if trans is None: + return K + + # security! optimization is always trying to crush the scale down + sizes = torch.cat(log_sizes).exp() + global_scaling = 1 / sizes.min() + + # compute distance of camera to focal plane + # tan(fov) = W/2 / focal + z_cameras = sizes * median_depths * focals / base_focals + + # make extrinsic + rel_cam2cam = torch.eye(4, dtype=dtype, device=device)[None].expand(len(imgs), 4, 4).clone() + rel_cam2cam[:, :3, :3] = roma.unitquat_to_rotmat(F.normalize(torch.stack(quats), dim=1)) + rel_cam2cam[:, :3, 3] = torch.stack(trans) + + # camera are defined as a kinematic chain + tmp_cam2w = [None] * len(K) + tmp_cam2w[mst[0]] = rel_cam2cam[mst[0]] + for i, j in mst[1]: + # i is the cam_i_to_world reference, j is the relative pose = cam_j_to_cam_i + tmp_cam2w[j] = tmp_cam2w[i] @ rel_cam2cam[j] + tmp_cam2w = torch.stack(tmp_cam2w) + + # smart reparameterizaton of cameras + trans_offset = z_cameras.unsqueeze(1) * torch.cat((imsizes / focals.unsqueeze(1) * (0.5 - pps), ones), dim=-1) + new_trans = global_scaling * (tmp_cam2w[:, :3, 3:4] - tmp_cam2w[:, :3, :3] @ trans_offset.unsqueeze(-1)) + cam2w = torch.cat((torch.cat((tmp_cam2w[:, :3, :3], new_trans), dim=2), + vec0001.view(1, 1, 4).expand(len(K), 1, 4)), dim=1) + + depthmaps = [] + for i in range(len(imgs)): + core_depth_img = core_depth[i] + if exp_depth: + core_depth_img = core_depth_img.exp() + if lora_depth: # compute core_depth as a low-rank decomposition of 3d points + core_depth_img = lora_depth_proj[i] @ core_depth_img + if depth_mode == 'add': + core_depth_img = z_cameras[i] + (core_depth_img - 1) * (median_depths[i] * sizes[i]) + elif depth_mode == 'mul': + core_depth_img = z_cameras[i] * core_depth_img + else: + raise ValueError(f'Bad {depth_mode=}') + depthmaps.append(global_scaling * core_depth_img) + + return K, (inv(cam2w), cam2w), depthmaps + + K = make_K_cam_depth(log_focals, pps, None, None, None, None) + + if shared_intrinsics: + print('init focal (shared) = ', to_numpy(K[0, 0, 0]).round(2)) + else: + print('init focals =', to_numpy(K[:, 0, 0])) + + # spectral low-rank projection of depthmaps + if lora_depth: + core_depth, lora_depth_proj = spectral_projection_of_depthmaps( + imgs, K, core_depth, subsample, cache_path=cache_path, **lora_depth) + if exp_depth: + core_depth = [d.clip(min=1e-4).log() for d in core_depth] + core_depth = [nn.Parameter(d.ravel().to(dtype)) for d in core_depth] + log_sizes = [nn.Parameter(torch.zeros(1, dtype=dtype, device=device)) for _ in range(len(imgs))] + + # Fetch img slices + _, confs_sum, imgs_slices = corres + + # Define which pairs are fine to use with matching + def matching_check(x): return x.max() > matching_conf_thr + is_matching_ok = {} + for s in imgs_slices: + is_matching_ok[s.img1, s.img2] = matching_check(s.confs) + + # Prepare slices and corres for losses + dust3r_slices = [s for s in imgs_slices if not is_matching_ok[s.img1, s.img2]] + loss3d_slices = [s for s in imgs_slices if is_matching_ok[s.img1, s.img2]] + cleaned_corres2d = [] + for cci, (img1, pix1, confs, confsum, imgs_slices) in enumerate(corres2d): + cf_sum = 0 + pix1_filtered = [] + confs_filtered = [] + curstep = 0 + cleaned_slices = [] + for img2, slice2 in imgs_slices: + if is_matching_ok[img1, img2]: + tslice = slice(curstep, curstep + slice2.stop - slice2.start, slice2.step) + pix1_filtered.append(pix1[tslice]) + confs_filtered.append(confs[tslice]) + cleaned_slices.append((img2, slice2)) + curstep += slice2.stop - slice2.start + if pix1_filtered != []: + pix1_filtered = torch.cat(pix1_filtered) + confs_filtered = torch.cat(confs_filtered) + cf_sum = confs_filtered.sum() + cleaned_corres2d.append((img1, pix1_filtered, confs_filtered, cf_sum, cleaned_slices)) + + def loss_dust3r(cam2w, pts3d, pix_loss): + # In the case no correspondence could be established, fallback to DUSt3R GA regression loss formulation (sparsified) + loss = 0. + cf_sum = 0. + for s in dust3r_slices: + if init[imgs[s.img1]].get('freeze') and init[imgs[s.img2]].get('freeze'): + continue + # fallback to dust3r regression + tgt_pts, tgt_confs = preds_21[imgs[s.img2]][imgs[s.img1]] + tgt_pts = geotrf(cam2w[s.img2], tgt_pts) + cf_sum += tgt_confs.sum() + loss += tgt_confs @ pix_loss(pts3d[s.img1], tgt_pts) + return loss / cf_sum if cf_sum != 0. else 0. + + def loss_3d(K, w2cam, pts3d, pix_loss): + # For each correspondence, we have two 3D points (one for each image of the pair). + # For each 3D point, we have 2 reproj errors + if any(v.get('freeze') for v in init.values()): + pts3d_1 = [] + pts3d_2 = [] + confs = [] + for s in loss3d_slices: + if init[imgs[s.img1]].get('freeze') and init[imgs[s.img2]].get('freeze'): + continue + pts3d_1.append(pts3d[s.img1][s.slice1]) + pts3d_2.append(pts3d[s.img2][s.slice2]) + confs.append(s.confs) + else: + pts3d_1 = [pts3d[s.img1][s.slice1] for s in loss3d_slices] + pts3d_2 = [pts3d[s.img2][s.slice2] for s in loss3d_slices] + confs = [s.confs for s in loss3d_slices] + + if pts3d_1 != []: + confs = torch.cat(confs) + pts3d_1 = torch.cat(pts3d_1) + pts3d_2 = torch.cat(pts3d_2) + loss = confs @ pix_loss(pts3d_1, pts3d_2) + cf_sum = confs.sum() + else: + loss = 0. + cf_sum = 1. + + return loss / cf_sum + + def loss_2d(K, w2cam, pts3d, pix_loss): + # For each correspondence, we have two 3D points (one for each image of the pair). + # For each 3D point, we have 2 reproj errors + proj_matrix = K @ w2cam[:, :3] + loss = npix = 0 + for img1, pix1_filtered, confs_filtered, cf_sum, cleaned_slices in cleaned_corres2d: + if init[imgs[img1]].get('freeze', 0) >= 1: + continue # no need + pts3d_in_img1 = [pts3d[img2][slice2] for img2, slice2 in cleaned_slices] + if pts3d_in_img1 != []: + pts3d_in_img1 = torch.cat(pts3d_in_img1) + loss += confs_filtered @ pix_loss(pix1_filtered, reproj2d(proj_matrix[img1], pts3d_in_img1)) + npix += confs_filtered.sum() + + return loss / npix if npix != 0 else 0. + + def optimize_loop(loss_func, lr_base, niter, pix_loss, lr_end=0): + # create optimizer + params = pps + log_focals + quats + trans + log_sizes + core_depth + optimizer = torch.optim.Adam(params, lr=1, weight_decay=0, betas=(0.9, 0.9)) + ploss = pix_loss if 'meta' in repr(pix_loss) else (lambda a: pix_loss) + + with tqdm(total=niter) as bar: + for iter in range(niter or 1): + K, (w2cam, cam2w), depthmaps = make_K_cam_depth(log_focals, pps, trans, quats, log_sizes, core_depth) + pts3d = make_pts3d(anchors, K, cam2w, depthmaps, base_focals=base_focals) + if niter == 0: + break + + alpha = (iter / niter) + lr = schedule(alpha, lr_base, lr_end) + adjust_learning_rate_by_lr(optimizer, lr) + pix_loss = ploss(1 - alpha) + optimizer.zero_grad() + loss = loss_func(K, w2cam, pts3d, pix_loss) + loss_dust3r_w * loss_dust3r(cam2w, pts3d, lossd) + loss.backward() + optimizer.step() + + # make sure the pose remains well optimizable + for i in range(len(imgs)): + quats[i].data[:] /= quats[i].data.norm() + + loss = float(loss) + if loss != loss: + break # NaN loss + bar.set_postfix_str(f'{lr=:.4f}, {loss=:.3f}') + bar.update(1) + + if niter: + print(f'>> final loss = {loss}') + return dict(intrinsics=K.detach(), cam2w=cam2w.detach(), + depthmaps=[d.detach() for d in depthmaps], pts3d=[p.detach() for p in pts3d]) + + # at start, don't optimize 3d points + for i, img in enumerate(imgs): + trainable = not (init[img].get('freeze')) + pps[i].requires_grad_(False) + log_focals[i].requires_grad_(False) + quats[i].requires_grad_(trainable) + trans[i].requires_grad_(trainable) + log_sizes[i].requires_grad_(trainable) + core_depth[i].requires_grad_(False) + + res_coarse = optimize_loop(loss_3d, lr_base=lr1, niter=niter1, pix_loss=loss1) + + res_fine = None + if niter2: + # now we can optimize 3d points + for i, img in enumerate(imgs): + if init[img].get('freeze', 0) >= 1: + continue + pps[i].requires_grad_(bool(opt_pp)) + log_focals[i].requires_grad_(True) + core_depth[i].requires_grad_(opt_depth) + + # refinement with 2d reproj + res_fine = optimize_loop(loss_2d, lr_base=lr2, niter=niter2, pix_loss=loss2) + + K = make_K_cam_depth(log_focals, pps, None, None, None, None) + if shared_intrinsics: + print('Final focal (shared) = ', to_numpy(K[0, 0, 0]).round(2)) + else: + print('Final focals =', to_numpy(K[:, 0, 0])) + + return imgs, res_coarse, res_fine + + +@lru_cache +def mask110(device, dtype): + return torch.tensor((1, 1, 0), device=device, dtype=dtype) + + +def proj3d(inv_K, pixels, z): + if pixels.shape[-1] == 2: + pixels = torch.cat((pixels, torch.ones_like(pixels[..., :1])), dim=-1) + return z.unsqueeze(-1) * (pixels * inv_K.diag() + inv_K[:, 2] * mask110(z.device, z.dtype)) + + +def make_pts3d(anchors, K, cam2w, depthmaps, base_focals=None, ret_depth=False): + focals = K[:, 0, 0] + invK = inv(K) + all_pts3d = [] + depth_out = [] + + for img, (pixels, idxs, offsets) in anchors.items(): + # from depthmaps to 3d points + if base_focals is None: + pass + else: + # compensate for focal + # depth + depth * (offset - 1) * base_focal / focal + # = depth * (1 + (offset - 1) * (base_focal / focal)) + offsets = 1 + (offsets - 1) * (base_focals[img] / focals[img]) + + pts3d = proj3d(invK[img], pixels, depthmaps[img][idxs] * offsets) + if ret_depth: + depth_out.append(pts3d[..., 2]) # before camera rotation + + # rotate to world coordinate + pts3d = geotrf(cam2w[img], pts3d) + all_pts3d.append(pts3d) + + if ret_depth: + return all_pts3d, depth_out + return all_pts3d + + +def make_dense_pts3d(intrinsics, cam2w, depthmaps, canonical_paths, subsample, device='cuda'): + base_focals = [] + anchors = {} + confs = [] + for i, canon_path in enumerate(canonical_paths): + (canon, canon2, conf), focal = torch.load(canon_path, map_location=device) + confs.append(conf) + base_focals.append(focal) + H, W = conf.shape + pixels = torch.from_numpy(np.mgrid[:W, :H].T.reshape(-1, 2)).float().to(device) + idxs, offsets = anchor_depth_offsets(canon2, {i: (pixels, None)}, subsample=subsample) + anchors[i] = (pixels, idxs[i], offsets[i]) + + # densify sparse depthmaps + pts3d, depthmaps_out = make_pts3d(anchors, intrinsics, cam2w, [ + d.ravel() for d in depthmaps], base_focals=base_focals, ret_depth=True) + + return pts3d, depthmaps_out, confs + + +@torch.no_grad() +def forward_mast3r(pairs, model, cache_path, desc_conf='desc_conf', + device='cuda', subsample=8, **matching_kw): + res_paths = {} + + for img1, img2 in tqdm(pairs): + idx1 = hash_md5(img1['instance']) + idx2 = hash_md5(img2['instance']) + + path1 = cache_path + f'/forward/{idx1}/{idx2}.pth' + path2 = cache_path + f'/forward/{idx2}/{idx1}.pth' + path_corres = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{idx1}-{idx2}.pth' + path_corres2 = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{idx2}-{idx1}.pth' + + if os.path.isfile(path_corres2) and not os.path.isfile(path_corres): + score, (xy1, xy2, confs) = torch.load(path_corres2) + torch.save((score, (xy2, xy1, confs)), path_corres) + + if not all(os.path.isfile(p) for p in (path1, path2, path_corres)): + if model is None: + continue + res = symmetric_inference(model, img1, img2, device=device) + X11, X21, X22, X12 = [r['pts3d'][0] for r in res] + C11, C21, C22, C12 = [r['conf'][0] for r in res] + descs = [r['desc'][0] for r in res] + qonfs = [r[desc_conf][0] for r in res] + + # save + torch.save(to_cpu((X11, C11, X21, C21)), mkdir_for(path1)) + torch.save(to_cpu((X22, C22, X12, C12)), mkdir_for(path2)) + + # perform reciprocal matching + corres = extract_correspondences(descs, qonfs, device=device, subsample=subsample) + + conf_score = (C11.mean() * C12.mean() * C21.mean() * C22.mean()).sqrt().sqrt() + matching_score = (float(conf_score), float(corres[2].sum()), len(corres[2])) + if cache_path is not None: + torch.save((matching_score, corres), mkdir_for(path_corres)) + + res_paths[img1['instance'], img2['instance']] = (path1, path2), path_corres + + del model + torch.cuda.empty_cache() + + return res_paths, cache_path + + +def symmetric_inference(model, img1, img2, device): + shape1 = torch.from_numpy(img1['true_shape']).to(device, non_blocking=True) + shape2 = torch.from_numpy(img2['true_shape']).to(device, non_blocking=True) + img1 = img1['img'].to(device, non_blocking=True) + img2 = img2['img'].to(device, non_blocking=True) + + # compute encoder only once + feat1, feat2, pos1, pos2 = model._encode_image_pairs(img1, img2, shape1, shape2) + + def decoder(feat1, feat2, pos1, pos2, shape1, shape2): + dec1, dec2 = model._decoder(feat1, pos1, feat2, pos2) + with torch.cuda.amp.autocast(enabled=False): + res1 = model._downstream_head(1, [tok.float() for tok in dec1], shape1) + res2 = model._downstream_head(2, [tok.float() for tok in dec2], shape2) + return res1, res2 + + # decoder 1-2 + res11, res21 = decoder(feat1, feat2, pos1, pos2, shape1, shape2) + # decoder 2-1 + res22, res12 = decoder(feat2, feat1, pos2, pos1, shape2, shape1) + + return (res11, res21, res22, res12) + + +def extract_correspondences(feats, qonfs, subsample=8, device=None, ptmap_key='pred_desc'): + feat11, feat21, feat22, feat12 = feats + qonf11, qonf21, qonf22, qonf12 = qonfs + assert feat11.shape[:2] == feat12.shape[:2] == qonf11.shape == qonf12.shape + assert feat21.shape[:2] == feat22.shape[:2] == qonf21.shape == qonf22.shape + + if '3d' in ptmap_key: + opt = dict(device='cpu', workers=32) + else: + opt = dict(device=device, dist='dot', block_size=2**13) + + # matching the two pairs + idx1 = [] + idx2 = [] + qonf1 = [] + qonf2 = [] + # TODO add non symmetric / pixel_tol options + for A, B, QA, QB in [(feat11, feat21, qonf11.cpu(), qonf21.cpu()), + (feat12, feat22, qonf12.cpu(), qonf22.cpu())]: + nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=subsample, ret_xy=False, **opt) + nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=subsample, ret_xy=False, **opt) + + idx1.append(np.r_[nn1to2[0], nn2to1[1]]) + idx2.append(np.r_[nn1to2[1], nn2to1[0]]) + qonf1.append(QA.ravel()[idx1[-1]]) + qonf2.append(QB.ravel()[idx2[-1]]) + + # merge corres from opposite pairs + H1, W1 = feat11.shape[:2] + H2, W2 = feat22.shape[:2] + cat = np.concatenate + + xy1, xy2, idx = merge_corres(cat(idx1), cat(idx2), (H1, W1), (H2, W2), ret_xy=True, ret_index=True) + corres = (xy1.copy(), xy2.copy(), np.sqrt(cat(qonf1)[idx] * cat(qonf2)[idx])) + + return todevice(corres, device) + + +@torch.no_grad() +def prepare_canonical_data(imgs, tmp_pairs, subsample, order_imgs=False, min_conf_thr=0, + cache_path=None, device='cuda', **kw): + canonical_views = {} + pairwise_scores = torch.zeros((len(imgs), len(imgs)), device=device) + canonical_paths = [] + preds_21 = {} + + for img in tqdm(imgs): + if cache_path: + cache = os.path.join(cache_path, 'canon_views', hash_md5(img) + f'_{subsample=}_{kw=}.pth') + canonical_paths.append(cache) + try: + (canon, canon2, cconf), focal = torch.load(cache, map_location=device) + except IOError: + # cache does not exist yet, we create it! + canon = focal = None + + # collect all pred1 + n_pairs = sum((img in pair) for pair in tmp_pairs) + + ptmaps11 = None + pixels = {} + n = 0 + for (img1, img2), ((path1, path2), path_corres) in tmp_pairs.items(): + score = None + if img == img1: + X, C, X2, C2 = torch.load(path1, map_location=device) + score, (xy1, xy2, confs) = load_corres(path_corres, device, min_conf_thr) + pixels[img2] = xy1, confs + if img not in preds_21: + preds_21[img] = {} + # Subsample preds_21 + preds_21[img][img2] = X2[::subsample, ::subsample].reshape(-1, 3), C2[::subsample, ::subsample].ravel() + + if img == img2: + X, C, X2, C2 = torch.load(path2, map_location=device) + score, (xy1, xy2, confs) = load_corres(path_corres, device, min_conf_thr) + pixels[img1] = xy2, confs + if img not in preds_21: + preds_21[img] = {} + preds_21[img][img1] = X2[::subsample, ::subsample].reshape(-1, 3), C2[::subsample, ::subsample].ravel() + + if score is not None: + i, j = imgs.index(img1), imgs.index(img2) + # score = score[0] + # score = np.log1p(score[2]) + score = score[2] + pairwise_scores[i, j] = score + pairwise_scores[j, i] = score + + if canon is not None: + continue + if ptmaps11 is None: + H, W = C.shape + ptmaps11 = torch.empty((n_pairs, H, W, 3), device=device) + confs11 = torch.empty((n_pairs, H, W), device=device) + + ptmaps11[n] = X + confs11[n] = C + n += 1 + + if canon is None: + canon, canon2, cconf = canonical_view(ptmaps11, confs11, subsample, **kw) + del ptmaps11 + del confs11 + + # compute focals + H, W = canon.shape[:2] + pp = torch.tensor([W / 2, H / 2], device=device) + if focal is None: + focal = estimate_focal_knowing_depth(canon[None], pp, focal_mode='weiszfeld', min_focal=0.5, max_focal=3.5) + if cache: + torch.save(to_cpu(((canon, canon2, cconf), focal)), mkdir_for(cache)) + + # extract depth offsets with correspondences + core_depth = canon[subsample // 2::subsample, subsample // 2::subsample, 2] + idxs, offsets = anchor_depth_offsets(canon2, pixels, subsample=subsample) + + canonical_views[img] = (pp, (H, W), focal.view(1), core_depth, pixels, idxs, offsets) + + return tmp_pairs, pairwise_scores, canonical_views, canonical_paths, preds_21 + + +def load_corres(path_corres, device, min_conf_thr): + score, (xy1, xy2, confs) = torch.load(path_corres, map_location=device) + valid = confs > min_conf_thr if min_conf_thr else slice(None) + # valid = (xy1 > 0).all(dim=1) & (xy2 > 0).all(dim=1) & (xy1 < 512).all(dim=1) & (xy2 < 512).all(dim=1) + # print(f'keeping {valid.sum()} / {len(valid)} correspondences') + return score, (xy1[valid], xy2[valid], confs[valid]) + + +PairOfSlices = namedtuple( + 'ImgPair', 'img1, slice1, pix1, anchor_idxs1, img2, slice2, pix2, anchor_idxs2, confs, confs_sum') + + +def condense_data(imgs, tmp_paths, canonical_views, preds_21, dtype=torch.float32): + # aggregate all data properly + set_imgs = set(imgs) + + principal_points = [] + shapes = [] + focals = [] + core_depth = [] + img_anchors = {} + tmp_pixels = {} + + for idx1, img1 in enumerate(imgs): + # load stuff + pp, shape, focal, anchors, pixels_confs, idxs, offsets = canonical_views[img1] + + principal_points.append(pp) + shapes.append(shape) + focals.append(focal) + core_depth.append(anchors) + + img_uv1 = [] + img_idxs = [] + img_offs = [] + cur_n = [0] + + for img2, (pixels, match_confs) in pixels_confs.items(): + if img2 not in set_imgs: + continue + assert len(pixels) == len(idxs[img2]) == len(offsets[img2]) + img_uv1.append(torch.cat((pixels, torch.ones_like(pixels[:, :1])), dim=-1)) + img_idxs.append(idxs[img2]) + img_offs.append(offsets[img2]) + cur_n.append(cur_n[-1] + len(pixels)) + # store the position of 3d points + tmp_pixels[img1, img2] = pixels.to(dtype), match_confs.to(dtype), slice(*cur_n[-2:]) + img_anchors[idx1] = (torch.cat(img_uv1), torch.cat(img_idxs), torch.cat(img_offs)) + + all_confs = [] + imgs_slices = [] + corres2d = {img: [] for img in range(len(imgs))} + + for img1, img2 in tmp_paths: + try: + pix1, confs1, slice1 = tmp_pixels[img1, img2] + pix2, confs2, slice2 = tmp_pixels[img2, img1] + except KeyError: + continue + img1 = imgs.index(img1) + img2 = imgs.index(img2) + confs = (confs1 * confs2).sqrt() + + # prepare for loss_3d + all_confs.append(confs) + anchor_idxs1 = canonical_views[imgs[img1]][5][imgs[img2]] + anchor_idxs2 = canonical_views[imgs[img2]][5][imgs[img1]] + imgs_slices.append(PairOfSlices(img1, slice1, pix1, anchor_idxs1, + img2, slice2, pix2, anchor_idxs2, + confs, float(confs.sum()))) + + # prepare for loss_2d + corres2d[img1].append((pix1, confs, img2, slice2)) + corres2d[img2].append((pix2, confs, img1, slice1)) + + all_confs = torch.cat(all_confs) + corres = (all_confs, float(all_confs.sum()), imgs_slices) + + def aggreg_matches(img1, list_matches): + pix1, confs, img2, slice2 = zip(*list_matches) + all_pix1 = torch.cat(pix1).to(dtype) + all_confs = torch.cat(confs).to(dtype) + return img1, all_pix1, all_confs, float(all_confs.sum()), [(j, sl2) for j, sl2 in zip(img2, slice2)] + corres2d = [aggreg_matches(img, m) for img, m in corres2d.items()] + + imsizes = torch.tensor([(W, H) for H, W in shapes], device=pp.device) # (W,H) + principal_points = torch.stack(principal_points) + focals = torch.cat(focals) + + # Subsample preds_21 + subsamp_preds_21 = {} + for imk, imv in preds_21.items(): + subsamp_preds_21[imk] = {} + for im2k, (pred, conf) in preds_21[imk].items(): + idxs = img_anchors[imgs.index(im2k)][1] + subsamp_preds_21[imk][im2k] = (pred[idxs], conf[idxs]) # anchors subsample + + return imsizes, principal_points, focals, core_depth, img_anchors, corres, corres2d, subsamp_preds_21 + + +def canonical_view(ptmaps11, confs11, subsample, mode='avg-angle'): + assert len(ptmaps11) == len(confs11) > 0, 'not a single view1 for img={i}' + + # canonical pointmap is just a weighted average + confs11 = confs11.unsqueeze(-1) - 0.999 + canon = (confs11 * ptmaps11).sum(0) / confs11.sum(0) + + canon_depth = ptmaps11[..., 2].unsqueeze(1) + S = slice(subsample // 2, None, subsample) + center_depth = canon_depth[:, :, S, S] + center_depth = torch.clip(center_depth, min=torch.finfo(center_depth.dtype).eps) + + stacked_depth = F.pixel_unshuffle(canon_depth, subsample) + stacked_confs = F.pixel_unshuffle(confs11[:, None, :, :, 0], subsample) + + if mode == 'avg-reldepth': + rel_depth = stacked_depth / center_depth + stacked_canon = (stacked_confs * rel_depth).sum(dim=0) / stacked_confs.sum(dim=0) + canon2 = F.pixel_shuffle(stacked_canon.unsqueeze(0), subsample).squeeze() + + elif mode == 'avg-angle': + xy = ptmaps11[..., 0:2].permute(0, 3, 1, 2) + stacked_xy = F.pixel_unshuffle(xy, subsample) + B, _, H, W = stacked_xy.shape + stacked_radius = (stacked_xy.view(B, 2, -1, H, W) - xy[:, :, None, S, S]).norm(dim=1) + stacked_radius.clip_(min=1e-8) + + stacked_angle = torch.arctan((stacked_depth - center_depth) / stacked_radius) + avg_angle = (stacked_confs * stacked_angle).sum(dim=0) / stacked_confs.sum(dim=0) + + # back to depth + stacked_depth = stacked_radius.mean(dim=0) * torch.tan(avg_angle) + + canon2 = F.pixel_shuffle((1 + stacked_depth / canon[S, S, 2]).unsqueeze(0), subsample).squeeze() + else: + raise ValueError(f'bad {mode=}') + + confs = (confs11.square().sum(dim=0) / confs11.sum(dim=0)).squeeze() + return canon, canon2, confs + + +def anchor_depth_offsets(canon_depth, pixels, subsample=8): + device = canon_depth.device + + # create a 2D grid of anchor 3D points + H1, W1 = canon_depth.shape + yx = np.mgrid[subsample // 2:H1:subsample, subsample // 2:W1:subsample] + H2, W2 = yx.shape[1:] + cy, cx = yx.reshape(2, -1) + core_depth = canon_depth[cy, cx] + assert (core_depth > 0).all() + + # slave 3d points (attached to core 3d points) + core_idxs = {} # core_idxs[img2] = {corr_idx:core_idx} + core_offs = {} # core_offs[img2] = {corr_idx:3d_offset} + + for img2, (xy1, _confs) in pixels.items(): + px, py = xy1.long().T + + # find nearest anchor == block quantization + core_idx = (py // subsample) * W2 + (px // subsample) + core_idxs[img2] = core_idx.to(device) + + # compute relative depth offsets w.r.t. anchors + ref_z = core_depth[core_idx] + pts_z = canon_depth[py, px] + offset = pts_z / ref_z + core_offs[img2] = offset.detach().to(device) + + return core_idxs, core_offs + + +def spectral_clustering(graph, k=None, normalized_cuts=False): + graph.fill_diagonal_(0) + + # graph laplacian + degrees = graph.sum(dim=-1) + laplacian = torch.diag(degrees) - graph + if normalized_cuts: + i_inv = torch.diag(degrees.sqrt().reciprocal()) + laplacian = i_inv @ laplacian @ i_inv + + # compute eigenvectors! + eigval, eigvec = torch.linalg.eigh(laplacian) + return eigval[:k], eigvec[:, :k] + + +def sim_func(p1, p2, gamma): + diff = (p1 - p2).norm(dim=-1) + avg_depth = (p1[:, :, 2] + p2[:, :, 2]) + rel_distance = diff / avg_depth + sim = torch.exp(-gamma * rel_distance.square()) + return sim + + +def backproj(K, depthmap, subsample): + H, W = depthmap.shape + uv = np.mgrid[subsample // 2:subsample * W:subsample, subsample // 2:subsample * H:subsample].T.reshape(H, W, 2) + xyz = depthmap.unsqueeze(-1) * geotrf(inv(K), todevice(uv, K.device), ncol=3) + return xyz + + +def spectral_projection_depth(K, depthmap, subsample, k=64, cache_path='', + normalized_cuts=True, gamma=7, min_norm=5): + try: + if cache_path: + cache_path = cache_path + f'_{k=}_norm={normalized_cuts}_{gamma=}.pth' + lora_proj = torch.load(cache_path, map_location=K.device) + + except IOError: + # reconstruct 3d points in camera coordinates + xyz = backproj(K, depthmap, subsample) + + # compute all distances + xyz = xyz.reshape(-1, 3) + graph = sim_func(xyz[:, None], xyz[None, :], gamma=gamma) + _, lora_proj = spectral_clustering(graph, k, normalized_cuts=normalized_cuts) + + if cache_path: + torch.save(lora_proj.cpu(), mkdir_for(cache_path)) + + lora_proj, coeffs = lora_encode_normed(lora_proj, depthmap.ravel(), min_norm=min_norm) + + # depthmap ~= lora_proj @ coeffs + return coeffs, lora_proj + + +def lora_encode_normed(lora_proj, x, min_norm, global_norm=False): + # encode the pointmap + coeffs = torch.linalg.pinv(lora_proj) @ x + + # rectify the norm of basis vector to be ~ equal + if coeffs.ndim == 1: + coeffs = coeffs[:, None] + if global_norm: + lora_proj *= coeffs[1:].norm() * min_norm / coeffs.shape[1] + elif min_norm: + lora_proj *= coeffs.norm(dim=1).clip(min=min_norm) + # can have rounding errors here! + coeffs = (torch.linalg.pinv(lora_proj.double()) @ x.double()).float() + + return lora_proj.detach(), coeffs.detach() + + +@torch.no_grad() +def spectral_projection_of_depthmaps(imgs, intrinsics, depthmaps, subsample, cache_path=None, **kw): + # recover 3d points + core_depth = [] + lora_proj = [] + + for i, img in enumerate(tqdm(imgs)): + cache = os.path.join(cache_path, 'lora_depth', hash_md5(img)) if cache_path else None + depth, proj = spectral_projection_depth(intrinsics[i], depthmaps[i], subsample, + cache_path=cache, **kw) + core_depth.append(depth) + lora_proj.append(proj) + + return core_depth, lora_proj + + +def reproj2d(Trf, pts3d): + res = (pts3d @ Trf[:3, :3].transpose(-1, -2)) + Trf[:3, 3] + clipped_z = res[:, 2:3].clip(min=1e-3) # make sure we don't have nans! + uv = res[:, 0:2] / clipped_z + return uv.clip(min=-1000, max=2000) + + +def bfs(tree, start_node): + order, predecessors = sp.csgraph.breadth_first_order(tree, start_node, directed=False) + ranks = np.arange(len(order)) + ranks[order] = ranks.copy() + return ranks, predecessors + + +def compute_min_spanning_tree(pws): + sparse_graph = sp.dok_array(pws.shape) + for i, j in pws.nonzero().cpu().tolist(): + sparse_graph[i, j] = -float(pws[i, j]) + msp = sp.csgraph.minimum_spanning_tree(sparse_graph) + + # now reorder the oriented edges, starting from the central point + ranks1, _ = bfs(msp, 0) + ranks2, _ = bfs(msp, ranks1.argmax()) + ranks1, _ = bfs(msp, ranks2.argmax()) + # this is the point farther from any leaf + root = np.minimum(ranks1, ranks2).argmax() + + # find the ordered list of edges that describe the tree + order, predecessors = sp.csgraph.breadth_first_order(msp, root, directed=False) + order = order[1:] # root not do not have a predecessor + edges = [(predecessors[i], i) for i in order] + + return root, edges + + +def show_reconstruction(shapes_or_imgs, K, cam2w, pts3d, gt_cam2w=None, gt_K=None, cam_size=None, masks=None, **kw): + viz = SceneViz() + + cc = cam2w[:, :3, 3] + cs = cam_size or float(torch.cdist(cc, cc).fill_diagonal_(np.inf).min(dim=0).values.median()) + colors = 64 + np.random.randint(255 - 64, size=(len(cam2w), 3)) + + if isinstance(shapes_or_imgs, np.ndarray) and shapes_or_imgs.ndim == 2: + cam_kws = dict(imsizes=shapes_or_imgs[:, ::-1], cam_size=cs) + else: + imgs = shapes_or_imgs + cam_kws = dict(images=imgs, cam_size=cs) + if K is not None: + viz.add_cameras(to_numpy(cam2w), to_numpy(K), colors=colors, **cam_kws) + + if gt_cam2w is not None: + if gt_K is None: + gt_K = K + viz.add_cameras(to_numpy(gt_cam2w), to_numpy(gt_K), colors=colors, marker='o', **cam_kws) + + if pts3d is not None: + for i, p in enumerate(pts3d): + if not len(p): + continue + if masks is None: + viz.add_pointcloud(to_numpy(p), color=tuple(colors[i].tolist())) + else: + viz.add_pointcloud(to_numpy(p), mask=masks[i], color=imgs[i]) + viz.show(**kw) diff --git a/modules/mast3r/cloud_opt/triangulation.py b/modules/mast3r/cloud_opt/triangulation.py new file mode 100644 index 0000000000000000000000000000000000000000..2af88df37bfd360161b4e96b93b0fd28a0ecf183 --- /dev/null +++ b/modules/mast3r/cloud_opt/triangulation.py @@ -0,0 +1,80 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Matches Triangulation Utils +# -------------------------------------------------------- + +import numpy as np +import torch + +# Batched Matches Triangulation +def batched_triangulate(pts2d, # [B, Ncams, Npts, 2] + proj_mats): # [B, Ncams, 3, 4] I@E projection matrix + B, Ncams, Npts, two = pts2d.shape + assert two==2 + assert proj_mats.shape == (B, Ncams, 3, 4) + # P - xP + x = proj_mats[...,0,:][...,None,:] - torch.einsum('bij,bik->bijk', pts2d[...,0], proj_mats[...,2,:]) # [B, Ncams, Npts, 4] + y = proj_mats[...,1,:][...,None,:] - torch.einsum('bij,bik->bijk', pts2d[...,1], proj_mats[...,2,:]) # [B, Ncams, Npts, 4] + eq = torch.cat([x, y], dim=1).transpose(1, 2) # [B, Npts, 2xNcams, 4] + return torch.linalg.lstsq(eq[...,:3], -eq[...,3]).solution + +def matches_to_depths(intrinsics, # input camera intrinsics [B, Ncams, 3, 3] + extrinsics, # input camera extrinsics [B, Ncams, 3, 4] + matches, # input correspondences [B, Ncams, Npts, 2] + batchsize=16, # bs for batched processing + min_num_valids_ratio=.3 # at least this ratio of image pairs need to predict a match for a given pixel of img1 + ): + B, Nv, H, W, five = matches.shape + min_num_valids = np.floor(Nv*min_num_valids_ratio) + out_aggregated_points, out_depths, out_confs = [], [], [] + for b in range(B//batchsize+1): # batched processing + start, stop = b*batchsize,min(B,(b+1)*batchsize) + sub_batch=slice(start,stop) + sub_batchsize = stop-start + if sub_batchsize==0:continue + points1, points2, confs = matches[sub_batch, ..., :2], matches[sub_batch, ..., 2:4], matches[sub_batch, ..., -1] + allpoints = torch.cat([points1.view([sub_batchsize*Nv,1,H*W,2]), points2.view([sub_batchsize*Nv,1,H*W,2])],dim=1) # [BxNv, 2, HxW, 2] + + allcam_Ps = intrinsics[sub_batch] @ extrinsics[sub_batch,:,:3,:] + cam_Ps1, cam_Ps2 = allcam_Ps[:,[0]].repeat([1,Nv,1,1]), allcam_Ps[:,1:] # [B, Nv, 3, 4] + formatted_camPs = torch.cat([cam_Ps1.reshape([sub_batchsize*Nv,1,3,4]), cam_Ps2.reshape([sub_batchsize*Nv,1,3,4])],dim=1) # [BxNv, 2, 3, 4] + + # Triangulate matches to 3D + points_3d_world = batched_triangulate(allpoints, formatted_camPs) # [BxNv, HxW, three] + + # Aggregate pairwise predictions + points_3d_world = points_3d_world.view([sub_batchsize,Nv,H,W,3]) + valids = points_3d_world.isfinite() + valids_sum = valids.sum(dim=-1) + validsuni=valids_sum.unique() + assert torch.all(torch.logical_or(validsuni == 0 , validsuni == 3)), "Error, can only be nan for none or all XYZ values, not a subset" + confs[valids_sum==0] = 0. + points_3d_world = points_3d_world*confs[...,None] + + # Take care of NaNs + normalization = confs.sum(dim=1)[:,None].repeat(1,Nv,1,1) + normalization[normalization <= 1e-5] = 1. + points_3d_world[valids] /= normalization[valids_sum==3][:,None].repeat(1,3).view(-1) + points_3d_world[~valids] = 0. + aggregated_points = points_3d_world.sum(dim=1) # weighted average (by confidence value) ignoring nans + + # Reset invalid values to nans, with a min visibility threshold + aggregated_points[valids_sum.sum(dim=1)/3 <= min_num_valids] = torch.nan + + # From 3D to depths + refcamE = extrinsics[sub_batch, 0] + points_3d_camera = (refcamE[:,:3, :3] @ aggregated_points.view(sub_batchsize,-1,3).transpose(-2,-1) + refcamE[:,:3,[3]]).transpose(-2,-1) # [B,HxW,3] + depths = points_3d_camera.view(sub_batchsize,H,W,3)[..., 2] # [B,H,W] + + # Cat results + out_aggregated_points.append(aggregated_points.cpu()) + out_depths.append(depths.cpu()) + out_confs.append(confs.sum(dim=1).cpu()) + + out_aggregated_points = torch.cat(out_aggregated_points,dim=0) + out_depths = torch.cat(out_depths,dim=0) + out_confs = torch.cat(out_confs,dim=0) + + return out_aggregated_points, out_depths, out_confs diff --git a/modules/mast3r/cloud_opt/tsdf_optimizer.py b/modules/mast3r/cloud_opt/tsdf_optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..69f138c0301e4ad3cd4804d265f241b923e1b2b8 --- /dev/null +++ b/modules/mast3r/cloud_opt/tsdf_optimizer.py @@ -0,0 +1,273 @@ +import torch +from torch import nn +import numpy as np +from tqdm import tqdm +from matplotlib import pyplot as pl + +import mast3r.utils.path_to_dust3r # noqa +from dust3r.utils.geometry import depthmap_to_pts3d, geotrf, inv +from dust3r.cloud_opt.base_opt import clean_pointcloud + + +class TSDFPostProcess: + """ Optimizes a signed distance-function to improve depthmaps. + """ + + def __init__(self, optimizer, subsample=8, TSDF_thresh=0., TSDF_batchsize=int(1e7)): + self.TSDF_thresh = TSDF_thresh # None -> no TSDF + self.TSDF_batchsize = TSDF_batchsize + self.optimizer = optimizer + + pts3d, depthmaps, confs = optimizer.get_dense_pts3d(clean_depth=False, subsample=subsample) + pts3d, depthmaps = self._TSDF_postprocess_or_not(pts3d, depthmaps, confs) + self.pts3d = pts3d + self.depthmaps = depthmaps + self.confs = confs + + def _get_depthmaps(self, TSDF_filtering_thresh=None): + if TSDF_filtering_thresh: + self._refine_depths_with_TSDF(self.optimizer, TSDF_filtering_thresh) # compute refined depths if needed + dms = self.TSDF_im_depthmaps if TSDF_filtering_thresh else self.im_depthmaps + return [d.exp() for d in dms] + + @torch.no_grad() + def _refine_depths_with_TSDF(self, TSDF_filtering_thresh, niter=1, nsamples=1000): + """ + Leverage TSDF to post-process estimated depths + for each pixel, find zero level of TSDF along ray (or closest to 0) + """ + print("Post-Processing Depths with TSDF fusion.") + self.TSDF_im_depthmaps = [] + alldepths, allposes, allfocals, allpps, allimshapes = self._get_depthmaps(), self.optimizer.get_im_poses( + ), self.optimizer.get_focals(), self.optimizer.get_principal_points(), self.imshapes + for vi in tqdm(range(self.optimizer.n_imgs)): + dm, pose, focal, pp, imshape = alldepths[vi], allposes[vi], allfocals[vi], allpps[vi], allimshapes[vi] + minvals = torch.full(dm.shape, 1e20) + + for it in range(niter): + H, W = dm.shape + curthresh = (niter - it) * TSDF_filtering_thresh + dm_offsets = (torch.randn(H, W, nsamples).to(dm) - 1.) * \ + curthresh # decreasing search std along with iterations + newdm = dm[..., None] + dm_offsets # [H,W,Nsamp] + curproj = self._backproj_pts3d(in_depths=[newdm], in_im_poses=pose[None], in_focals=focal[None], in_pps=pp[None], in_imshapes=[ + imshape])[0] # [H,W,Nsamp,3] + # Batched TSDF eval + curproj = curproj.view(-1, 3) + tsdf_vals = [] + valids = [] + for batch in range(0, len(curproj), self.TSDF_batchsize): + values, valid = self._TSDF_query( + curproj[batch:min(batch + self.TSDF_batchsize, len(curproj))], curthresh) + tsdf_vals.append(values) + valids.append(valid) + tsdf_vals = torch.cat(tsdf_vals, dim=0) + valids = torch.cat(valids, dim=0) + + tsdf_vals = tsdf_vals.view([H, W, nsamples]) + valids = valids.view([H, W, nsamples]) + + # keep depth value that got us the closest to 0 + tsdf_vals[~valids] = torch.inf # ignore invalid values + tsdf_vals = tsdf_vals.abs() + mins = torch.argmin(tsdf_vals, dim=-1, keepdim=True) + # when all samples live on a very flat zone, do nothing + allbad = (tsdf_vals == curthresh).sum(dim=-1) == nsamples + dm[~allbad] = torch.gather(newdm, -1, mins)[..., 0][~allbad] + + # Save refined depth map + self.TSDF_im_depthmaps.append(dm.log()) + + def _TSDF_query(self, qpoints, TSDF_filtering_thresh, weighted=True): + """ + TSDF query call: returns the weighted TSDF value for each query point [N, 3] + """ + N, three = qpoints.shape + assert three == 3 + qpoints = qpoints[None].repeat(self.optimizer.n_imgs, 1, 1) # [B,N,3] + # get projection coordinates and depths onto images + coords_and_depth = self._proj_pts3d(pts3d=qpoints, cam2worlds=self.optimizer.get_im_poses( + ), focals=self.optimizer.get_focals(), pps=self.optimizer.get_principal_points()) + image_coords = coords_and_depth[..., :2].round().to(int) # for now, there's no interpolation... + proj_depths = coords_and_depth[..., -1] + # recover depth values after scene optim + pred_depths, pred_confs, valids = self._get_pixel_depths(image_coords) + # Gather TSDF scores + all_SDF_scores = pred_depths - proj_depths # SDF + unseen = all_SDF_scores < -TSDF_filtering_thresh # handle visibility + # all_TSDF_scores = all_SDF_scores.clip(-TSDF_filtering_thresh,TSDF_filtering_thresh) # SDF -> TSDF + all_TSDF_scores = all_SDF_scores.clip(-TSDF_filtering_thresh, 1e20) # SDF -> TSDF + # Gather TSDF confidences and ignore points that are unseen, either OOB during reproj or too far behind seen depth + all_TSDF_weights = (~unseen).float() * valids.float() + if weighted: + all_TSDF_weights = pred_confs.exp() * all_TSDF_weights + # Aggregate all votes, ignoring zeros + TSDF_weights = all_TSDF_weights.sum(dim=0) + valids = TSDF_weights != 0. + TSDF_wsum = (all_TSDF_weights * all_TSDF_scores).sum(dim=0) + TSDF_wsum[valids] /= TSDF_weights[valids] + return TSDF_wsum, valids + + def _get_pixel_depths(self, image_coords, TSDF_filtering_thresh=None, with_normals_conf=False): + """ Recover depth value for each input pixel coordinate, along with OOB validity mask + """ + B, N, two = image_coords.shape + assert B == self.optimizer.n_imgs and two == 2 + depths = torch.zeros([B, N], device=image_coords.device) + valids = torch.zeros([B, N], dtype=bool, device=image_coords.device) + confs = torch.zeros([B, N], device=image_coords.device) + curconfs = self._get_confs_with_normals() if with_normals_conf else self.im_conf + for ni, (imc, depth, conf) in enumerate(zip(image_coords, self._get_depthmaps(TSDF_filtering_thresh), curconfs)): + H, W = depth.shape + valids[ni] = torch.logical_and(0 <= imc[:, 1], imc[:, 1] < + H) & torch.logical_and(0 <= imc[:, 0], imc[:, 0] < W) + imc[~valids[ni]] = 0 + depths[ni] = depth[imc[:, 1], imc[:, 0]] + confs[ni] = conf.cuda()[imc[:, 1], imc[:, 0]] + return depths, confs, valids + + def _get_confs_with_normals(self): + outconfs = [] + # Confidence basedf on depth gradient + + class Sobel(nn.Module): + def __init__(self): + super().__init__() + self.filter = nn.Conv2d(in_channels=1, out_channels=2, kernel_size=3, stride=1, padding=1, bias=False) + Gx = torch.tensor([[2.0, 0.0, -2.0], [4.0, 0.0, -4.0], [2.0, 0.0, -2.0]]) + Gy = torch.tensor([[2.0, 4.0, 2.0], [0.0, 0.0, 0.0], [-2.0, -4.0, -2.0]]) + G = torch.cat([Gx.unsqueeze(0), Gy.unsqueeze(0)], 0) + G = G.unsqueeze(1) + self.filter.weight = nn.Parameter(G, requires_grad=False) + + def forward(self, img): + x = self.filter(img) + x = torch.mul(x, x) + x = torch.sum(x, dim=1, keepdim=True) + x = torch.sqrt(x) + return x + + grad_op = Sobel().to(self.im_depthmaps[0].device) + for conf, depth in zip(self.im_conf, self.im_depthmaps): + grad_confs = (1. - grad_op(depth[None, None])[0, 0]).clip(0) + if not 'dbg show': + pl.imshow(grad_confs.cpu()) + pl.show() + outconfs.append(conf * grad_confs.to(conf)) + return outconfs + + def _proj_pts3d(self, pts3d, cam2worlds, focals, pps): + """ + Projection operation: from 3D points to 2D coordinates + depths + """ + B = pts3d.shape[0] + assert pts3d.shape[0] == cam2worlds.shape[0] + # prepare Extrinsincs + R, t = cam2worlds[:, :3, :3], cam2worlds[:, :3, -1] + Rinv = R.transpose(-2, -1) + tinv = -Rinv @ t[..., None] + + # prepare intrinsics + intrinsics = torch.eye(3).to(cam2worlds)[None].repeat(focals.shape[0], 1, 1) + if len(focals.shape) == 1: + focals = torch.stack([focals, focals], dim=-1) + intrinsics[:, 0, 0] = focals[:, 0] + intrinsics[:, 1, 1] = focals[:, 1] + intrinsics[:, :2, -1] = pps + # Project + projpts = intrinsics @ (Rinv @ pts3d.transpose(-2, -1) + tinv) # I(RX+t) : [B,3,N] + projpts = projpts.transpose(-2, -1) # [B,N,3] + projpts[..., :2] /= projpts[..., [-1]] # [B,N,3] (X/Z , Y/Z, Z) + return projpts + + def _backproj_pts3d(self, in_depths=None, in_im_poses=None, + in_focals=None, in_pps=None, in_imshapes=None): + """ + Backprojection operation: from image depths to 3D points + """ + # Get depths and projection params if not provided + focals = self.optimizer.get_focals() if in_focals is None else in_focals + im_poses = self.optimizer.get_im_poses() if in_im_poses is None else in_im_poses + depth = self._get_depthmaps() if in_depths is None else in_depths + pp = self.optimizer.get_principal_points() if in_pps is None else in_pps + imshapes = self.imshapes if in_imshapes is None else in_imshapes + def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *imshapes[i]) + dm_to_3d = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[[i]]) for i in range(im_poses.shape[0])] + + def autoprocess(x): + x = x[0] + return x.transpose(-2, -1) if len(x.shape) == 4 else x + return [geotrf(pose, autoprocess(pt)) for pose, pt in zip(im_poses, dm_to_3d)] + + def _pts3d_to_depth(self, pts3d, cam2worlds, focals, pps): + """ + Projection operation: from 3D points to 2D coordinates + depths + """ + B = pts3d.shape[0] + assert pts3d.shape[0] == cam2worlds.shape[0] + # prepare Extrinsincs + R, t = cam2worlds[:, :3, :3], cam2worlds[:, :3, -1] + Rinv = R.transpose(-2, -1) + tinv = -Rinv @ t[..., None] + + # prepare intrinsics + intrinsics = torch.eye(3).to(cam2worlds)[None].repeat(self.optimizer.n_imgs, 1, 1) + if len(focals.shape) == 1: + focals = torch.stack([focals, focals], dim=-1) + intrinsics[:, 0, 0] = focals[:, 0] + intrinsics[:, 1, 1] = focals[:, 1] + intrinsics[:, :2, -1] = pps + # Project + projpts = intrinsics @ (Rinv @ pts3d.transpose(-2, -1) + tinv) # I(RX+t) : [B,3,N] + projpts = projpts.transpose(-2, -1) # [B,N,3] + projpts[..., :2] /= projpts[..., [-1]] # [B,N,3] (X/Z , Y/Z, Z) + return projpts + + def _depth_to_pts3d(self, in_depths=None, in_im_poses=None, in_focals=None, in_pps=None, in_imshapes=None): + """ + Backprojection operation: from image depths to 3D points + """ + # Get depths and projection params if not provided + focals = self.optimizer.get_focals() if in_focals is None else in_focals + im_poses = self.optimizer.get_im_poses() if in_im_poses is None else in_im_poses + depth = self._get_depthmaps() if in_depths is None else in_depths + pp = self.optimizer.get_principal_points() if in_pps is None else in_pps + imshapes = self.imshapes if in_imshapes is None else in_imshapes + + def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *imshapes[i]) + + dm_to_3d = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i + 1]) for i in range(im_poses.shape[0])] + + def autoprocess(x): + x = x[0] + H, W, three = x.shape[:3] + return x.transpose(-2, -1) if len(x.shape) == 4 else x + return [geotrf(pp, autoprocess(pt)) for pp, pt in zip(im_poses, dm_to_3d)] + + def _get_pts3d(self, TSDF_filtering_thresh=None, **kw): + """ + return 3D points (possibly filtering depths with TSDF) + """ + return self._backproj_pts3d(in_depths=self._get_depthmaps(TSDF_filtering_thresh=TSDF_filtering_thresh), **kw) + + def _TSDF_postprocess_or_not(self, pts3d, depthmaps, confs, niter=1): + # Setup inner variables + self.imshapes = [im.shape[:2] for im in self.optimizer.imgs] + self.im_depthmaps = [dd.log().view(imshape) for dd, imshape in zip(depthmaps, self.imshapes)] + self.im_conf = confs + + if self.TSDF_thresh > 0.: + # Create or update self.TSDF_im_depthmaps that contain logdepths filtered with TSDF + self._refine_depths_with_TSDF(self.TSDF_thresh, niter=niter) + depthmaps = [dd.exp() for dd in self.TSDF_im_depthmaps] + # Turn them into 3D points + pts3d = self._backproj_pts3d(in_depths=depthmaps) + depthmaps = [dd.flatten() for dd in depthmaps] + pts3d = [pp.view(-1, 3) for pp in pts3d] + return pts3d, depthmaps + + def get_dense_pts3d(self, clean_depth=True): + if clean_depth: + confs = clean_pointcloud(self.confs, self.optimizer.intrinsics, inv(self.optimizer.cam2w), + self.depthmaps, self.pts3d) + return self.pts3d, self.depthmaps, confs diff --git a/modules/mast3r/cloud_opt/utils/__init__.py b/modules/mast3r/cloud_opt/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d7dd877d649ce4dbd749dd7195a8b34c0f91d4f0 --- /dev/null +++ b/modules/mast3r/cloud_opt/utils/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). \ No newline at end of file diff --git a/modules/mast3r/cloud_opt/utils/__pycache__/__init__.cpython-312.pyc b/modules/mast3r/cloud_opt/utils/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b0ea4751e1ca4170186f19709b1df61b129371b8 Binary files /dev/null and b/modules/mast3r/cloud_opt/utils/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/mast3r/cloud_opt/utils/__pycache__/losses.cpython-312.pyc b/modules/mast3r/cloud_opt/utils/__pycache__/losses.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0bca3830b488842cec734b59d5eef5862c3457a2 Binary files /dev/null and b/modules/mast3r/cloud_opt/utils/__pycache__/losses.cpython-312.pyc differ diff --git a/modules/mast3r/cloud_opt/utils/__pycache__/schedules.cpython-312.pyc b/modules/mast3r/cloud_opt/utils/__pycache__/schedules.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dde1f492887f2380b8362947434eb4a7a822bc81 Binary files /dev/null and b/modules/mast3r/cloud_opt/utils/__pycache__/schedules.cpython-312.pyc differ diff --git a/modules/mast3r/cloud_opt/utils/losses.py b/modules/mast3r/cloud_opt/utils/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..e1dd36afd6862592b8d00c499988136a972bd6e6 --- /dev/null +++ b/modules/mast3r/cloud_opt/utils/losses.py @@ -0,0 +1,32 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# losses for sparse ga +# -------------------------------------------------------- +import torch +import numpy as np + + +def l05_loss(x, y): + return torch.linalg.norm(x - y, dim=-1).sqrt() + + +def l1_loss(x, y): + return torch.linalg.norm(x - y, dim=-1) + + +def gamma_loss(gamma, mul=1, offset=None, clip=np.inf): + if offset is None: + if gamma == 1: + return l1_loss + # d(x**p)/dx = 1 ==> p * x**(p-1) == 1 ==> x = (1/p)**(1/(p-1)) + offset = (1 / gamma)**(1 / (gamma - 1)) + + def loss_func(x, y): + return (mul * l1_loss(x, y).clip(max=clip) + offset) ** gamma - offset ** gamma + return loss_func + + +def meta_gamma_loss(): + return lambda alpha: gamma_loss(alpha) diff --git a/modules/mast3r/cloud_opt/utils/schedules.py b/modules/mast3r/cloud_opt/utils/schedules.py new file mode 100644 index 0000000000000000000000000000000000000000..d96253b4348d2f089c10142c5991e5afb8a9b683 --- /dev/null +++ b/modules/mast3r/cloud_opt/utils/schedules.py @@ -0,0 +1,17 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# lr schedules for sparse ga +# -------------------------------------------------------- +import numpy as np + + +def linear_schedule(alpha, lr_base, lr_end=0): + lr = (1 - alpha) * lr_base + alpha * lr_end + return lr + + +def cosine_schedule(alpha, lr_base, lr_end=0): + lr = lr_end + (lr_base - lr_end) * (1 + np.cos(alpha * np.pi)) / 2 + return lr diff --git a/modules/mast3r/colmap/__init__.py b/modules/mast3r/colmap/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d7dd877d649ce4dbd749dd7195a8b34c0f91d4f0 --- /dev/null +++ b/modules/mast3r/colmap/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). \ No newline at end of file diff --git a/modules/mast3r/colmap/database.py b/modules/mast3r/colmap/database.py new file mode 100644 index 0000000000000000000000000000000000000000..5de83a35664d4038a99713de7f397e83940e5421 --- /dev/null +++ b/modules/mast3r/colmap/database.py @@ -0,0 +1,383 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# MASt3R to colmap export functions +# -------------------------------------------------------- +import os +import torch +import copy +import numpy as np +import torchvision +import numpy as np +from tqdm import tqdm +from scipy.cluster.hierarchy import DisjointSet +from scipy.spatial.transform import Rotation as R + +from mast3r.utils.misc import hash_md5 + +from mast3r.fast_nn import extract_correspondences_nonsym, bruteforce_reciprocal_nns + +import mast3r.utils.path_to_dust3r # noqa +from dust3r.utils.geometry import find_reciprocal_matches, xy_grid, geotrf # noqa + + +def convert_im_matches_pairs(img0, img1, image_to_colmap, im_keypoints, matches_im0, matches_im1, viz): + if viz: + from matplotlib import pyplot as pl + + image_mean = torch.as_tensor( + [0.5, 0.5, 0.5], device='cpu').reshape(1, 3, 1, 1) + image_std = torch.as_tensor( + [0.5, 0.5, 0.5], device='cpu').reshape(1, 3, 1, 1) + rgb0 = img0['img'] * image_std + image_mean + rgb0 = torchvision.transforms.functional.to_pil_image(rgb0[0]) + rgb0 = np.array(rgb0) + + rgb1 = img1['img'] * image_std + image_mean + rgb1 = torchvision.transforms.functional.to_pil_image(rgb1[0]) + rgb1 = np.array(rgb1) + + imgs = [rgb0, rgb1] + # visualize a few matches + n_viz = 100 + num_matches = matches_im0.shape[0] + match_idx_to_viz = np.round(np.linspace( + 0, num_matches - 1, n_viz)).astype(int) + viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz] + + H0, W0, H1, W1 = *imgs[0].shape[:2], *imgs[1].shape[:2] + rgb0 = np.pad(imgs[0], ((0, max(H1 - H0, 0)), + (0, 0), (0, 0)), 'constant', constant_values=0) + rgb1 = np.pad(imgs[1], ((0, max(H0 - H1, 0)), + (0, 0), (0, 0)), 'constant', constant_values=0) + img = np.concatenate((rgb0, rgb1), axis=1) + pl.figure() + pl.imshow(img) + cmap = pl.get_cmap('jet') + for ii in range(n_viz): + (x0, y0), (x1, + y1) = viz_matches_im0[ii].T, viz_matches_im1[ii].T + pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(ii / + (n_viz - 1)), scalex=False, scaley=False) + pl.show(block=True) + + matches = [matches_im0.astype(np.float64), matches_im1.astype(np.float64)] + imgs = [img0, img1] + imidx0 = img0['idx'] + imidx1 = img1['idx'] + ravel_matches = [] + for j in range(2): + H, W = imgs[j]['true_shape'][0] + with np.errstate(invalid='ignore'): + qx, qy = matches[j].round().astype(np.int32).T + ravel_matches_j = qx.clip(min=0, max=W - 1, out=qx) + W * qy.clip(min=0, max=H - 1, out=qy) + ravel_matches.append(ravel_matches_j) + imidxj = imgs[j]['idx'] + for m in ravel_matches_j: + if m not in im_keypoints[imidxj]: + im_keypoints[imidxj][m] = 0 + im_keypoints[imidxj][m] += 1 + imid0 = copy.deepcopy(image_to_colmap[imidx0]['colmap_imid']) + imid1 = copy.deepcopy(image_to_colmap[imidx1]['colmap_imid']) + if imid0 > imid1: + colmap_matches = np.stack([ravel_matches[1], ravel_matches[0]], axis=-1) + imid0, imid1 = imid1, imid0 + imidx0, imidx1 = imidx1, imidx0 + else: + colmap_matches = np.stack([ravel_matches[0], ravel_matches[1]], axis=-1) + colmap_matches = np.unique(colmap_matches, axis=0) + return imidx0, imidx1, colmap_matches + + +def get_im_matches(pred1, pred2, pairs, image_to_colmap, im_keypoints, conf_thr, + is_sparse=True, subsample=8, pixel_tol=0, viz=False, device='cuda'): + im_matches = {} + for i in range(len(pred1['pts3d'])): + imidx0 = pairs[i][0]['idx'] + imidx1 = pairs[i][1]['idx'] + if 'desc' in pred1: # mast3r + descs = [pred1['desc'][i], pred2['desc'][i]] + confidences = [pred1['desc_conf'][i], pred2['desc_conf'][i]] + desc_dim = descs[0].shape[-1] + + if is_sparse: + corres = extract_correspondences_nonsym(descs[0], descs[1], confidences[0], confidences[1], + device=device, subsample=subsample, pixel_tol=pixel_tol) + conf = corres[2] + mask = conf >= conf_thr + matches_im0 = corres[0][mask].cpu().numpy() + matches_im1 = corres[1][mask].cpu().numpy() + else: + confidence_masks = [confidences[0] >= + conf_thr, confidences[1] >= conf_thr] + pts2d_list, desc_list = [], [] + for j in range(2): + conf_j = confidence_masks[j].cpu().numpy().flatten() + true_shape_j = pairs[i][j]['true_shape'][0] + pts2d_j = xy_grid( + true_shape_j[1], true_shape_j[0]).reshape(-1, 2)[conf_j] + desc_j = descs[j].detach().cpu( + ).numpy().reshape(-1, desc_dim)[conf_j] + pts2d_list.append(pts2d_j) + desc_list.append(desc_j) + if len(desc_list[0]) == 0 or len(desc_list[1]) == 0: + continue + + nn0, nn1 = bruteforce_reciprocal_nns(desc_list[0], desc_list[1], + device=device, dist='dot', block_size=2**13) + reciprocal_in_P0 = (nn1[nn0] == np.arange(len(nn0))) + + matches_im1 = pts2d_list[1][nn0][reciprocal_in_P0] + matches_im0 = pts2d_list[0][reciprocal_in_P0] + else: + pts3d = [pred1['pts3d'][i], pred2['pts3d_in_other_view'][i]] + confidences = [pred1['conf'][i], pred2['conf'][i]] + + if is_sparse: + corres = extract_correspondences_nonsym(pts3d[0], pts3d[1], confidences[0], confidences[1], + device=device, subsample=subsample, pixel_tol=pixel_tol, + ptmap_key='3d') + conf = corres[2] + mask = conf >= conf_thr + matches_im0 = corres[0][mask].cpu().numpy() + matches_im1 = corres[1][mask].cpu().numpy() + else: + confidence_masks = [confidences[0] >= + conf_thr, confidences[1] >= conf_thr] + # find 2D-2D matches between the two images + pts2d_list, pts3d_list = [], [] + for j in range(2): + conf_j = confidence_masks[j].cpu().numpy().flatten() + true_shape_j = pairs[i][j]['true_shape'][0] + pts2d_j = xy_grid(true_shape_j[1], true_shape_j[0]).reshape(-1, 2)[conf_j] + pts3d_j = pts3d[j].detach().cpu().numpy().reshape(-1, 3)[conf_j] + pts2d_list.append(pts2d_j) + pts3d_list.append(pts3d_j) + + PQ, PM = pts3d_list[0], pts3d_list[1] + if len(PQ) == 0 or len(PM) == 0: + continue + reciprocal_in_PM, nnM_in_PQ, num_matches = find_reciprocal_matches( + PQ, PM) + + matches_im1 = pts2d_list[1][reciprocal_in_PM] + matches_im0 = pts2d_list[0][nnM_in_PQ][reciprocal_in_PM] + + if len(matches_im0) == 0: + continue + imidx0, imidx1, colmap_matches = convert_im_matches_pairs(pairs[i][0], pairs[i][1], + image_to_colmap, im_keypoints, + matches_im0, matches_im1, viz) + im_matches[(imidx0, imidx1)] = colmap_matches + return im_matches + + +def get_im_matches_from_cache(pairs, cache_path, desc_conf, subsample, + image_to_colmap, im_keypoints, conf_thr, + viz=False, device='cuda'): + im_matches = {} + for i in range(len(pairs)): + imidx0 = pairs[i][0]['idx'] + imidx1 = pairs[i][1]['idx'] + + corres_idx1 = hash_md5(pairs[i][0]['instance']) + corres_idx2 = hash_md5(pairs[i][1]['instance']) + + path_corres = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{corres_idx1}-{corres_idx2}.pth' + if os.path.isfile(path_corres): + score, (xy1, xy2, confs) = torch.load(path_corres, map_location=device) + else: + path_corres = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{corres_idx2}-{corres_idx1}.pth' + score, (xy2, xy1, confs) = torch.load(path_corres, map_location=device) + mask = confs >= conf_thr + matches_im0 = xy1[mask].cpu().numpy() + matches_im1 = xy2[mask].cpu().numpy() + + if len(matches_im0) == 0: + continue + imidx0, imidx1, colmap_matches = convert_im_matches_pairs(pairs[i][0], pairs[i][1], + image_to_colmap, im_keypoints, + matches_im0, matches_im1, viz) + im_matches[(imidx0, imidx1)] = colmap_matches + return im_matches + + +def export_images(db, images, image_paths, focals, ga_world_to_cam, camera_model): + # add cameras/images to the db + # with the output of ga as prior + image_to_colmap = {} + im_keypoints = {} + for idx in range(len(image_paths)): + im_keypoints[idx] = {} + H, W = images[idx]["orig_shape"] + if focals is None: + focal_x = focal_y = 1.2 * max(W, H) + prior_focal_length = False + cx = W / 2.0 + cy = H / 2.0 + elif isinstance(focals[idx], np.ndarray) and len(focals[idx].shape) == 2: + # intrinsics + focal_x = focals[idx][0, 0] + focal_y = focals[idx][1, 1] + cx = focals[idx][0, 2] * images[idx]["to_orig"][0, 0] + cy = focals[idx][1, 2] * images[idx]["to_orig"][1, 1] + prior_focal_length = True + else: + focal_x = focal_y = float(focals[idx]) + prior_focal_length = True + cx = W / 2.0 + cy = H / 2.0 + focal_x = focal_x * images[idx]["to_orig"][0, 0] + focal_y = focal_y * images[idx]["to_orig"][1, 1] + + if camera_model == "SIMPLE_PINHOLE": + model_id = 0 + focal = (focal_x + focal_y) / 2.0 + params = np.asarray([focal, cx, cy], np.float64) + elif camera_model == "PINHOLE": + model_id = 1 + params = np.asarray([focal_x, focal_y, cx, cy], np.float64) + elif camera_model == "SIMPLE_RADIAL": + model_id = 2 + focal = (focal_x + focal_y) / 2.0 + params = np.asarray([focal, cx, cy, 0.0], np.float64) + elif camera_model == "OPENCV": + model_id = 4 + params = np.asarray([focal_x, focal_y, cx, cy, 0.0, 0.0, 0.0, 0.0], np.float64) + else: + raise ValueError(f"invalid camera model {camera_model}") + + H, W = int(H), int(W) + # OPENCV camera model + camid = db.add_camera( + model_id, W, H, params, prior_focal_length=prior_focal_length) + if ga_world_to_cam is None: + prior_t = np.zeros(3) + prior_q = np.zeros(4) + else: + q = R.from_matrix(ga_world_to_cam[idx][:3, :3]).as_quat() + prior_t = ga_world_to_cam[idx][:3, 3] + prior_q = np.array([q[-1], q[0], q[1], q[2]]) + imid = db.add_image( + image_paths[idx], camid, prior_q=prior_q, prior_t=prior_t) + image_to_colmap[idx] = { + 'colmap_imid': imid, + 'colmap_camid': camid + } + return image_to_colmap, im_keypoints + + +def export_matches(db, images, image_to_colmap, im_keypoints, im_matches, min_len_track, skip_geometric_verification): + colmap_image_pairs = [] + # 2D-2D are quite dense + # we want to remove the very small tracks + # and export only kpt for which we have values + # build tracks + print("building tracks") + keypoints_to_track_id = {} + track_id_to_kpt_list = [] + to_merge = [] + for (imidx0, imidx1), colmap_matches in tqdm(im_matches.items()): + if imidx0 not in keypoints_to_track_id: + keypoints_to_track_id[imidx0] = {} + if imidx1 not in keypoints_to_track_id: + keypoints_to_track_id[imidx1] = {} + + for m in colmap_matches: + if m[0] not in keypoints_to_track_id[imidx0] and m[1] not in keypoints_to_track_id[imidx1]: + # new pair of kpts never seen before + track_idx = len(track_id_to_kpt_list) + keypoints_to_track_id[imidx0][m[0]] = track_idx + keypoints_to_track_id[imidx1][m[1]] = track_idx + track_id_to_kpt_list.append( + [(imidx0, m[0]), (imidx1, m[1])]) + elif m[1] not in keypoints_to_track_id[imidx1]: + # 0 has a track, not 1 + track_idx = keypoints_to_track_id[imidx0][m[0]] + keypoints_to_track_id[imidx1][m[1]] = track_idx + track_id_to_kpt_list[track_idx].append((imidx1, m[1])) + elif m[0] not in keypoints_to_track_id[imidx0]: + # 1 has a track, not 0 + track_idx = keypoints_to_track_id[imidx1][m[1]] + keypoints_to_track_id[imidx0][m[0]] = track_idx + track_id_to_kpt_list[track_idx].append((imidx0, m[0])) + else: + # both have tracks, merge them + track_idx0 = keypoints_to_track_id[imidx0][m[0]] + track_idx1 = keypoints_to_track_id[imidx1][m[1]] + if track_idx0 != track_idx1: + # let's deal with them later + to_merge.append((track_idx0, track_idx1)) + + # regroup merge targets + print("merging tracks") + unique = np.unique(to_merge) + tree = DisjointSet(unique) + for track_idx0, track_idx1 in tqdm(to_merge): + tree.merge(track_idx0, track_idx1) + + subsets = tree.subsets() + print("applying merge") + for setvals in tqdm(subsets): + new_trackid = len(track_id_to_kpt_list) + kpt_list = [] + for track_idx in setvals: + kpt_list.extend(track_id_to_kpt_list[track_idx]) + for imidx, kpid in track_id_to_kpt_list[track_idx]: + keypoints_to_track_id[imidx][kpid] = new_trackid + track_id_to_kpt_list.append(kpt_list) + + # binc = np.bincount([len(v) for v in track_id_to_kpt_list]) + # nonzero = np.nonzero(binc) + # nonzerobinc = binc[nonzero[0]] + # print(nonzero[0].tolist()) + # print(nonzerobinc) + num_valid_tracks = sum( + [1 for v in track_id_to_kpt_list if len(v) >= min_len_track]) + + keypoints_to_idx = {} + print(f"squashing keypoints - {num_valid_tracks} valid tracks") + for imidx, keypoints_imid in tqdm(im_keypoints.items()): + imid = image_to_colmap[imidx]['colmap_imid'] + keypoints_kept = [] + keypoints_to_idx[imidx] = {} + for kp in keypoints_imid.keys(): + if kp not in keypoints_to_track_id[imidx]: + continue + track_idx = keypoints_to_track_id[imidx][kp] + track_length = len(track_id_to_kpt_list[track_idx]) + if track_length < min_len_track: + continue + keypoints_to_idx[imidx][kp] = len(keypoints_kept) + keypoints_kept.append(kp) + if len(keypoints_kept) == 0: + continue + keypoints_kept = np.array(keypoints_kept) + keypoints_kept = np.unravel_index(keypoints_kept, images[imidx]['true_shape'][0])[ + 0].base[:, ::-1].copy().astype(np.float32) + # rescale coordinates + keypoints_kept[:, 0] += 0.5 + keypoints_kept[:, 1] += 0.5 + keypoints_kept = geotrf(images[imidx]['to_orig'], keypoints_kept, norm=True) + + H, W = images[imidx]['orig_shape'] + keypoints_kept[:, 0] = keypoints_kept[:, 0].clip(min=0, max=W - 0.01) + keypoints_kept[:, 1] = keypoints_kept[:, 1].clip(min=0, max=H - 0.01) + + db.add_keypoints(imid, keypoints_kept) + + print("exporting im_matches") + for (imidx0, imidx1), colmap_matches in im_matches.items(): + imid0, imid1 = image_to_colmap[imidx0]['colmap_imid'], image_to_colmap[imidx1]['colmap_imid'] + assert imid0 < imid1 + final_matches = np.array([[keypoints_to_idx[imidx0][m[0]], keypoints_to_idx[imidx1][m[1]]] + for m in colmap_matches + if m[0] in keypoints_to_idx[imidx0] and m[1] in keypoints_to_idx[imidx1]]) + if len(final_matches) > 0: + colmap_image_pairs.append( + (images[imidx0]['instance'], images[imidx1]['instance'])) + db.add_matches(imid0, imid1, final_matches) + if skip_geometric_verification: + db.add_two_view_geometry(imid0, imid1, final_matches) + return colmap_image_pairs diff --git a/modules/mast3r/datasets/__init__.py b/modules/mast3r/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c625aca0a773c105ed229ff87364721b4755bc8d --- /dev/null +++ b/modules/mast3r/datasets/__init__.py @@ -0,0 +1,62 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +from .base.mast3r_base_stereo_view_dataset import MASt3RBaseStereoViewDataset + +import mast3r.utils.path_to_dust3r # noqa +from dust3r.datasets.arkitscenes import ARKitScenes as DUSt3R_ARKitScenes # noqa +from dust3r.datasets.blendedmvs import BlendedMVS as DUSt3R_BlendedMVS # noqa +from dust3r.datasets.co3d import Co3d as DUSt3R_Co3d # noqa +from dust3r.datasets.megadepth import MegaDepth as DUSt3R_MegaDepth # noqa +from dust3r.datasets.scannetpp import ScanNetpp as DUSt3R_ScanNetpp # noqa +from dust3r.datasets.staticthings3d import StaticThings3D as DUSt3R_StaticThings3D # noqa +from dust3r.datasets.waymo import Waymo as DUSt3R_Waymo # noqa +from dust3r.datasets.wildrgbd import WildRGBD as DUSt3R_WildRGBD # noqa + + +class ARKitScenes(DUSt3R_ARKitScenes, MASt3RBaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + super().__init__(*args, split=split, ROOT=ROOT, **kwargs) + self.is_metric_scale = True + + +class BlendedMVS(DUSt3R_BlendedMVS, MASt3RBaseStereoViewDataset): + def __init__(self, *args, ROOT, split=None, **kwargs): + super().__init__(*args, ROOT=ROOT, split=split, **kwargs) + self.is_metric_scale = False + + +class Co3d(DUSt3R_Co3d, MASt3RBaseStereoViewDataset): + def __init__(self, mask_bg=True, *args, ROOT, **kwargs): + super().__init__(mask_bg, *args, ROOT=ROOT, **kwargs) + self.is_metric_scale = False + + +class MegaDepth(DUSt3R_MegaDepth, MASt3RBaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + super().__init__(*args, split=split, ROOT=ROOT, **kwargs) + self.is_metric_scale = False + + +class ScanNetpp(DUSt3R_ScanNetpp, MASt3RBaseStereoViewDataset): + def __init__(self, *args, ROOT, **kwargs): + super().__init__(*args, ROOT=ROOT, **kwargs) + self.is_metric_scale = True + + +class StaticThings3D(DUSt3R_StaticThings3D, MASt3RBaseStereoViewDataset): + def __init__(self, ROOT, *args, mask_bg='rand', **kwargs): + super().__init__(ROOT, *args, mask_bg=mask_bg, **kwargs) + self.is_metric_scale = False + + +class Waymo(DUSt3R_Waymo, MASt3RBaseStereoViewDataset): + def __init__(self, *args, ROOT, **kwargs): + super().__init__(*args, ROOT=ROOT, **kwargs) + self.is_metric_scale = True + + +class WildRGBD(DUSt3R_WildRGBD, MASt3RBaseStereoViewDataset): + def __init__(self, mask_bg=True, *args, ROOT, **kwargs): + super().__init__(mask_bg, *args, ROOT=ROOT, **kwargs) + self.is_metric_scale = True diff --git a/modules/mast3r/datasets/base/__init__.py b/modules/mast3r/datasets/base/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d7dd877d649ce4dbd749dd7195a8b34c0f91d4f0 --- /dev/null +++ b/modules/mast3r/datasets/base/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). \ No newline at end of file diff --git a/modules/mast3r/datasets/base/mast3r_base_stereo_view_dataset.py b/modules/mast3r/datasets/base/mast3r_base_stereo_view_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..3ced0ef0dc6b1d6225781af55d3e924e133fdeaf --- /dev/null +++ b/modules/mast3r/datasets/base/mast3r_base_stereo_view_dataset.py @@ -0,0 +1,355 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# base class for implementing datasets +# -------------------------------------------------------- +import PIL.Image +import PIL.Image as Image +import numpy as np +import torch +import copy + +from mast3r.datasets.utils.cropping import (extract_correspondences_from_pts3d, + gen_random_crops, in2d_rect, crop_to_homography) + +import mast3r.utils.path_to_dust3r # noqa +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset, view_name, is_good_type # noqa +from dust3r.datasets.utils.transforms import ImgNorm +from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates, geotrf, depthmap_to_camera_coordinates +import dust3r.datasets.utils.cropping as cropping + + +class MASt3RBaseStereoViewDataset(BaseStereoViewDataset): + def __init__(self, *, # only keyword arguments + split=None, + resolution=None, # square_size or (width, height) or list of [(width,height), ...] + transform=ImgNorm, + aug_crop=False, + aug_swap=False, + aug_monocular=False, + aug_portrait_or_landscape=True, # automatic choice between landscape/portrait when possible + aug_rot90=False, + n_corres=0, + nneg=0, + n_tentative_crops=4, + seed=None): + super().__init__(split=split, resolution=resolution, transform=transform, aug_crop=aug_crop, seed=seed) + self.is_metric_scale = False # by default a dataset is not metric scale, subclasses can overwrite this + + self.aug_swap = aug_swap + self.aug_monocular = aug_monocular + self.aug_portrait_or_landscape = aug_portrait_or_landscape + self.aug_rot90 = aug_rot90 + + self.n_corres = n_corres + self.nneg = nneg + assert self.n_corres == 'all' or isinstance(self.n_corres, int) or (isinstance(self.n_corres, list) and len( + self.n_corres) == self.num_views), f"Error, n_corres should either be 'all', a single integer or a list of length {self.num_views}" + assert self.nneg == 0 or self.n_corres != 'all' + self.n_tentative_crops = n_tentative_crops + + def _swap_view_aug(self, views): + if self._rng.random() < 0.5: + views.reverse() + + def _crop_resize_if_necessary(self, image, depthmap, intrinsics, resolution, rng=None, info=None): + """ This function: + - first downsizes the image with LANCZOS inteprolation, + which is better than bilinear interpolation in + """ + if not isinstance(image, PIL.Image.Image): + image = PIL.Image.fromarray(image) + + # transpose the resolution if necessary + W, H = image.size # new size + assert resolution[0] >= resolution[1] + if H > 1.1 * W: + # image is portrait mode + resolution = resolution[::-1] + elif 0.9 < H / W < 1.1 and resolution[0] != resolution[1]: + # image is square, so we chose (portrait, landscape) randomly + if rng.integers(2) and self.aug_portrait_or_landscape: + resolution = resolution[::-1] + + # high-quality Lanczos down-scaling + target_resolution = np.array(resolution) + image, depthmap, intrinsics = cropping.rescale_image_depthmap(image, depthmap, intrinsics, target_resolution) + + # actual cropping (if necessary) with bilinear interpolation + offset_factor = 0.5 + intrinsics2 = cropping.camera_matrix_of_crop(intrinsics, image.size, resolution, offset_factor=offset_factor) + crop_bbox = cropping.bbox_from_intrinsics_in_out(intrinsics, intrinsics2, resolution) + image, depthmap, intrinsics2 = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox) + + return image, depthmap, intrinsics2 + + def generate_crops_from_pair(self, view1, view2, resolution, aug_crop_arg, n_crops=4, rng=np.random): + views = [view1, view2] + + if aug_crop_arg is False: + # compatibility + for i in range(2): + view = views[i] + view['img'], view['depthmap'], view['camera_intrinsics'] = self._crop_resize_if_necessary(view['img'], + view['depthmap'], + view['camera_intrinsics'], + resolution, + rng=rng) + view['pts3d'], view['valid_mask'] = depthmap_to_absolute_camera_coordinates(view['depthmap'], + view['camera_intrinsics'], + view['camera_pose']) + return + + # extract correspondences + corres = extract_correspondences_from_pts3d(*views, target_n_corres=None, rng=rng) + + # generate 4 random crops in each view + view_crops = [] + crops_resolution = [] + corres_msks = [] + for i in range(2): + + if aug_crop_arg == 'auto': + S = min(views[i]['img'].size) + R = min(resolution) + aug_crop = S * (S - R) // R + aug_crop = max(.1 * S, aug_crop) # for cropping: augment scale of at least 10%, and more if possible + else: + aug_crop = aug_crop_arg + + # tranpose the target resolution if necessary + assert resolution[0] >= resolution[1] + W, H = imsize = views[i]['img'].size + crop_resolution = resolution + if H > 1.1 * W: + # image is portrait mode + crop_resolution = resolution[::-1] + elif 0.9 < H / W < 1.1 and resolution[0] != resolution[1]: + # image is square, so we chose (portrait, landscape) randomly + if rng.integers(2): + crop_resolution = resolution[::-1] + + crops = gen_random_crops(imsize, n_crops, crop_resolution, aug_crop=aug_crop, rng=rng) + view_crops.append(crops) + crops_resolution.append(crop_resolution) + + # compute correspondences + corres_msks.append(in2d_rect(corres[i], crops)) + + # compute IoU for each + intersection = np.float32(corres_msks[0]).T @ np.float32(corres_msks[1]) + # select best pair of crops + best = np.unravel_index(intersection.argmax(), (n_crops, n_crops)) + crops = [view_crops[i][c] for i, c in enumerate(best)] + + # crop with the homography + for i in range(2): + view = views[i] + imsize, K_new, R, H = crop_to_homography(view['camera_intrinsics'], crops[i], crops_resolution[i]) + # imsize, K_new, H = upscale_homography(imsize, resolution, K_new, H) + + # update camera params + K_old = view['camera_intrinsics'] + view['camera_intrinsics'] = K_new + view['camera_pose'] = view['camera_pose'].copy() + view['camera_pose'][:3, :3] = view['camera_pose'][:3, :3] @ R + + # apply homography to image and depthmap + homo8 = (H / H[2, 2]).ravel().tolist()[:8] + view['img'] = view['img'].transform(imsize, Image.Transform.PERSPECTIVE, + homo8, + resample=Image.Resampling.BICUBIC) + + depthmap2 = depthmap_to_camera_coordinates(view['depthmap'], K_old)[0] @ R[:, 2] + view['depthmap'] = np.array(Image.fromarray(depthmap2).transform( + imsize, Image.Transform.PERSPECTIVE, homo8)) + + if 'track_labels' in view: + # convert from uint64 --> uint32, because PIL.Image cannot handle uint64 + mapping, track_labels = np.unique(view['track_labels'], return_inverse=True) + track_labels = track_labels.astype(np.uint32).reshape(view['track_labels'].shape) + + # homography transformation + res = np.array(Image.fromarray(track_labels).transform(imsize, Image.Transform.PERSPECTIVE, homo8)) + view['track_labels'] = mapping[res] # mapping back to uint64 + + # recompute 3d points from scratch + view['pts3d'], view['valid_mask'] = depthmap_to_absolute_camera_coordinates(view['depthmap'], + view['camera_intrinsics'], + view['camera_pose']) + + def __getitem__(self, idx): + if isinstance(idx, tuple): + # the idx is specifying the aspect-ratio + idx, ar_idx = idx + else: + assert len(self._resolutions) == 1 + ar_idx = 0 + + # set-up the rng + if self.seed: # reseed for each __getitem__ + self._rng = np.random.default_rng(seed=self.seed + idx) + elif not hasattr(self, '_rng'): + seed = torch.initial_seed() # this is different for each dataloader process + self._rng = np.random.default_rng(seed=seed) + + # over-loaded code + resolution = self._resolutions[ar_idx] # DO NOT CHANGE THIS (compatible with BatchedRandomSampler) + views = self._get_views(idx, resolution, self._rng) + assert len(views) == self.num_views + + for v, view in enumerate(views): + assert 'pts3d' not in view, f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}" + view['idx'] = (idx, ar_idx, v) + view['is_metric_scale'] = self.is_metric_scale + + assert 'camera_intrinsics' in view + if 'camera_pose' not in view: + view['camera_pose'] = np.full((4, 4), np.nan, dtype=np.float32) + else: + assert np.isfinite(view['camera_pose']).all(), f'NaN in camera pose for view {view_name(view)}' + assert 'pts3d' not in view + assert 'valid_mask' not in view + assert np.isfinite(view['depthmap']).all(), f'NaN in depthmap for view {view_name(view)}' + + pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) + + view['pts3d'] = pts3d + view['valid_mask'] = valid_mask & np.isfinite(pts3d).all(axis=-1) + + self.generate_crops_from_pair(views[0], views[1], resolution=resolution, + aug_crop_arg=self.aug_crop, + n_crops=self.n_tentative_crops, + rng=self._rng) + for v, view in enumerate(views): + # encode the image + width, height = view['img'].size + view['true_shape'] = np.int32((height, width)) + view['img'] = self.transform(view['img']) + # Pixels for which depth is fundamentally undefined + view['sky_mask'] = (view['depthmap'] < 0) + + if self.aug_swap: + self._swap_view_aug(views) + + if self.aug_monocular: + if self._rng.random() < self.aug_monocular: + views = [copy.deepcopy(views[0]) for _ in range(len(views))] + + # automatic extraction of correspondences from pts3d + pose + if self.n_corres > 0 and ('corres' not in view): + corres1, corres2, valid = extract_correspondences_from_pts3d(*views, self.n_corres, + self._rng, nneg=self.nneg) + views[0]['corres'] = corres1 + views[1]['corres'] = corres2 + views[0]['valid_corres'] = valid + views[1]['valid_corres'] = valid + + if self.aug_rot90 is False: + pass + elif self.aug_rot90 == 'same': + rotate_90(views, k=self._rng.choice(4)) + elif self.aug_rot90 == 'diff': + rotate_90(views[:1], k=self._rng.choice(4)) + rotate_90(views[1:], k=self._rng.choice(4)) + else: + raise ValueError(f'Bad value for {self.aug_rot90=}') + + # check data-types metric_scale + for v, view in enumerate(views): + if 'corres' not in view: + view['corres'] = np.full((self.n_corres, 2), np.nan, dtype=np.float32) + + # check all datatypes + for key, val in view.items(): + res, err_msg = is_good_type(key, val) + assert res, f"{err_msg} with {key}={val} for view {view_name(view)}" + K = view['camera_intrinsics'] + + # check shapes + assert view['depthmap'].shape == view['img'].shape[1:] + assert view['depthmap'].shape == view['pts3d'].shape[:2] + assert view['depthmap'].shape == view['valid_mask'].shape + + # last thing done! + for view in views: + # transpose to make sure all views are the same size + transpose_to_landscape(view) + # this allows to check whether the RNG is is the same state each time + view['rng'] = int.from_bytes(self._rng.bytes(4), 'big') + + return views + + +def transpose_to_landscape(view, revert=False): + height, width = view['true_shape'] + + if width < height: + if revert: + height, width = width, height + + # rectify portrait to landscape + assert view['img'].shape == (3, height, width) + view['img'] = view['img'].swapaxes(1, 2) + + assert view['valid_mask'].shape == (height, width) + view['valid_mask'] = view['valid_mask'].swapaxes(0, 1) + + assert view['sky_mask'].shape == (height, width) + view['sky_mask'] = view['sky_mask'].swapaxes(0, 1) + + assert view['depthmap'].shape == (height, width) + view['depthmap'] = view['depthmap'].swapaxes(0, 1) + + assert view['pts3d'].shape == (height, width, 3) + view['pts3d'] = view['pts3d'].swapaxes(0, 1) + + # transpose x and y pixels + view['camera_intrinsics'] = view['camera_intrinsics'][[1, 0, 2]] + + # transpose correspondences x and y + view['corres'] = view['corres'][:, [1, 0]] + + +def rotate_90(views, k=1): + from scipy.spatial.transform import Rotation + # print('rotation =', k) + + RT = np.eye(4, dtype=np.float32) + RT[:3, :3] = Rotation.from_euler('z', 90 * k, degrees=True).as_matrix() + + for view in views: + view['img'] = torch.rot90(view['img'], k=k, dims=(-2, -1)) # WARNING!! dims=(-1,-2) != dims=(-2,-1) + view['depthmap'] = np.rot90(view['depthmap'], k=k).copy() + view['camera_pose'] = view['camera_pose'] @ RT + + RT2 = np.eye(3, dtype=np.float32) + RT2[:2, :2] = RT[:2, :2] * ((1, -1), (-1, 1)) + H, W = view['depthmap'].shape + if k % 4 == 0: + pass + elif k % 4 == 1: + # top-left (0,0) pixel becomes (0,H-1) + RT2[:2, 2] = (0, H - 1) + elif k % 4 == 2: + # top-left (0,0) pixel becomes (W-1,H-1) + RT2[:2, 2] = (W - 1, H - 1) + elif k % 4 == 3: + # top-left (0,0) pixel becomes (W-1,0) + RT2[:2, 2] = (W - 1, 0) + else: + raise ValueError(f'Bad value for {k=}') + + view['camera_intrinsics'][:2, 2] = geotrf(RT2, view['camera_intrinsics'][:2, 2]) + if k % 2 == 1: + K = view['camera_intrinsics'] + np.fill_diagonal(K, K.diagonal()[[1, 0, 2]]) + + pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) + view['pts3d'] = pts3d + view['valid_mask'] = np.rot90(view['valid_mask'], k=k).copy() + view['sky_mask'] = np.rot90(view['sky_mask'], k=k).copy() + + view['corres'] = geotrf(RT2, view['corres']).round().astype(view['corres'].dtype) + view['true_shape'] = np.int32((H, W)) diff --git a/modules/mast3r/datasets/utils/__init__.py b/modules/mast3r/datasets/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/modules/mast3r/datasets/utils/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/modules/mast3r/datasets/utils/cropping.py b/modules/mast3r/datasets/utils/cropping.py new file mode 100644 index 0000000000000000000000000000000000000000..57f4d84b019eaac9cf0c308a94f2cb8e2ec1a6ba --- /dev/null +++ b/modules/mast3r/datasets/utils/cropping.py @@ -0,0 +1,219 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# cropping/match extraction +# -------------------------------------------------------- +import numpy as np +import mast3r.utils.path_to_dust3r # noqa +from dust3r.utils.device import to_numpy +from dust3r.utils.geometry import inv, geotrf + + +def reciprocal_1d(corres_1_to_2, corres_2_to_1, ret_recip=False): + is_reciprocal1 = (corres_2_to_1[corres_1_to_2] == np.arange(len(corres_1_to_2))) + pos1 = is_reciprocal1.nonzero()[0] + pos2 = corres_1_to_2[pos1] + if ret_recip: + return is_reciprocal1, pos1, pos2 + return pos1, pos2 + + +def extract_correspondences_from_pts3d(view1, view2, target_n_corres, rng=np.random, ret_xy=True, nneg=0): + view1, view2 = to_numpy((view1, view2)) + # project pixels from image1 --> 3d points --> image2 pixels + shape1, corres1_to_2 = reproject_view(view1['pts3d'], view2) + shape2, corres2_to_1 = reproject_view(view2['pts3d'], view1) + + # compute reciprocal correspondences: + # pos1 == valid pixels (correspondences) in image1 + is_reciprocal1, pos1, pos2 = reciprocal_1d(corres1_to_2, corres2_to_1, ret_recip=True) + is_reciprocal2 = (corres1_to_2[corres2_to_1] == np.arange(len(corres2_to_1))) + + if target_n_corres is None: + if ret_xy: + pos1 = unravel_xy(pos1, shape1) + pos2 = unravel_xy(pos2, shape2) + return pos1, pos2 + + available_negatives = min((~is_reciprocal1).sum(), (~is_reciprocal2).sum()) + target_n_positives = int(target_n_corres * (1 - nneg)) + n_positives = min(len(pos1), target_n_positives) + n_negatives = min(target_n_corres - n_positives, available_negatives) + + if n_negatives + n_positives != target_n_corres: + # should be really rare => when there are not enough negatives + # in that case, break nneg and add a few more positives ? + n_positives = target_n_corres - n_negatives + assert n_positives <= len(pos1) + + assert n_positives <= len(pos1) + assert n_positives <= len(pos2) + assert n_negatives <= (~is_reciprocal1).sum() + assert n_negatives <= (~is_reciprocal2).sum() + assert n_positives + n_negatives == target_n_corres + + valid = np.ones(n_positives, dtype=bool) + if n_positives < len(pos1): + # random sub-sampling of valid correspondences + perm = rng.permutation(len(pos1))[:n_positives] + pos1 = pos1[perm] + pos2 = pos2[perm] + + if n_negatives > 0: + # add false correspondences if not enough + def norm(p): return p / p.sum() + pos1 = np.r_[pos1, rng.choice(shape1[0] * shape1[1], size=n_negatives, replace=False, p=norm(~is_reciprocal1))] + pos2 = np.r_[pos2, rng.choice(shape2[0] * shape2[1], size=n_negatives, replace=False, p=norm(~is_reciprocal2))] + valid = np.r_[valid, np.zeros(n_negatives, dtype=bool)] + + # convert (x+W*y) back to 2d (x,y) coordinates + if ret_xy: + pos1 = unravel_xy(pos1, shape1) + pos2 = unravel_xy(pos2, shape2) + return pos1, pos2, valid + + +def reproject_view(pts3d, view2): + shape = view2['pts3d'].shape[:2] + return reproject(pts3d, view2['camera_intrinsics'], inv(view2['camera_pose']), shape) + + +def reproject(pts3d, K, world2cam, shape): + H, W, THREE = pts3d.shape + assert THREE == 3 + + # reproject in camera2 space + with np.errstate(divide='ignore', invalid='ignore'): + pos = geotrf(K @ world2cam[:3], pts3d, norm=1, ncol=2) + + # quantize to pixel positions + return (H, W), ravel_xy(pos, shape) + + +def ravel_xy(pos, shape): + H, W = shape + with np.errstate(invalid='ignore'): + qx, qy = pos.reshape(-1, 2).round().astype(np.int32).T + quantized_pos = qx.clip(min=0, max=W - 1, out=qx) + W * qy.clip(min=0, max=H - 1, out=qy) + return quantized_pos + + +def unravel_xy(pos, shape): + # convert (x+W*y) back to 2d (x,y) coordinates + return np.unravel_index(pos, shape)[0].base[:, ::-1].copy() + + +def _rotation_origin_to_pt(target): + """ Align the origin (0,0,1) with the target point (x,y,1) in projective space. + Method: rotate z to put target on (x'+,0,1), then rotate on Y to get (0,0,1) and un-rotate z. + """ + from scipy.spatial.transform import Rotation + x, y = target + rot_z = np.arctan2(y, x) + rot_y = np.arctan(np.linalg.norm(target)) + R = Rotation.from_euler('ZYZ', [rot_z, rot_y, -rot_z]).as_matrix() + return R + + +def _dotmv(Trf, pts, ncol=None, norm=False): + assert Trf.ndim >= 2 + ncol = ncol or pts.shape[-1] + + # adapt shape if necessary + output_reshape = pts.shape[:-1] + if Trf.ndim >= 3: + n = Trf.ndim - 2 + assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match' + Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1]) + + if pts.ndim > Trf.ndim: + # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d) + pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1]) + elif pts.ndim == 2: + # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d) + pts = pts[:, None, :] + + if pts.shape[-1] + 1 == Trf.shape[-1]: + Trf = Trf.swapaxes(-1, -2) # transpose Trf + pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :] + + elif pts.shape[-1] == Trf.shape[-1]: + Trf = Trf.swapaxes(-1, -2) # transpose Trf + pts = pts @ Trf + else: + pts = Trf @ pts.T + if pts.ndim >= 2: + pts = pts.swapaxes(-1, -2) + + if norm: + pts = pts / pts[..., -1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG + if norm != 1: + pts *= norm + + res = pts[..., :ncol].reshape(*output_reshape, ncol) + return res + + +def crop_to_homography(K, crop, target_size=None): + """ Given an image and its intrinsics, + we want to replicate a rectangular crop with an homography, + so that the principal point of the new 'crop' is centered. + """ + # build intrinsics for the crop + crop = np.round(crop) + crop_size = crop[2:] - crop[:2] + K2 = K.copy() # same focal + K2[:2, 2] = crop_size / 2 # new principal point is perfectly centered + + # find which corner is the most far-away from current principal point + # so that the final homography does not go over the image borders + corners = crop.reshape(-1, 2) + corner_idx = np.abs(corners - K[:2, 2]).argmax(0) + corner = corners[corner_idx, [0, 1]] + # align with the corresponding corner from the target view + corner2 = np.c_[[0, 0], crop_size][[0, 1], corner_idx] + + old_pt = _dotmv(np.linalg.inv(K), corner, norm=1) + new_pt = _dotmv(np.linalg.inv(K2), corner2, norm=1) + R = _rotation_origin_to_pt(old_pt) @ np.linalg.inv(_rotation_origin_to_pt(new_pt)) + + if target_size is not None: + imsize = target_size + target_size = np.asarray(target_size) + scaling = min(target_size / crop_size) + K2[:2] *= scaling + K2[:2, 2] = target_size / 2 + else: + imsize = tuple(np.int32(crop_size).tolist()) + + return imsize, K2, R, K @ R @ np.linalg.inv(K2) + + +def gen_random_crops(imsize, n_crops, resolution, aug_crop, rng=np.random): + """ Generate random crops of size=resolution, + for an input image upscaled to (imsize + randint(0 , aug_crop)) + """ + resolution_crop = np.array(resolution) * min(np.array(imsize) / resolution) + + # (virtually) upscale the input image + # scaling = rng.uniform(1, 1+(aug_crop+1)/min(imsize)) + scaling = np.exp(rng.uniform(0, np.log(1 + aug_crop / min(imsize)))) + imsize2 = np.int32(np.array(imsize) * scaling) + + # generate some random crops + topleft = rng.random((n_crops, 2)) * (imsize2 - resolution_crop) + crops = np.c_[topleft, topleft + resolution_crop] + # print(f"{scaling=}, {topleft=}") + # reduce the resolution to come back to original size + crops /= scaling + return crops + + +def in2d_rect(corres, crops): + # corres = (N,2) + # crops = (M,4) + # output = (N, M) + is_sup = (corres[:, None] >= crops[None, :, 0:2]) + is_inf = (corres[:, None] < crops[None, :, 2:4]) + return (is_sup & is_inf).all(axis=-1) diff --git a/modules/mast3r/demo.py b/modules/mast3r/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..22b6a66c24666776a7197844a0463d7821ed53ce --- /dev/null +++ b/modules/mast3r/demo.py @@ -0,0 +1,331 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# sparse gradio demo functions +# -------------------------------------------------------- +import math +import gradio +import os +import numpy as np +import functools +import trimesh +import copy +from scipy.spatial.transform import Rotation +import tempfile +import shutil + +from mast3r.cloud_opt.sparse_ga import sparse_global_alignment +from mast3r.cloud_opt.tsdf_optimizer import TSDFPostProcess + +import mast3r.utils.path_to_dust3r # noqa +from dust3r.image_pairs import make_pairs +from dust3r.utils.image import load_images +from dust3r.utils.device import to_numpy +from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes +from dust3r.demo import get_args_parser as dust3r_get_args_parser + +import matplotlib.pyplot as pl + + +class SparseGAState(): + def __init__(self, sparse_ga, should_delete=False, cache_dir=None, outfile_name=None): + self.sparse_ga = sparse_ga + self.cache_dir = cache_dir + self.outfile_name = outfile_name + self.should_delete = should_delete + + def __del__(self): + if not self.should_delete: + return + if self.cache_dir is not None and os.path.isdir(self.cache_dir): + shutil.rmtree(self.cache_dir) + self.cache_dir = None + if self.outfile_name is not None and os.path.isfile(self.outfile_name): + os.remove(self.outfile_name) + self.outfile_name = None + + +def get_args_parser(): + parser = dust3r_get_args_parser() + parser.add_argument('--share', action='store_true') + parser.add_argument('--gradio_delete_cache', default=None, type=int, + help='age/frequency at which gradio removes the file. If >0, matching cache is purged') + + actions = parser._actions + for action in actions: + if action.dest == 'model_name': + action.choices = ["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"] + # change defaults + parser.prog = 'mast3r demo' + return parser + + +def _convert_scene_output_to_glb(outfile, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, + cam_color=None, as_pointcloud=False, + transparent_cams=False, silent=False): + assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) + pts3d = to_numpy(pts3d) + imgs = to_numpy(imgs) + focals = to_numpy(focals) + cams2world = to_numpy(cams2world) + + scene = trimesh.Scene() + + # full pointcloud + if as_pointcloud: + pts = np.concatenate([p[m.ravel()] for p, m in zip(pts3d, mask)]).reshape(-1, 3) + col = np.concatenate([p[m] for p, m in zip(imgs, mask)]).reshape(-1, 3) + valid_msk = np.isfinite(pts.sum(axis=1)) + pct = trimesh.PointCloud(pts[valid_msk], colors=col[valid_msk]) + scene.add_geometry(pct) + else: + meshes = [] + for i in range(len(imgs)): + pts3d_i = pts3d[i].reshape(imgs[i].shape) + msk_i = mask[i] & np.isfinite(pts3d_i.sum(axis=-1)) + meshes.append(pts3d_to_trimesh(imgs[i], pts3d_i, msk_i)) + mesh = trimesh.Trimesh(**cat_meshes(meshes)) + scene.add_geometry(mesh) + + # add each camera + for i, pose_c2w in enumerate(cams2world): + if isinstance(cam_color, list): + camera_edge_color = cam_color[i] + else: + camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] + add_scene_cam(scene, pose_c2w, camera_edge_color, + None if transparent_cams else imgs[i], focals[i], + imsize=imgs[i].shape[1::-1], screen_width=cam_size) + + rot = np.eye(4) + rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() + scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) + if not silent: + print('(exporting 3D scene to', outfile, ')') + scene.export(file_obj=outfile) + return outfile + + +def get_3D_model_from_scene(silent, scene_state, min_conf_thr=2, as_pointcloud=False, mask_sky=False, + clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0): + """ + extract 3D_model (glb file) from a reconstructed scene + """ + if scene_state is None: + return None + outfile = scene_state.outfile_name + if outfile is None: + return None + + # get optimized values from scene + scene = scene_state.sparse_ga + rgbimg = scene.imgs + focals = scene.get_focals().cpu() + cams2world = scene.get_im_poses().cpu() + + # 3D pointcloud from depthmap, poses and intrinsics + if TSDF_thresh > 0: + tsdf = TSDFPostProcess(scene, TSDF_thresh=TSDF_thresh) + pts3d, _, confs = to_numpy(tsdf.get_dense_pts3d(clean_depth=clean_depth)) + else: + pts3d, _, confs = to_numpy(scene.get_dense_pts3d(clean_depth=clean_depth)) + msk = to_numpy([c > min_conf_thr for c in confs]) + return _convert_scene_output_to_glb(outfile, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, + transparent_cams=transparent_cams, cam_size=cam_size, silent=silent) + + +def get_reconstructed_scene(outdir, gradio_delete_cache, model, device, silent, image_size, current_scene_state, + filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, + as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, + win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw): + """ + from a list of images, run mast3r inference, sparse global aligner. + then run get_3D_model_from_scene + """ + imgs = load_images(filelist, size=image_size, verbose=not silent) + if len(imgs) == 1: + imgs = [imgs[0], copy.deepcopy(imgs[0])] + imgs[1]['idx'] = 1 + filelist = [filelist[0], filelist[0] + '_2'] + + scene_graph_params = [scenegraph_type] + if scenegraph_type in ["swin", "logwin"]: + scene_graph_params.append(str(winsize)) + elif scenegraph_type == "oneref": + scene_graph_params.append(str(refid)) + if scenegraph_type in ["swin", "logwin"] and not win_cyclic: + scene_graph_params.append('noncyclic') + scene_graph = '-'.join(scene_graph_params) + pairs = make_pairs(imgs, scene_graph=scene_graph, prefilter=None, symmetrize=True) + if optim_level == 'coarse': + niter2 = 0 + # Sparse GA (forward mast3r -> matching -> 3D optim -> 2D refinement -> triangulation) + if current_scene_state is not None and \ + not current_scene_state.should_delete and \ + current_scene_state.cache_dir is not None: + cache_dir = current_scene_state.cache_dir + elif gradio_delete_cache: + cache_dir = tempfile.mkdtemp(suffix='_cache', dir=outdir) + else: + cache_dir = os.path.join(outdir, 'cache') + os.makedirs(cache_dir, exist_ok=True) + scene = sparse_global_alignment(filelist, pairs, cache_dir, + model, lr1=lr1, niter1=niter1, lr2=lr2, niter2=niter2, device=device, + opt_depth='depth' in optim_level, shared_intrinsics=shared_intrinsics, + matching_conf_thr=matching_conf_thr, **kw) + if current_scene_state is not None and \ + not current_scene_state.should_delete and \ + current_scene_state.outfile_name is not None: + outfile_name = current_scene_state.outfile_name + else: + outfile_name = tempfile.mktemp(suffix='_scene.glb', dir=outdir) + + scene_state = SparseGAState(scene, gradio_delete_cache, cache_dir, outfile_name) + outfile = get_3D_model_from_scene(silent, scene_state, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size, TSDF_thresh) + return scene_state, outfile + + +def set_scenegraph_options(inputfiles, win_cyclic, refid, scenegraph_type): + num_files = len(inputfiles) if inputfiles is not None else 1 + show_win_controls = scenegraph_type in ["swin", "logwin"] + show_winsize = scenegraph_type in ["swin", "logwin"] + show_cyclic = scenegraph_type in ["swin", "logwin"] + max_winsize, min_winsize = 1, 1 + if scenegraph_type == "swin": + if win_cyclic: + max_winsize = max(1, math.ceil((num_files - 1) / 2)) + else: + max_winsize = num_files - 1 + elif scenegraph_type == "logwin": + if win_cyclic: + half_size = math.ceil((num_files - 1) / 2) + max_winsize = max(1, math.ceil(math.log(half_size, 2))) + else: + max_winsize = max(1, math.ceil(math.log(num_files, 2))) + winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, + minimum=min_winsize, maximum=max_winsize, step=1, visible=show_winsize) + win_cyclic = gradio.Checkbox(value=win_cyclic, label="Cyclic sequence", visible=show_cyclic) + win_col = gradio.Column(visible=show_win_controls) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, + maximum=num_files - 1, step=1, visible=scenegraph_type == 'oneref') + return win_col, winsize, win_cyclic, refid + + +def main_demo(tmpdirname, model, device, image_size, server_name, server_port, silent=False, + share=False, gradio_delete_cache=False): + if not silent: + print('Outputing stuff in', tmpdirname) + + recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, gradio_delete_cache, model, device, + silent, image_size) + model_from_scene_fun = functools.partial(get_3D_model_from_scene, silent) + + def get_context(delete_cache): + css = """.gradio-container {margin: 0 !important; min-width: 100%};""" + title = "MASt3R Demo" + if delete_cache: + return gradio.Blocks(css=css, title=title, delete_cache=(delete_cache, delete_cache)) + else: + return gradio.Blocks(css=css, title="MASt3R Demo") # for compatibility with older versions + + with get_context(gradio_delete_cache) as demo: + # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference + scene = gradio.State(None) + gradio.HTML('

MASt3R Demo

') + with gradio.Column(): + inputfiles = gradio.File(file_count="multiple") + with gradio.Row(): + with gradio.Column(): + with gradio.Row(): + lr1 = gradio.Slider(label="Coarse LR", value=0.07, minimum=0.01, maximum=0.2, step=0.01) + niter1 = gradio.Number(value=500, precision=0, minimum=0, maximum=10_000, + label="num_iterations", info="For coarse alignment!") + lr2 = gradio.Slider(label="Fine LR", value=0.014, minimum=0.005, maximum=0.05, step=0.001) + niter2 = gradio.Number(value=200, precision=0, minimum=0, maximum=100_000, + label="num_iterations", info="For refinement!") + optim_level = gradio.Dropdown(["coarse", "refine", "refine+depth"], + value='refine+depth', label="OptLevel", + info="Optimization level") + with gradio.Row(): + matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5., + minimum=0., maximum=30., step=0.1, + info="Before Fallback to Regr3D!") + shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics", + info="Only optimize one set of intrinsics for all views") + scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"), + ("swin: sliding window", "swin"), + ("logwin: sliding window with long range", "logwin"), + ("oneref: match one image with all", "oneref")], + value='complete', label="Scenegraph", + info="Define how to make pairs", + interactive=True) + with gradio.Column(visible=False) as win_col: + winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, + minimum=1, maximum=1, step=1) + win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence") + refid = gradio.Slider(label="Scene Graph: Id", value=0, + minimum=0, maximum=0, step=1, visible=False) + run_btn = gradio.Button("Run") + + with gradio.Row(): + # adjust the confidence threshold + min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1) + # adjust the camera size in the output pointcloud + cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001) + TSDF_thresh = gradio.Slider(label="TSDF Threshold", value=0., minimum=0., maximum=1., step=0.01) + with gradio.Row(): + as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud") + # two post process implemented + mask_sky = gradio.Checkbox(value=False, label="Mask sky") + clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") + transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") + + outmodel = gradio.Model3D() + + # events + scenegraph_type.change(set_scenegraph_options, + inputs=[inputfiles, win_cyclic, refid, scenegraph_type], + outputs=[win_col, winsize, win_cyclic, refid]) + inputfiles.change(set_scenegraph_options, + inputs=[inputfiles, win_cyclic, refid, scenegraph_type], + outputs=[win_col, winsize, win_cyclic, refid]) + win_cyclic.change(set_scenegraph_options, + inputs=[inputfiles, win_cyclic, refid, scenegraph_type], + outputs=[win_col, winsize, win_cyclic, refid]) + run_btn.click(fn=recon_fun, + inputs=[scene, inputfiles, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, + as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, + scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics], + outputs=[scene, outmodel]) + min_conf_thr.release(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size, TSDF_thresh], + outputs=outmodel) + cam_size.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size, TSDF_thresh], + outputs=outmodel) + TSDF_thresh.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size, TSDF_thresh], + outputs=outmodel) + as_pointcloud.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size, TSDF_thresh], + outputs=outmodel) + mask_sky.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size, TSDF_thresh], + outputs=outmodel) + clean_depth.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size, TSDF_thresh], + outputs=outmodel) + transparent_cams.change(model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size, TSDF_thresh], + outputs=outmodel) + demo.launch(share=share, server_name=server_name, server_port=server_port) diff --git a/modules/mast3r/fast_nn.py b/modules/mast3r/fast_nn.py new file mode 100644 index 0000000000000000000000000000000000000000..05537f43c1be10b3733e80def8295c2ff5b5b8c0 --- /dev/null +++ b/modules/mast3r/fast_nn.py @@ -0,0 +1,223 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# MASt3R Fast Nearest Neighbor +# -------------------------------------------------------- +import torch +import numpy as np +import math +from scipy.spatial import KDTree + +import mast3r.utils.path_to_dust3r # noqa +from dust3r.utils.device import to_numpy, todevice # noqa + + +@torch.no_grad() +def bruteforce_reciprocal_nns(A, B, device='cuda', block_size=None, dist='l2'): + if isinstance(A, np.ndarray): + A = torch.from_numpy(A).to(device) + if isinstance(B, np.ndarray): + B = torch.from_numpy(B).to(device) + + A = A.to(device) + B = B.to(device) + + if dist == 'l2': + dist_func = torch.cdist + argmin = torch.min + elif dist == 'dot': + def dist_func(A, B): + return A @ B.T + + def argmin(X, dim): + sim, nn = torch.max(X, dim=dim) + return sim.neg_(), nn + else: + raise ValueError(f'Unknown {dist=}') + + if block_size is None or len(A) * len(B) <= block_size**2: + dists = dist_func(A, B) + _, nn_A = argmin(dists, dim=1) + _, nn_B = argmin(dists, dim=0) + else: + dis_A = torch.full((A.shape[0],), float('inf'), device=device, dtype=A.dtype) + dis_B = torch.full((B.shape[0],), float('inf'), device=device, dtype=B.dtype) + nn_A = torch.full((A.shape[0],), -1, device=device, dtype=torch.int64) + nn_B = torch.full((B.shape[0],), -1, device=device, dtype=torch.int64) + number_of_iteration_A = math.ceil(A.shape[0] / block_size) + number_of_iteration_B = math.ceil(B.shape[0] / block_size) + + for i in range(number_of_iteration_A): + A_i = A[i * block_size:(i + 1) * block_size] + for j in range(number_of_iteration_B): + B_j = B[j * block_size:(j + 1) * block_size] + dists_blk = dist_func(A_i, B_j) # A, B, 1 + # dists_blk = dists[i * block_size:(i+1)*block_size, j * block_size:(j+1)*block_size] + min_A_i, argmin_A_i = argmin(dists_blk, dim=1) + min_B_j, argmin_B_j = argmin(dists_blk, dim=0) + + col_mask = min_A_i < dis_A[i * block_size:(i + 1) * block_size] + line_mask = min_B_j < dis_B[j * block_size:(j + 1) * block_size] + + dis_A[i * block_size:(i + 1) * block_size][col_mask] = min_A_i[col_mask] + dis_B[j * block_size:(j + 1) * block_size][line_mask] = min_B_j[line_mask] + + nn_A[i * block_size:(i + 1) * block_size][col_mask] = argmin_A_i[col_mask] + (j * block_size) + nn_B[j * block_size:(j + 1) * block_size][line_mask] = argmin_B_j[line_mask] + (i * block_size) + nn_A = nn_A.cpu().numpy() + nn_B = nn_B.cpu().numpy() + return nn_A, nn_B + + +class cdistMatcher: + def __init__(self, db_pts, device='cuda'): + self.db_pts = db_pts.to(device) + self.device = device + + def query(self, queries, k=1, **kw): + assert k == 1 + if queries.numel() == 0: + return None, [] + nnA, nnB = bruteforce_reciprocal_nns(queries, self.db_pts, device=self.device, **kw) + dis = None + return dis, nnA + + +def merge_corres(idx1, idx2, shape1=None, shape2=None, ret_xy=True, ret_index=False): + assert idx1.dtype == idx2.dtype == np.int32 + + # unique and sort along idx1 + corres = np.unique(np.c_[idx2, idx1].view(np.int64), return_index=ret_index) + if ret_index: + corres, indices = corres + xy2, xy1 = corres[:, None].view(np.int32).T + + if ret_xy: + assert shape1 and shape2 + xy1 = np.unravel_index(xy1, shape1) + xy2 = np.unravel_index(xy2, shape2) + if ret_xy != 'y_x': + xy1 = xy1[0].base[:, ::-1] + xy2 = xy2[0].base[:, ::-1] + + if ret_index: + return xy1, xy2, indices + return xy1, xy2 + + +def fast_reciprocal_NNs(pts1, pts2, subsample_or_initxy1=8, ret_xy=True, pixel_tol=0, ret_basin=False, + device='cuda', **matcher_kw): + H1, W1, DIM1 = pts1.shape + H2, W2, DIM2 = pts2.shape + assert DIM1 == DIM2 + + pts1 = pts1.reshape(-1, DIM1) + pts2 = pts2.reshape(-1, DIM2) + + if isinstance(subsample_or_initxy1, int) and pixel_tol == 0: + S = subsample_or_initxy1 + y1, x1 = np.mgrid[S // 2:H1:S, S // 2:W1:S].reshape(2, -1) + max_iter = 10 + else: + x1, y1 = subsample_or_initxy1 + if isinstance(x1, torch.Tensor): + x1 = x1.cpu().numpy() + if isinstance(y1, torch.Tensor): + y1 = y1.cpu().numpy() + max_iter = 1 + + xy1 = np.int32(np.unique(x1 + W1 * y1)) # make sure there's no doublons + xy2 = np.full_like(xy1, -1) + old_xy1 = xy1.copy() + old_xy2 = xy2.copy() + + if 'dist' in matcher_kw or 'block_size' in matcher_kw \ + or (isinstance(device, str) and device.startswith('cuda')) \ + or (isinstance(device, torch.device) and device.type.startswith('cuda')): + pts1 = pts1.to(device) + pts2 = pts2.to(device) + tree1 = cdistMatcher(pts1, device=device) + tree2 = cdistMatcher(pts2, device=device) + else: + pts1, pts2 = to_numpy((pts1, pts2)) + tree1 = KDTree(pts1) + tree2 = KDTree(pts2) + + notyet = np.ones(len(xy1), dtype=bool) + basin = np.full((H1 * W1 + 1,), -1, dtype=np.int32) if ret_basin else None + + niter = 0 + # n_notyet = [len(notyet)] + while notyet.any(): + _, xy2[notyet] = to_numpy(tree2.query(pts1[xy1[notyet]], **matcher_kw)) + if not ret_basin: + notyet &= (old_xy2 != xy2) # remove points that have converged + + _, xy1[notyet] = to_numpy(tree1.query(pts2[xy2[notyet]], **matcher_kw)) + if ret_basin: + basin[old_xy1[notyet]] = xy1[notyet] + notyet &= (old_xy1 != xy1) # remove points that have converged + + # n_notyet.append(notyet.sum()) + niter += 1 + if niter >= max_iter: + break + + old_xy2[:] = xy2 + old_xy1[:] = xy1 + + # print('notyet_stats:', ' '.join(map(str, (n_notyet+[0]*10)[:max_iter]))) + + if pixel_tol > 0: + # in case we only want to match some specific points + # and still have some way of checking reciprocity + old_yx1 = np.unravel_index(old_xy1, (H1, W1))[0].base + new_yx1 = np.unravel_index(xy1, (H1, W1))[0].base + dis = np.linalg.norm(old_yx1 - new_yx1, axis=-1) + converged = dis < pixel_tol + if not isinstance(subsample_or_initxy1, int): + xy1 = old_xy1 # replace new points by old ones + else: + converged = ~notyet # converged correspondences + + # keep only unique correspondences, and sort on xy1 + xy1, xy2 = merge_corres(xy1[converged], xy2[converged], (H1, W1), (H2, W2), ret_xy=ret_xy) + if ret_basin: + return xy1, xy2, basin + return xy1, xy2 + + +def extract_correspondences_nonsym(A, B, confA, confB, subsample=8, device=None, ptmap_key='pred_desc', pixel_tol=0): + if '3d' in ptmap_key: + opt = dict(device='cpu', workers=32) + else: + opt = dict(device=device, dist='dot', block_size=2**13) + + # matching the two pairs + idx1 = [] + idx2 = [] + # merge corres from opposite pairs + HA, WA = A.shape[:2] + HB, WB = B.shape[:2] + if pixel_tol == 0: + nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=subsample, ret_xy=False, **opt) + nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=subsample, ret_xy=False, **opt) + else: + S = subsample + yA, xA = np.mgrid[S // 2:HA:S, S // 2:WA:S].reshape(2, -1) + yB, xB = np.mgrid[S // 2:HB:S, S // 2:WB:S].reshape(2, -1) + + nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=(xA, yA), ret_xy=False, pixel_tol=pixel_tol, **opt) + nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=(xB, yB), ret_xy=False, pixel_tol=pixel_tol, **opt) + + idx1 = np.r_[nn1to2[0], nn2to1[1]] + idx2 = np.r_[nn1to2[1], nn2to1[0]] + + c1 = confA.ravel()[idx1] + c2 = confB.ravel()[idx2] + + xy1, xy2, idx = merge_corres(idx1, idx2, (HA, WA), (HB, WB), ret_xy=True, ret_index=True) + conf = np.minimum(c1[idx], c2[idx]) + corres = (xy1.copy(), xy2.copy(), conf) + return todevice(corres, device) diff --git a/modules/mast3r/losses.py b/modules/mast3r/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..3a50f57481e436d7752dcbf2b414be3ea65ee76b --- /dev/null +++ b/modules/mast3r/losses.py @@ -0,0 +1,508 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Implementation of MASt3R training losses +# -------------------------------------------------------- +import torch +import torch.nn as nn +import numpy as np +from sklearn.metrics import average_precision_score + +import mast3r.utils.path_to_dust3r # noqa +from dust3r.losses import BaseCriterion, Criterion, MultiLoss, Sum, ConfLoss +from dust3r.losses import Regr3D as Regr3D_dust3r +from dust3r.utils.geometry import (geotrf, inv, normalize_pointcloud) +from dust3r.inference import get_pred_pts3d +from dust3r.utils.geometry import get_joint_pointcloud_depth, get_joint_pointcloud_center_scale + + +def apply_log_to_norm(xyz): + d = xyz.norm(dim=-1, keepdim=True) + xyz = xyz / d.clip(min=1e-8) + xyz = xyz * torch.log1p(d) + return xyz + + +class Regr3D (Regr3D_dust3r): + def __init__(self, criterion, norm_mode='avg_dis', gt_scale=False, opt_fit_gt=False, + sky_loss_value=2, max_metric_scale=False, loss_in_log=False): + self.loss_in_log = loss_in_log + if norm_mode.startswith('?'): + # do no norm pts from metric scale datasets + self.norm_all = False + self.norm_mode = norm_mode[1:] + else: + self.norm_all = True + self.norm_mode = norm_mode + super().__init__(criterion, self.norm_mode, gt_scale) + + self.sky_loss_value = sky_loss_value + self.max_metric_scale = max_metric_scale + + def get_all_pts3d(self, gt1, gt2, pred1, pred2, dist_clip=None): + # everything is normalized w.r.t. camera of view1 + in_camera1 = inv(gt1['camera_pose']) + gt_pts1 = geotrf(in_camera1, gt1['pts3d']) # B,H,W,3 + gt_pts2 = geotrf(in_camera1, gt2['pts3d']) # B,H,W,3 + + valid1 = gt1['valid_mask'].clone() + valid2 = gt2['valid_mask'].clone() + + if dist_clip is not None: + # points that are too far-away == invalid + dis1 = gt_pts1.norm(dim=-1) # (B, H, W) + dis2 = gt_pts2.norm(dim=-1) # (B, H, W) + valid1 = valid1 & (dis1 <= dist_clip) + valid2 = valid2 & (dis2 <= dist_clip) + + if self.loss_in_log == 'before': + # this only make sense when depth_mode == 'linear' + gt_pts1 = apply_log_to_norm(gt_pts1) + gt_pts2 = apply_log_to_norm(gt_pts2) + + pr_pts1 = get_pred_pts3d(gt1, pred1, use_pose=False).clone() + pr_pts2 = get_pred_pts3d(gt2, pred2, use_pose=True).clone() + + if not self.norm_all: + if self.max_metric_scale: + B = valid1.shape[0] + # valid1: B, H, W + # torch.linalg.norm(gt_pts1, dim=-1) -> B, H, W + # dist1_to_cam1 -> reshape to B, H*W + dist1_to_cam1 = torch.where(valid1, torch.linalg.norm(gt_pts1, dim=-1), 0).view(B, -1) + dist2_to_cam1 = torch.where(valid2, torch.linalg.norm(gt_pts2, dim=-1), 0).view(B, -1) + + # is_metric_scale: B + # dist1_to_cam1.max(dim=-1).values -> B + gt1['is_metric_scale'] = gt1['is_metric_scale'] \ + & (dist1_to_cam1.max(dim=-1).values < self.max_metric_scale) \ + & (dist2_to_cam1.max(dim=-1).values < self.max_metric_scale) + gt2['is_metric_scale'] = gt1['is_metric_scale'] + + mask = ~gt1['is_metric_scale'] + else: + mask = torch.ones_like(gt1['is_metric_scale']) + # normalize 3d points + if self.norm_mode and mask.any(): + pr_pts1[mask], pr_pts2[mask] = normalize_pointcloud(pr_pts1[mask], pr_pts2[mask], self.norm_mode, + valid1[mask], valid2[mask]) + + if self.norm_mode and not self.gt_scale: + gt_pts1, gt_pts2, norm_factor = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode, + valid1, valid2, ret_factor=True) + # apply the same normalization to prediction + pr_pts1[~mask] = pr_pts1[~mask] / norm_factor[~mask] + pr_pts2[~mask] = pr_pts2[~mask] / norm_factor[~mask] + + # return sky segmentation, making sure they don't include any labelled 3d points + sky1 = gt1['sky_mask'] & (~valid1) + sky2 = gt2['sky_mask'] & (~valid2) + return gt_pts1, gt_pts2, pr_pts1, pr_pts2, valid1, valid2, sky1, sky2, {} + + def compute_loss(self, gt1, gt2, pred1, pred2, **kw): + gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \ + self.get_all_pts3d(gt1, gt2, pred1, pred2, **kw) + + if self.sky_loss_value > 0: + assert self.criterion.reduction == 'none', 'sky_loss_value should be 0 if no conf loss' + # add the sky pixel as "valid" pixels... + mask1 = mask1 | sky1 + mask2 = mask2 | sky2 + + # loss on img1 side + pred_pts1 = pred_pts1[mask1] + gt_pts1 = gt_pts1[mask1] + if self.loss_in_log and self.loss_in_log != 'before': + # this only make sense when depth_mode == 'exp' + pred_pts1 = apply_log_to_norm(pred_pts1) + gt_pts1 = apply_log_to_norm(gt_pts1) + l1 = self.criterion(pred_pts1, gt_pts1) + + # loss on gt2 side + pred_pts2 = pred_pts2[mask2] + gt_pts2 = gt_pts2[mask2] + if self.loss_in_log and self.loss_in_log != 'before': + pred_pts2 = apply_log_to_norm(pred_pts2) + gt_pts2 = apply_log_to_norm(gt_pts2) + l2 = self.criterion(pred_pts2, gt_pts2) + + if self.sky_loss_value > 0: + assert self.criterion.reduction == 'none', 'sky_loss_value should be 0 if no conf loss' + # ... but force the loss to be high there + l1 = torch.where(sky1[mask1], self.sky_loss_value, l1) + l2 = torch.where(sky2[mask2], self.sky_loss_value, l2) + self_name = type(self).__name__ + details = {self_name + '_pts3d_1': float(l1.mean()), self_name + '_pts3d_2': float(l2.mean())} + return Sum((l1, mask1), (l2, mask2)), (details | monitoring) + + +class Regr3D_ShiftInv (Regr3D): + """ Same than Regr3D but invariant to depth shift. + """ + + def get_all_pts3d(self, gt1, gt2, pred1, pred2): + # compute unnormalized points + gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \ + super().get_all_pts3d(gt1, gt2, pred1, pred2) + + # compute median depth + gt_z1, gt_z2 = gt_pts1[..., 2], gt_pts2[..., 2] + pred_z1, pred_z2 = pred_pts1[..., 2], pred_pts2[..., 2] + gt_shift_z = get_joint_pointcloud_depth(gt_z1, gt_z2, mask1, mask2)[:, None, None] + pred_shift_z = get_joint_pointcloud_depth(pred_z1, pred_z2, mask1, mask2)[:, None, None] + + # subtract the median depth + gt_z1 -= gt_shift_z + gt_z2 -= gt_shift_z + pred_z1 -= pred_shift_z + pred_z2 -= pred_shift_z + + # monitoring = dict(monitoring, gt_shift_z=gt_shift_z.mean().detach(), pred_shift_z=pred_shift_z.mean().detach()) + return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring + + +class Regr3D_ScaleInv (Regr3D): + """ Same than Regr3D but invariant to depth scale. + if gt_scale == True: enforce the prediction to take the same scale than GT + """ + + def get_all_pts3d(self, gt1, gt2, pred1, pred2): + # compute depth-normalized points + gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \ + super().get_all_pts3d(gt1, gt2, pred1, pred2) + + # measure scene scale + _, gt_scale = get_joint_pointcloud_center_scale(gt_pts1, gt_pts2, mask1, mask2) + _, pred_scale = get_joint_pointcloud_center_scale(pred_pts1, pred_pts2, mask1, mask2) + + # prevent predictions to be in a ridiculous range + pred_scale = pred_scale.clip(min=1e-3, max=1e3) + + # subtract the median depth + if self.gt_scale: + pred_pts1 *= gt_scale / pred_scale + pred_pts2 *= gt_scale / pred_scale + # monitoring = dict(monitoring, pred_scale=(pred_scale/gt_scale).mean()) + else: + gt_pts1 /= gt_scale + gt_pts2 /= gt_scale + pred_pts1 /= pred_scale + pred_pts2 /= pred_scale + # monitoring = dict(monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach()) + + return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring + + +class Regr3D_ScaleShiftInv (Regr3D_ScaleInv, Regr3D_ShiftInv): + # calls Regr3D_ShiftInv first, then Regr3D_ScaleInv + pass + + +def get_similarities(desc1, desc2, euc=False): + if euc: # euclidean distance in same range than similarities + dists = (desc1[:, :, None] - desc2[:, None]).norm(dim=-1) + sim = 1 / (1 + dists) + else: + # Compute similarities + sim = desc1 @ desc2.transpose(-2, -1) + return sim + + +class MatchingCriterion(BaseCriterion): + def __init__(self, reduction='mean', fp=torch.float32): + super().__init__(reduction) + self.fp = fp + + def forward(self, a, b, valid_matches=None, euc=False): + assert a.ndim >= 2 and 1 <= a.shape[-1], f'Bad shape = {a.shape}' + dist = self.loss(a.to(self.fp), b.to(self.fp), valid_matches, euc=euc) + # one dimension less or reduction to single value + assert (valid_matches is None and dist.ndim == a.ndim - + 1) or self.reduction in ['mean', 'sum', '1-mean', 'none'] + if self.reduction == 'none': + return dist + if self.reduction == 'sum': + return dist.sum() + if self.reduction == 'mean': + return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) + if self.reduction == '1-mean': + return 1. - dist.mean() if dist.numel() > 0 else dist.new_ones(()) + raise ValueError(f'bad {self.reduction=} mode') + + def loss(self, a, b, valid_matches=None): + raise NotImplementedError + + +class InfoNCE(MatchingCriterion): + def __init__(self, temperature=0.07, eps=1e-8, mode='all', **kwargs): + super().__init__(**kwargs) + self.temperature = temperature + self.eps = eps + assert mode in ['all', 'proper', 'dual'] + self.mode = mode + + def loss(self, desc1, desc2, valid_matches=None, euc=False): + # valid positives are along diagonals + B, N, D = desc1.shape + B2, N2, D2 = desc2.shape + assert B == B2 and D == D2 + if valid_matches is None: + valid_matches = torch.ones([B, N], dtype=bool) + # torch.all(valid_matches.sum(dim=-1) > 0) some pairs have no matches???? + assert valid_matches.shape == torch.Size([B, N]) and valid_matches.sum() > 0 + + # Tempered similarities + sim = get_similarities(desc1, desc2, euc) / self.temperature + sim[sim.isnan()] = -torch.inf # ignore nans + # Softmax of positives with temperature + sim = sim.exp_() # save peak memory + positives = sim.diagonal(dim1=-2, dim2=-1) + + # Loss + if self.mode == 'all': # Previous InfoNCE + loss = -torch.log((positives / sim.sum(dim=-1).sum(dim=-1, keepdim=True)).clip(self.eps)) + elif self.mode == 'proper': # Proper InfoNCE + loss = -(torch.log((positives / sim.sum(dim=-2)).clip(self.eps)) + + torch.log((positives / sim.sum(dim=-1)).clip(self.eps))) + elif self.mode == 'dual': # Dual Softmax + loss = -(torch.log((positives**2 / sim.sum(dim=-1) / sim.sum(dim=-2)).clip(self.eps))) + else: + raise ValueError("This should not happen...") + return loss[valid_matches] + + +class APLoss (MatchingCriterion): + """ AP loss. + """ + + def __init__(self, nq='torch', min=0, max=1, euc=False, **kw): + super().__init__(**kw) + # Exact/True AP loss (not differentiable) + if nq == 0: + nq = 'sklearn' # special case + try: + self.compute_AP = eval('self.compute_true_AP_' + nq) + except: + raise ValueError("Unknown mode %s for AP loss" % nq) + + @staticmethod + def compute_true_AP_sklearn(scores, labels): + def compute_AP(label, score): + return average_precision_score(label, score) + + aps = scores.new_zeros((scores.shape[0], scores.shape[1])) + label_np = labels.cpu().numpy().astype(bool) + scores_np = scores.cpu().numpy() + for bi in range(scores_np.shape[0]): + for i in range(scores_np.shape[1]): + labels = label_np[bi, i, :] + if labels.sum() < 1: + continue + aps[bi, i] = compute_AP(labels, scores_np[bi, i, :]) + return aps + + @staticmethod + def compute_true_AP_torch(scores, labels): + assert scores.shape == labels.shape + B, N, M = labels.shape + dev = labels.device + with torch.no_grad(): + # sort scores + _, order = scores.sort(dim=-1, descending=True) + # sort labels accordingly + labels = labels[torch.arange(B, device=dev)[:, None, None].expand(order.shape), + torch.arange(N, device=dev)[None, :, None].expand(order.shape), + order] + # compute number of positives per query + npos = labels.sum(dim=-1) + assert torch.all(torch.isclose(npos, npos[0, 0]) + ), "only implemented for constant number of positives per query" + npos = int(npos[0, 0]) + # compute precision at each recall point + posrank = labels.nonzero()[:, -1].view(B, N, npos) + recall = torch.arange(1, 1 + npos, dtype=torch.float32, device=dev)[None, None, :].expand(B, N, npos) + precision = recall / (1 + posrank).float() + # average precision values at all recall points + aps = precision.mean(dim=-1) + + return aps + + def loss(self, desc1, desc2, valid_matches=None, euc=False): # if matches is None, positives are the diagonal + B, N1, D = desc1.shape + B2, N2, D2 = desc2.shape + assert B == B2 and D == D2 + + scores = get_similarities(desc1, desc2, euc) + + labels = torch.zeros([B, N1, N2], dtype=scores.dtype, device=scores.device) + + # allow all diagonal positives and only mask afterwards + labels.diagonal(dim1=-2, dim2=-1)[...] = 1. + apscore = self.compute_AP(scores, labels) + if valid_matches is not None: + apscore = apscore[valid_matches] + return apscore + + +class MatchingLoss (Criterion, MultiLoss): + """ + Matching loss per image + only compare pixels inside an image but not in the whole batch as what would be done usually + """ + + def __init__(self, criterion, withconf=False, use_pts3d=False, negatives_padding=0, blocksize=4096): + super().__init__(criterion) + self.negatives_padding = negatives_padding + self.use_pts3d = use_pts3d + self.blocksize = blocksize + self.withconf = withconf + + def add_negatives(self, outdesc2, desc2, batchid, x2, y2): + if self.negatives_padding: + B, H, W, D = desc2.shape + negatives = torch.ones([B, H, W], device=desc2.device, dtype=bool) + negatives[batchid, y2, x2] = False + sel = negatives & (negatives.view([B, -1]).cumsum(dim=-1).view(B, H, W) + <= self.negatives_padding) # take the N-first negatives + outdesc2 = torch.cat([outdesc2, desc2[sel].view([B, -1, D])], dim=1) + return outdesc2 + + def get_confs(self, pred1, pred2, sel1, sel2): + if self.withconf: + if self.use_pts3d: + outconfs1 = pred1['conf'][sel1] + outconfs2 = pred2['conf'][sel2] + else: + outconfs1 = pred1['desc_conf'][sel1] + outconfs2 = pred2['desc_conf'][sel2] + else: + outconfs1 = outconfs2 = None + return outconfs1, outconfs2 + + def get_descs(self, pred1, pred2): + if self.use_pts3d: + desc1, desc2 = pred1['pts3d'], pred2['pts3d_in_other_view'] + else: + desc1, desc2 = pred1['desc'], pred2['desc'] + return desc1, desc2 + + def get_matching_descs(self, gt1, gt2, pred1, pred2, **kw): + outdesc1 = outdesc2 = outconfs1 = outconfs2 = None + # Recover descs, GT corres and valid mask + desc1, desc2 = self.get_descs(pred1, pred2) + + (x1, y1), (x2, y2) = gt1['corres'].unbind(-1), gt2['corres'].unbind(-1) + valid_matches = gt1['valid_corres'] + + # Select descs that have GT matches + B, N = x1.shape + batchid = torch.arange(B)[:, None].repeat(1, N) # B, N + outdesc1, outdesc2 = desc1[batchid, y1, x1], desc2[batchid, y2, x2] # B, N, D + + # Padd with unused negatives + outdesc2 = self.add_negatives(outdesc2, desc2, batchid, x2, y2) + + # Gather confs if needed + sel1 = batchid, y1, x1 + sel2 = batchid, y2, x2 + outconfs1, outconfs2 = self.get_confs(pred1, pred2, sel1, sel2) + + return outdesc1, outdesc2, outconfs1, outconfs2, valid_matches, {'use_euclidean_dist': self.use_pts3d} + + def blockwise_criterion(self, descs1, descs2, confs1, confs2, valid_matches, euc, rng=np.random, shuffle=True): + loss = None + details = {} + B, N, D = descs1.shape + + if N <= self.blocksize: # Blocks are larger than provided descs, compute regular loss + loss = self.criterion(descs1, descs2, valid_matches, euc=euc) + else: # Compute criterion on the blockdiagonal only, after shuffling + # Shuffle if necessary + matches_perm = slice(None) + if shuffle: + matches_perm = np.stack([rng.choice(range(N), size=N, replace=False) for _ in range(B)]) + batchid = torch.tile(torch.arange(B), (N, 1)).T + matches_perm = batchid, matches_perm + + descs1 = descs1[matches_perm] + descs2 = descs2[matches_perm] + valid_matches = valid_matches[matches_perm] + + assert N % self.blocksize == 0, "Error, can't chunk block-diagonal, please check blocksize" + n_chunks = N // self.blocksize + descs1 = descs1.reshape([B * n_chunks, self.blocksize, D]) # [B*(N//blocksize), blocksize, D] + descs2 = descs2.reshape([B * n_chunks, self.blocksize, D]) # [B*(N//blocksize), blocksize, D] + valid_matches = valid_matches.view([B * n_chunks, self.blocksize]) + loss = self.criterion(descs1, descs2, valid_matches, euc=euc) + if self.withconf: + confs1, confs2 = map(lambda x: x[matches_perm], (confs1, confs2)) # apply perm to confidences if needed + + if self.withconf: + # split confidences between positives/negatives for loss computation + details['conf_pos'] = map(lambda x: x[valid_matches.view(B, -1)], (confs1, confs2)) + details['conf_neg'] = map(lambda x: x[~valid_matches.view(B, -1)], (confs1, confs2)) + details['Conf1_std'] = confs1.std() + details['Conf2_std'] = confs2.std() + + return loss, details + + def compute_loss(self, gt1, gt2, pred1, pred2, **kw): + # Gather preds and GT + descs1, descs2, confs1, confs2, valid_matches, monitoring = self.get_matching_descs( + gt1, gt2, pred1, pred2, **kw) + + # loss on matches + loss, details = self.blockwise_criterion(descs1, descs2, confs1, confs2, + valid_matches, euc=monitoring.pop('use_euclidean_dist', False)) + + details[type(self).__name__] = float(loss.mean()) + return loss, (details | monitoring) + + +class ConfMatchingLoss(ConfLoss): + """ Weight matching by learned confidence. Same as ConfLoss but for a matching criterion + Assuming the input matching_loss is a match-level loss. + """ + + def __init__(self, pixel_loss, alpha=1., confmode='prod', neg_conf_loss_quantile=False): + super().__init__(pixel_loss, alpha) + self.pixel_loss.withconf = True + self.confmode = confmode + self.neg_conf_loss_quantile = neg_conf_loss_quantile + + def aggregate_confs(self, confs1, confs2): # get the confidences resulting from the two view predictions + if self.confmode == 'prod': + confs = confs1 * confs2 if confs1 is not None and confs2 is not None else 1. + elif self.confmode == 'mean': + confs = .5 * (confs1 + confs2) if confs1 is not None and confs2 is not None else 1. + else: + raise ValueError(f"Unknown conf mode {self.confmode}") + return confs + + def compute_loss(self, gt1, gt2, pred1, pred2, **kw): + # compute per-pixel loss + loss, details = self.pixel_loss(gt1, gt2, pred1, pred2, **kw) + # Recover confidences for positive and negative samples + conf1_pos, conf2_pos = details.pop('conf_pos') + conf1_neg, conf2_neg = details.pop('conf_neg') + conf_pos = self.aggregate_confs(conf1_pos, conf2_pos) + + # weight Matching loss by confidence on positives + conf_pos, log_conf_pos = self.get_conf_log(conf_pos) + conf_loss = loss * conf_pos - self.alpha * log_conf_pos + # average + nan protection (in case of no valid pixels at all) + conf_loss = conf_loss.mean() if conf_loss.numel() > 0 else 0 + # Add negative confs loss to give some supervision signal to confidences for pixels that are not matched in GT + if self.neg_conf_loss_quantile: + conf_neg = torch.cat([conf1_neg, conf2_neg]) + conf_neg, log_conf_neg = self.get_conf_log(conf_neg) + + # recover quantile that will be used for negatives loss value assignment + neg_loss_value = torch.quantile(loss, self.neg_conf_loss_quantile).detach() + neg_loss = neg_loss_value * conf_neg - self.alpha * log_conf_neg + + neg_loss = neg_loss.mean() if neg_loss.numel() > 0 else 0 + conf_loss = conf_loss + neg_loss + + return conf_loss, dict(matching_conf_loss=float(conf_loss), **details) diff --git a/modules/mast3r/model.py b/modules/mast3r/model.py new file mode 100644 index 0000000000000000000000000000000000000000..f328c5e43b8e98f2ec960e4d25e6f235ac543544 --- /dev/null +++ b/modules/mast3r/model.py @@ -0,0 +1,68 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# MASt3R model class +# -------------------------------------------------------- +import torch +import torch.nn.functional as F +import os + +from mast3r.catmlp_dpt_head import mast3r_head_factory + +import mast3r.utils.path_to_dust3r # noqa +from dust3r.model import AsymmetricCroCo3DStereo # noqa +from dust3r.utils.misc import transpose_to_landscape # noqa + + +inf = float('inf') + + +def load_model(model_path, device, verbose=True): + if verbose: + print('... loading model from', model_path) + ckpt = torch.load(model_path, map_location='cpu') + args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R") + if 'landscape_only' not in args: + args = args[:-1] + ', landscape_only=False)' + else: + args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False') + assert "landscape_only=False" in args + if verbose: + print(f"instantiating : {args}") + net = eval(args) + s = net.load_state_dict(ckpt['model'], strict=False) + if verbose: + print(s) + return net.to(device) + + +class AsymmetricMASt3R(AsymmetricCroCo3DStereo): + def __init__(self, desc_mode=('norm'), two_confs=False, desc_conf_mode=None, **kwargs): + self.desc_mode = desc_mode + self.two_confs = two_confs + self.desc_conf_mode = desc_conf_mode + super().__init__(**kwargs) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, **kw): + if os.path.isfile(pretrained_model_name_or_path): + return load_model(pretrained_model_name_or_path, device='cpu') + else: + return super(AsymmetricMASt3R, cls).from_pretrained(pretrained_model_name_or_path, **kw) + + def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size, **kw): + assert img_size[0] % patch_size == 0 and img_size[ + 1] % patch_size == 0, f'{img_size=} must be multiple of {patch_size=}' + self.output_mode = output_mode + self.head_type = head_type + self.depth_mode = depth_mode + self.conf_mode = conf_mode + if self.desc_conf_mode is None: + self.desc_conf_mode = conf_mode + # allocate heads + self.downstream_head1 = mast3r_head_factory(head_type, output_mode, self, has_conf=bool(conf_mode)) + self.downstream_head2 = mast3r_head_factory(head_type, output_mode, self, has_conf=bool(conf_mode)) + # magic wrapper + self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only) + self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only) diff --git a/modules/mast3r/utils/__init__.py b/modules/mast3r/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d7dd877d649ce4dbd749dd7195a8b34c0f91d4f0 --- /dev/null +++ b/modules/mast3r/utils/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). \ No newline at end of file diff --git a/modules/mast3r/utils/__pycache__/__init__.cpython-312.pyc b/modules/mast3r/utils/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a450ac23f074076024035514458ceeb21d427a56 Binary files /dev/null and b/modules/mast3r/utils/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/mast3r/utils/__pycache__/misc.cpython-312.pyc b/modules/mast3r/utils/__pycache__/misc.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..407c57c357a9d0aae0c433c6a9f66fea9c3e4e1b Binary files /dev/null and b/modules/mast3r/utils/__pycache__/misc.cpython-312.pyc differ diff --git a/modules/mast3r/utils/__pycache__/path_to_dust3r.cpython-312.pyc b/modules/mast3r/utils/__pycache__/path_to_dust3r.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..106519fa54bdae582c154847d427e0d211f1c841 Binary files /dev/null and b/modules/mast3r/utils/__pycache__/path_to_dust3r.cpython-312.pyc differ diff --git a/modules/mast3r/utils/coarse_to_fine.py b/modules/mast3r/utils/coarse_to_fine.py new file mode 100644 index 0000000000000000000000000000000000000000..c062e8608f82c608f2d605d69a95a7e0f301b3cf --- /dev/null +++ b/modules/mast3r/utils/coarse_to_fine.py @@ -0,0 +1,214 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# coarse to fine utilities +# -------------------------------------------------------- +import numpy as np + + +def crop_tag(cell): + return f'[{cell[1]}:{cell[3]},{cell[0]}:{cell[2]}]' + + +def crop_slice(cell): + return slice(cell[1], cell[3]), slice(cell[0], cell[2]) + + +def _start_pos(total_size, win_size, overlap): + # we must have AT LEAST overlap between segments + # first segment starts at 0, last segment starts at total_size-win_size + assert 0 <= overlap < 1 + assert total_size >= win_size + spacing = win_size * (1 - overlap) + last_pt = total_size - win_size + n_windows = 2 + int((last_pt - 1) // spacing) + return np.linspace(0, last_pt, n_windows).round().astype(int) + + +def multiple_of_16(x): + return (x // 16) * 16 + + +def _make_overlapping_grid(H, W, size, overlap): + H_win = multiple_of_16(H * size // max(H, W)) + W_win = multiple_of_16(W * size // max(H, W)) + x = _start_pos(W, W_win, overlap) + y = _start_pos(H, H_win, overlap) + grid = np.stack(np.meshgrid(x, y, indexing='xy'), axis=-1) + grid = np.concatenate((grid, grid + (W_win, H_win)), axis=-1) + return grid.reshape(-1, 4) + + +def _cell_size(cell2): + width, height = cell2[:, 2] - cell2[:, 0], cell2[:, 3] - cell2[:, 1] + assert width.min() >= 0 + assert height.min() >= 0 + return width, height + + +def _norm_windows(cell2, H2, W2, forced_resolution=None): + # make sure the window aspect ratio is 3/4, or the output resolution is forced_resolution if defined + outcell = cell2.copy() + width, height = _cell_size(cell2) + width2, height2 = width.clip(max=W2), height.clip(max=H2) + if forced_resolution is None: + width2[width < height] = (height2[width < height] * 3.01 / 4).clip(max=W2) + height2[width >= height] = (width2[width >= height] * 3.01 / 4).clip(max=H2) + else: + forced_H, forced_W = forced_resolution + width2[:] = forced_W + height2[:] = forced_H + + half = (width2 - width) / 2 + outcell[:, 0] -= half + outcell[:, 2] += half + half = (height2 - height) / 2 + outcell[:, 1] -= half + outcell[:, 3] += half + + # proj to integers + outcell = np.floor(outcell).astype(int) + # Take care of flooring errors + tmpw, tmph = _cell_size(outcell) + outcell[:, 0] += tmpw.astype(tmpw.dtype) - width2.astype(tmpw.dtype) + outcell[:, 1] += tmph.astype(tmpw.dtype) - height2.astype(tmpw.dtype) + + # make sure 0 <= x < W2 and 0 <= y < H2 + outcell[:, 0::2] -= outcell[:, [0]].clip(max=0) + outcell[:, 1::2] -= outcell[:, [1]].clip(max=0) + outcell[:, 0::2] -= outcell[:, [2]].clip(min=W2) - W2 + outcell[:, 1::2] -= outcell[:, [3]].clip(min=H2) - H2 + + width, height = _cell_size(outcell) + assert np.all(width == width2.astype(width.dtype)) and np.all( + height == height2.astype(height.dtype)), "Error, output is not of the expected shape." + assert np.all(width <= W2) + assert np.all(height <= H2) + return outcell + + +def _weight_pixels(cell, pix, assigned, gauss_var=2): + center = cell.reshape(-1, 2, 2).mean(axis=1) + width, height = _cell_size(cell) + + # square distance between each cell center and each point + dist = (center[:, None] - pix[None]) / np.c_[width, height][:, None] + dist2 = np.square(dist).sum(axis=-1) + + assert assigned.shape == dist2.shape + res = np.where(assigned, np.exp(-gauss_var * dist2), 0) + return res + + +def pos2d_in_rect(p1, cell1): + x, y = p1.T + l, t, r, b = cell1 + assigned = (l <= x) & (x < r) & (t <= y) & (y < b) + return assigned + + +def _score_cell(cell1, H2, W2, p1, p2, min_corres=10, forced_resolution=None): + assert p1.shape == p2.shape + + # compute keypoint assignment + assigned = pos2d_in_rect(p1, cell1[None].T) + assert assigned.shape == (len(cell1), len(p1)) + + # remove cells without correspondences + valid_cells = assigned.sum(axis=1) >= min_corres + cell1 = cell1[valid_cells] + assigned = assigned[valid_cells] + if not valid_cells.any(): + return cell1, cell1, assigned + + # fill-in the assigned points in both image + assigned_p1 = np.empty((len(cell1), len(p1), 2), dtype=np.float32) + assigned_p2 = np.empty((len(cell1), len(p2), 2), dtype=np.float32) + assigned_p1[:] = p1[None] + assigned_p2[:] = p2[None] + assigned_p1[~assigned] = np.nan + assigned_p2[~assigned] = np.nan + + # find the median center and scale of assigned points in each cell + # cell_center1 = np.nanmean(assigned_p1, axis=1) + cell_center2 = np.nanmean(assigned_p2, axis=1) + im1_q25, im1_q75 = np.nanquantile(assigned_p1, (0.1, 0.9), axis=1) + im2_q25, im2_q75 = np.nanquantile(assigned_p2, (0.1, 0.9), axis=1) + + robust_std1 = (im1_q75 - im1_q25).clip(20.) + robust_std2 = (im2_q75 - im2_q25).clip(20.) + + cell_size1 = (cell1[:, 2:4] - cell1[:, 0:2]) + cell_size2 = cell_size1 * robust_std2 / robust_std1 + cell2 = np.c_[cell_center2 - cell_size2 / 2, cell_center2 + cell_size2 / 2] + + # make sure cell bounds are valid + cell2 = _norm_windows(cell2, H2, W2, forced_resolution=forced_resolution) + + # compute correspondence weights + corres_weights = _weight_pixels(cell1, p1, assigned) * _weight_pixels(cell2, p2, assigned) + + # return a list of window pairs and assigned correspondences + return cell1, cell2, corres_weights + + +def greedy_selection(corres_weights, target=0.9): + # corres_weight = (n_cell_pair, n_corres) matrix. + # If corres_weight[c,p]>0, means that correspondence p is visible in cell pair p + assert 0 < target <= 1 + corres_weights = corres_weights.copy() + + total = corres_weights.max(axis=0).sum() + target *= total + + # init = empty + res = [] + cur = np.zeros(corres_weights.shape[1]) # current selection + + while cur.sum() < target: + # pick the nex best cell pair + best = corres_weights.sum(axis=1).argmax() + res.append(best) + + # update current + cur += corres_weights[best] + # print('appending', best, 'with score', corres_weights[best].sum(), '-->', cur.sum()) + + # remove from all other views + corres_weights = (corres_weights - corres_weights[best]).clip(min=0) + + return res + + +def select_pairs_of_crops(img_q, img_b, pos2d_in_query, pos2d_in_ref, maxdim=512, overlap=.5, forced_resolution=None): + # prepare the overlapping cells + grid_q = _make_overlapping_grid(*img_q.shape[:2], maxdim, overlap) + grid_b = _make_overlapping_grid(*img_b.shape[:2], maxdim, overlap) + + assert forced_resolution is None or len(forced_resolution) == 2 + if isinstance(forced_resolution[0], int) or not len(forced_resolution[0]) == 2: + forced_resolution1 = forced_resolution2 = forced_resolution + else: + assert len(forced_resolution[1]) == 2 + forced_resolution1 = forced_resolution[0] + forced_resolution2 = forced_resolution[1] + + # Make sure crops respect constraints + grid_q = _norm_windows(grid_q.astype(float), *img_q.shape[:2], forced_resolution=forced_resolution1) + grid_b = _norm_windows(grid_b.astype(float), *img_b.shape[:2], forced_resolution=forced_resolution2) + + # score cells + pairs_q = _score_cell(grid_q, *img_b.shape[:2], pos2d_in_query, pos2d_in_ref, forced_resolution=forced_resolution2) + pairs_b = _score_cell(grid_b, *img_q.shape[:2], pos2d_in_ref, pos2d_in_query, forced_resolution=forced_resolution1) + pairs_b = pairs_b[1], pairs_b[0], pairs_b[2] # cellq, cellb, corres_weights + + # greedy selection until all correspondences are generated + cell1, cell2, corres_weights = map(np.concatenate, zip(pairs_q, pairs_b)) + if len(corres_weights) == 0: + return # tolerated for empty generators + order = greedy_selection(corres_weights, target=0.9) + + for i in order: + def pair_tag(qi, bi): return (str(qi) + crop_tag(cell1[i]), str(bi) + crop_tag(cell2[i])) + yield cell1[i], cell2[i], pair_tag diff --git a/modules/mast3r/utils/collate.py b/modules/mast3r/utils/collate.py new file mode 100644 index 0000000000000000000000000000000000000000..72ee3a437b87ef7049dcd03b93e594a8325b780c --- /dev/null +++ b/modules/mast3r/utils/collate.py @@ -0,0 +1,62 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Collate extensions +# -------------------------------------------------------- + +import torch +import collections +from torch.utils.data._utils.collate import default_collate_fn_map, default_collate_err_msg_format +from typing import Callable, Dict, Optional, Tuple, Type, Union, List + + +def cat_collate_tensor_fn(batch, *, collate_fn_map): + return torch.cat(batch, dim=0) + + +def cat_collate_list_fn(batch, *, collate_fn_map: Optional[Dict[Union[Type, Tuple[Type, ...]], Callable]] = None): + return [item for bb in batch for item in bb] # concatenate all lists + + +cat_collate_fn_map = default_collate_fn_map.copy() +cat_collate_fn_map[torch.Tensor] = cat_collate_tensor_fn +cat_collate_fn_map[List] = cat_collate_list_fn +cat_collate_fn_map[type(None)] = lambda _, **kw: None # When some Nones, simply return a single None + + +def cat_collate(batch, *, collate_fn_map: Optional[Dict[Union[Type, Tuple[Type, ...]], Callable]] = None): + r"""Custom collate function that concatenates stuff instead of stacking them, and handles NoneTypes """ + elem = batch[0] + elem_type = type(elem) + + if collate_fn_map is not None: + if elem_type in collate_fn_map: + return collate_fn_map[elem_type](batch, collate_fn_map=collate_fn_map) + + for collate_type in collate_fn_map: + if isinstance(elem, collate_type): + return collate_fn_map[collate_type](batch, collate_fn_map=collate_fn_map) + + if isinstance(elem, collections.abc.Mapping): + try: + return elem_type({key: cat_collate([d[key] for d in batch], collate_fn_map=collate_fn_map) for key in elem}) + except TypeError: + # The mapping type may not support `__init__(iterable)`. + return {key: cat_collate([d[key] for d in batch], collate_fn_map=collate_fn_map) for key in elem} + elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple + return elem_type(*(cat_collate(samples, collate_fn_map=collate_fn_map) for samples in zip(*batch))) + elif isinstance(elem, collections.abc.Sequence): + transposed = list(zip(*batch)) # It may be accessed twice, so we use a list. + + if isinstance(elem, tuple): + # Backwards compatibility. + return [cat_collate(samples, collate_fn_map=collate_fn_map) for samples in transposed] + else: + try: + return elem_type([cat_collate(samples, collate_fn_map=collate_fn_map) for samples in transposed]) + except TypeError: + # The sequence type may not support `__init__(iterable)` (e.g., `range`). + return [cat_collate(samples, collate_fn_map=collate_fn_map) for samples in transposed] + + raise TypeError(default_collate_err_msg_format.format(elem_type)) diff --git a/modules/mast3r/utils/misc.py b/modules/mast3r/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..1a5403c67116f5156e47537df8fbcfcacb7bb474 --- /dev/null +++ b/modules/mast3r/utils/misc.py @@ -0,0 +1,17 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for MASt3R +# -------------------------------------------------------- +import os +import hashlib + + +def mkdir_for(f): + os.makedirs(os.path.dirname(f), exist_ok=True) + return f + + +def hash_md5(s): + return hashlib.md5(s.encode('utf-8')).hexdigest() diff --git a/modules/mast3r/utils/path_to_dust3r.py b/modules/mast3r/utils/path_to_dust3r.py new file mode 100644 index 0000000000000000000000000000000000000000..5d47979a1e8a0f34e28327fcfe423bd85ddfaa87 --- /dev/null +++ b/modules/mast3r/utils/path_to_dust3r.py @@ -0,0 +1,19 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# dust3r submodule import +# -------------------------------------------------------- + +import sys +import os.path as path +HERE_PATH = path.normpath(path.dirname(__file__)) +DUSt3R_REPO_PATH = path.normpath(path.join(HERE_PATH, '../../')) +DUSt3R_LIB_PATH = path.join(DUSt3R_REPO_PATH, 'dust3r') +# check the presence of models directory in repo to be sure its cloned +if path.isdir(DUSt3R_LIB_PATH): + # workaround for sibling import + sys.path.insert(0, DUSt3R_REPO_PATH) +else: + raise ImportError(f"dust3r is not initialized, could not find: {DUSt3R_LIB_PATH}.\n " + "Did you forget to run 'git submodule update --init --recursive' ?") diff --git a/modules/mobilesamv2/__init__.py b/modules/mobilesamv2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1efaf80ae7f97e36ee854b11c419fd7f8fa25aac --- /dev/null +++ b/modules/mobilesamv2/__init__.py @@ -0,0 +1,10 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from .build_sam import sam_model_registry +from .predictor import SamPredictor +from .automatic_mask_generator import SamAutomaticMaskGenerator + diff --git a/modules/mobilesamv2/__pycache__/__init__.cpython-312.pyc b/modules/mobilesamv2/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e1d4e69846239d2211c43cc17a72558bec3cd8f7 Binary files /dev/null and b/modules/mobilesamv2/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/mobilesamv2/__pycache__/automatic_mask_generator.cpython-312.pyc b/modules/mobilesamv2/__pycache__/automatic_mask_generator.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ce3455e09d56123ec3c5a21de8e90c84c4518eb9 Binary files /dev/null and b/modules/mobilesamv2/__pycache__/automatic_mask_generator.cpython-312.pyc differ diff --git a/modules/mobilesamv2/__pycache__/build_sam.cpython-312.pyc b/modules/mobilesamv2/__pycache__/build_sam.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fa214673c6e043082cff5f9ea370ad95ec912f67 Binary files /dev/null and b/modules/mobilesamv2/__pycache__/build_sam.cpython-312.pyc differ diff --git a/modules/mobilesamv2/__pycache__/predictor.cpython-312.pyc b/modules/mobilesamv2/__pycache__/predictor.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ce4b0654230976cceebcd4013e2f8dff434f7976 Binary files /dev/null and b/modules/mobilesamv2/__pycache__/predictor.cpython-312.pyc differ diff --git a/modules/mobilesamv2/automatic_mask_generator.py b/modules/mobilesamv2/automatic_mask_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..7f41490d42b017e442bf03a66745574349c8832b --- /dev/null +++ b/modules/mobilesamv2/automatic_mask_generator.py @@ -0,0 +1,415 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch +from torchvision.ops.boxes import batched_nms, box_area # type: ignore + +from typing import Any, Dict, List, Optional, Tuple + +from .modeling import Sam +from .predictor import SamPredictor +from .utils.amg import ( + MaskData, + area_from_rle, + batch_iterator, + batched_mask_to_box, + box_xyxy_to_xywh, + build_all_layer_point_grids, + calculate_stability_score, + coco_encode_rle, + generate_crop_boxes, + is_box_near_crop_edge, + mask_to_rle_pytorch, + remove_small_regions, + rle_to_mask, + uncrop_boxes_xyxy, + uncrop_masks, + uncrop_points, +) + + +class SamAutomaticMaskGenerator: + def __init__( + self, + model: Sam, + points_per_side: Optional[int] = 32,#32 + points_per_batch: int = 64, + pred_iou_thresh: float = 0.88, + stability_score_thresh: float = 0.95, + stability_score_offset: float = 1.0, + box_nms_thresh: float = 0.7, + crop_n_layers: int = 0, + crop_nms_thresh: float = 0.7, + crop_overlap_ratio: float = 512 / 1500, + crop_n_points_downscale_factor: int = 1, + point_grids: Optional[List[np.ndarray]] = None, + min_mask_region_area: int = 0, + output_mode: str = "binary_mask", + ) -> None: + """ + Using a SAM model, generates masks for the entire image. + Generates a grid of point prompts over the image, then filters + low quality and duplicate masks. The default settings are chosen + for SAM with a ViT-H backbone. + + Arguments: + model (Sam): The SAM model to use for mask prediction. + points_per_side (int or None): The number of points to be sampled + along one side of the image. The total number of points is + points_per_side**2. If None, 'point_grids' must provide explicit + point sampling. + points_per_batch (int): Sets the number of points run simultaneously + by the model. Higher numbers may be faster but use more GPU memory. + pred_iou_thresh (float): A filtering threshold in [0,1], using the + model's predicted mask quality. + stability_score_thresh (float): A filtering threshold in [0,1], using + the stability of the mask under changes to the cutoff used to binarize + the model's mask predictions. + stability_score_offset (float): The amount to shift the cutoff when + calculated the stability score. + box_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks. + crop_n_layers (int): If >0, mask prediction will be run again on + crops of the image. Sets the number of layers to run, where each + layer has 2**i_layer number of image crops. + crop_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks between different crops. + crop_overlap_ratio (float): Sets the degree to which crops overlap. + In the first crop layer, crops will overlap by this fraction of + the image length. Later layers with more crops scale down this overlap. + crop_n_points_downscale_factor (int): The number of points-per-side + sampled in layer n is scaled down by crop_n_points_downscale_factor**n. + point_grids (list(np.ndarray) or None): A list over explicit grids + of points used for sampling, normalized to [0,1]. The nth grid in the + list is used in the nth crop layer. Exclusive with points_per_side. + min_mask_region_area (int): If >0, postprocessing will be applied + to remove disconnected regions and holes in masks with area smaller + than min_mask_region_area. Requires opencv. + output_mode (str): The form masks are returned in. Can be 'binary_mask', + 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. + For large resolutions, 'binary_mask' may consume large amounts of + memory. + """ + + assert (points_per_side is None) != ( + point_grids is None + ), "Exactly one of points_per_side or point_grid must be provided." + if points_per_side is not None: + #points position(0-1) + self.point_grids = build_all_layer_point_grids( + points_per_side, + crop_n_layers, + crop_n_points_downscale_factor, + ) + #import pdb;pdb.set_trace() + elif point_grids is not None: + self.point_grids = point_grids + else: + raise ValueError("Can't have both points_per_side and point_grid be None.") + assert output_mode in [ + "binary_mask", + "uncompressed_rle", + "coco_rle", + ], f"Unknown output_mode {output_mode}." + if output_mode == "coco_rle": + from pycocotools import mask as mask_utils # type: ignore # noqa: F401 + + if min_mask_region_area > 0: + import cv2 # type: ignore # noqa: F401 + + self.predictor = SamPredictor(model) + self.points_per_batch = points_per_batch + self.pred_iou_thresh = pred_iou_thresh + self.stability_score_thresh = stability_score_thresh + self.stability_score_offset = stability_score_offset + self.box_nms_thresh = box_nms_thresh + self.crop_n_layers = crop_n_layers + self.crop_nms_thresh = crop_nms_thresh + self.crop_overlap_ratio = crop_overlap_ratio + self.crop_n_points_downscale_factor = crop_n_points_downscale_factor + self.min_mask_region_area = min_mask_region_area + self.output_mode = output_mode + + @torch.no_grad() + def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: + """ + Generates masks for the given image. + + Arguments: + image (np.ndarray): The image to generate masks for, in HWC uint8 format. + + Returns: + list(dict(str, any)): A list over records for masks. Each record is + a dict containing the following keys: + segmentation (dict(str, any) or np.ndarray): The mask. If + output_mode='binary_mask', is an array of shape HW. Otherwise, + is a dictionary containing the RLE. + bbox (list(float)): The box around the mask, in XYWH format. + area (int): The area in pixels of the mask. + predicted_iou (float): The model's own prediction of the mask's + quality. This is filtered by the pred_iou_thresh parameter. + point_coords (list(list(float))): The point coordinates input + to the model to generate this mask. + stability_score (float): A measure of the mask's quality. This + is filtered on using the stability_score_thresh parameter. + crop_box (list(float)): The crop of the image used to generate + the mask, given in XYWH format. + """ + + # Generate masks + mask_data = self._generate_masks(image) + + # Filter small disconnected regions and holes in masks + if self.min_mask_region_area > 0: + mask_data = self.postprocess_small_regions( + mask_data, + self.min_mask_region_area, + max(self.box_nms_thresh, self.crop_nms_thresh), + ) + + # Encode masks + #import pdb;pdb.set_trace() + if self.output_mode == "coco_rle": + mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]] + elif self.output_mode == "binary_mask": + mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] + else: + mask_data["segmentations"] = mask_data["rles"] + # Write mask records + curr_anns = [] + for idx in range(len(mask_data["segmentations"])): + ann = { + "segmentation": mask_data["segmentations"][idx], + "area": area_from_rle(mask_data["rles"][idx]), + "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), + "predicted_iou": mask_data["iou_preds"][idx].item(), + "point_coords": [mask_data["points"][idx].tolist()], + "stability_score": mask_data["stability_score"][idx].item(), + "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), + } + curr_anns.append(ann) + return curr_anns + + def _generate_masks(self, image: np.ndarray) -> MaskData: + orig_size = image.shape[:2] + #import pdb;pdb.set_trace() + crop_boxes, layer_idxs = generate_crop_boxes( + orig_size, self.crop_n_layers, self.crop_overlap_ratio + ) + + # Iterate over image crops + data = MaskData() + #import pdb;pdb.set_trace() + for crop_box, layer_idx in zip(crop_boxes, layer_idxs): + crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) + data.cat(crop_data) + + # Remove duplicate masks between crops + if len(crop_boxes) > 1: + # Prefer masks from smaller crops + scores = 1 / box_area(data["crop_boxes"]) + scores = scores.to(data["boxes"].device) + keep_by_nms = batched_nms( + data["boxes"].float(), + scores, + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.crop_nms_thresh, + ) + data.filter(keep_by_nms) + + data.to_numpy() + return data + + def _process_crop( + self, + image: np.ndarray, + crop_box: List[int], + crop_layer_idx: int, + orig_size: Tuple[int, ...], + ) -> MaskData: + # Crop the image and calculate embeddings + x0, y0, x1, y1 = crop_box + cropped_im = image[y0:y1, x0:x1, :] + cropped_im_size = cropped_im.shape[:2] + self.predictor.set_image(cropped_im) + + # Get points for this crop + points_scale = np.array(cropped_im_size)[None, ::-1] + points_for_image = self.point_grids[crop_layer_idx] * points_scale + + # Generate masks for this crop in batches + data = MaskData() + #import pdb;pdb.set_trace() + + for (points,) in batch_iterator(self.points_per_batch, points_for_image): + #import pdb;pdb.set_trace() + batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size) + data.cat(batch_data) + del batch_data + self.predictor.reset_image() + # Remove duplicates within this crop. + + keep_by_nms = batched_nms( + data["boxes"].float(), + data["iou_preds"], + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.box_nms_thresh, + ) + + data.filter(keep_by_nms) + + ########################################################################### + # cc = time.time() + # for (points,) in batch_iterator(self.points_per_batch, points_for_image): + # batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size) + # data.cat(batch_data) + # del batch_data + # self.predictor.reset_image() + + # # Remove duplicates within this crop. + # keep_by_nms = batched_nms( + # data["boxes"].float(), + # data["iou_preds"], + # torch.zeros_like(data["boxes"][:, 0]), # categories + # iou_threshold=self.box_nms_thresh, + # ) + # data.filter(keep_by_nms) + # dd = time.time(); print('cv2 read:', cc-dd) + # ############################################################################### + # import time + # ee = time.time() + # for (points,) in batch_iterator(self.points_per_batch, points_for_image): + # batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size) + # data.cat(batch_data) + # del batch_data + # self.predictor.reset_image() + + # # Remove duplicates within this crop. + # keep_by_nms = batched_nms( + # data["boxes"].float(), + # data["iou_preds"], + # torch.zeros_like(data["boxes"][:, 0]), # categories + # iou_threshold=self.box_nms_thresh, + # ) + # data.filter(keep_by_nms) + # ff = time.time(); print('cv2 read:', ff-ee) + #import pdb;pdb.set_trace() + + + # Return to the original image frame + + data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) + data["points"] = uncrop_points(data["points"], crop_box) + data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) + + return data + + def _process_batch( + self, + points: np.ndarray, + im_size: Tuple[int, ...], + crop_box: List[int], + orig_size: Tuple[int, ...], + ) -> MaskData: + orig_h, orig_w = orig_size + + # Run model on this batch + #import pdb;pdb.set_trace() + transformed_points = self.predictor.transform.apply_coords(points, im_size) + in_points = torch.as_tensor(transformed_points, device=self.predictor.device) + in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) + #import pdb;pdb.set_trace() + masks, iou_preds, _ = self.predictor.predict_torch( + in_points[:, None, :], + in_labels[:, None], + multimask_output=True, + return_logits=True, + ) + # Serialize predictions and store in MaskData + data = MaskData( + masks=masks.flatten(0, 1), + iou_preds=iou_preds.flatten(0, 1), + points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)), + ) + del masks + + # Filter by predicted IoU + if self.pred_iou_thresh > 0.0: + keep_mask = data["iou_preds"] > self.pred_iou_thresh + data.filter(keep_mask) + # Calculate stability score + #import pdb;pdb.set_trace() + data["stability_score"] = calculate_stability_score( + data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset + ) + if self.stability_score_thresh > 0.0: + keep_mask = data["stability_score"] >= self.stability_score_thresh + data.filter(keep_mask) + # Threshold masks and calculate boxes + data["masks"] = data["masks"] > self.predictor.model.mask_threshold + data["boxes"] = batched_mask_to_box(data["masks"]) + # Filter boxes that touch crop boundaries + keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h]) + if not torch.all(keep_mask): + data.filter(keep_mask) + # Compress to RLE + data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) + data["rles"] = mask_to_rle_pytorch(data["masks"]) + del data["masks"] + + return data + + @staticmethod + def postprocess_small_regions( + mask_data: MaskData, min_area: int, nms_thresh: float + ) -> MaskData: + """ + Removes small disconnected regions and holes in masks, then reruns + box NMS to remove any new duplicates. + + Edits mask_data in place. + + Requires open-cv as a dependency. + """ + if len(mask_data["rles"]) == 0: + return mask_data + + # Filter small disconnected regions and holes + new_masks = [] + scores = [] + for rle in mask_data["rles"]: + mask = rle_to_mask(rle) + + mask, changed = remove_small_regions(mask, min_area, mode="holes") + unchanged = not changed + mask, changed = remove_small_regions(mask, min_area, mode="islands") + unchanged = unchanged and not changed + + new_masks.append(torch.as_tensor(mask).unsqueeze(0)) + # Give score=0 to changed masks and score=1 to unchanged masks + # so NMS will prefer ones that didn't need postprocessing + scores.append(float(unchanged)) + + # Recalculate boxes and remove any new duplicates + masks = torch.cat(new_masks, dim=0) + boxes = batched_mask_to_box(masks) + keep_by_nms = batched_nms( + boxes.float(), + torch.as_tensor(scores), + torch.zeros_like(boxes[:, 0]), # categories + iou_threshold=nms_thresh, + ) + + # Only recalculate RLEs for masks that have changed + for i_mask in keep_by_nms: + if scores[i_mask] == 0.0: + mask_torch = masks[i_mask].unsqueeze(0) + mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0] + mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly + mask_data.filter(keep_by_nms) + + return mask_data diff --git a/modules/mobilesamv2/build_sam.py b/modules/mobilesamv2/build_sam.py new file mode 100644 index 0000000000000000000000000000000000000000..303f4a2174a6cf45bef13430371de00a00cbba42 --- /dev/null +++ b/modules/mobilesamv2/build_sam.py @@ -0,0 +1,139 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.nn as nn +from functools import partial +from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer + +def build_sam_vit_h(checkpoint=None): + return _build_sam( + encoder_embed_dim=1280, + encoder_depth=32, + encoder_num_heads=16, + encoder_global_attn_indexes=[7, 15, 23, 31], + checkpoint=checkpoint, + ) + +def _build_sam( + encoder_embed_dim, + encoder_depth, + encoder_num_heads, + encoder_global_attn_indexes, + checkpoint=None, +): + prompt_embed_dim = 256 + image_size = 1024 + vit_patch_size = 16 + image_embedding_size = image_size // vit_patch_size + sam = Sam( + image_encoder=ImageEncoderViT( + depth=encoder_depth, + embed_dim=encoder_embed_dim, + img_size=image_size, + mlp_ratio=4, + norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), + num_heads=encoder_num_heads, + patch_size=vit_patch_size, + qkv_bias=True, + use_rel_pos=True, + global_attn_indexes=encoder_global_attn_indexes, + window_size=14, + out_chans=prompt_embed_dim, + ), + prompt_encoder=PromptEncoder( + embed_dim=prompt_embed_dim, + image_embedding_size=(image_embedding_size, image_embedding_size), + input_image_size=(image_size, image_size), + mask_in_chans=16, + ), + mask_decoder=MaskDecoder( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=prompt_embed_dim, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=prompt_embed_dim, + iou_head_depth=3, + iou_head_hidden_dim=256, + ), + pixel_mean=[123.675, 116.28, 103.53], + pixel_std=[58.395, 57.12, 57.375], + ) + sam.eval() + if checkpoint is not None: + with open(checkpoint, "rb") as f: + state_dict = torch.load(f) + sam.load_state_dict(state_dict,strict=False) + return sam + +def build_sam_vit_h_encoder(checkpoint=None): + prompt_embed_dim = 256 + image_size = 1024 + vit_patch_size = 16 + encoder_embed_dim=1280 + encoder_depth=32 + encoder_num_heads=16 + encoder_global_attn_indexes=[7, 15, 23, 31] + image_encoder=ImageEncoderViT( + depth=encoder_depth, + embed_dim=encoder_embed_dim, + img_size=image_size, + mlp_ratio=4, + norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), + num_heads=encoder_num_heads, + patch_size=vit_patch_size, + qkv_bias=True, + use_rel_pos=True, + global_attn_indexes=encoder_global_attn_indexes, + window_size=14, + out_chans=prompt_embed_dim, + ) + if checkpoint is not None: + with open(checkpoint, "rb") as f: + state_dict = torch.load(f) + image_encoder.load_state_dict(state_dict,strict=True) + return image_encoder + +def build_prompt_guided_decoder(checkpoint=None): + prompt_embed_dim = 256 + image_size = 1024 + vit_patch_size = 16 + image_embedding_size = image_size // vit_patch_size + prompt_encoder=PromptEncoder( + embed_dim=prompt_embed_dim, + image_embedding_size=(image_embedding_size, image_embedding_size), + input_image_size=(image_size, image_size), + mask_in_chans=16, + ) + mask_decoder=MaskDecoder( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=prompt_embed_dim, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=prompt_embed_dim, + iou_head_depth=3, + iou_head_hidden_dim=256, + ) + if checkpoint is not None: + with open(checkpoint, "rb") as f: + state_dict = torch.load(f) + promt_dict=state_dict['PromtEncoder'] + mask_dict=state_dict['MaskDecoder'] + prompt_encoder.load_state_dict(promt_dict) + mask_decoder.load_state_dict(mask_dict) + return prompt_encoder, mask_decoder + +sam_model_registry = { + "sam_vit_h": build_sam_vit_h, + "prompt_guided_decoder": build_prompt_guided_decoder, + "sam_vit_h_encoder": build_sam_vit_h_encoder, +} \ No newline at end of file diff --git a/modules/mobilesamv2/modeling/__init__.py b/modules/mobilesamv2/modeling/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..38e906243d898d7fc071c0fe218338c5cace3ea1 --- /dev/null +++ b/modules/mobilesamv2/modeling/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from .sam import Sam +from .image_encoder import ImageEncoderViT +from .mask_decoder import MaskDecoder +from .prompt_encoder import PromptEncoder +from .transformer import TwoWayTransformer diff --git a/modules/mobilesamv2/modeling/__pycache__/__init__.cpython-312.pyc b/modules/mobilesamv2/modeling/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d4b053b0cc53ab107650e6aba0f90f59be640f04 Binary files /dev/null and b/modules/mobilesamv2/modeling/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/mobilesamv2/modeling/__pycache__/common.cpython-312.pyc b/modules/mobilesamv2/modeling/__pycache__/common.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d661230112e15f90b506a3efeec7dcbf5e41b08 Binary files /dev/null and b/modules/mobilesamv2/modeling/__pycache__/common.cpython-312.pyc differ diff --git a/modules/mobilesamv2/modeling/__pycache__/image_encoder.cpython-312.pyc b/modules/mobilesamv2/modeling/__pycache__/image_encoder.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1a50442d74140596854cad2c56cdb4955ae149b9 Binary files /dev/null and b/modules/mobilesamv2/modeling/__pycache__/image_encoder.cpython-312.pyc differ diff --git a/modules/mobilesamv2/modeling/__pycache__/mask_decoder.cpython-312.pyc b/modules/mobilesamv2/modeling/__pycache__/mask_decoder.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..03cec8b562252819fb61e755854fbb6b868bf905 Binary files /dev/null and b/modules/mobilesamv2/modeling/__pycache__/mask_decoder.cpython-312.pyc differ diff --git a/modules/mobilesamv2/modeling/__pycache__/prompt_encoder.cpython-312.pyc b/modules/mobilesamv2/modeling/__pycache__/prompt_encoder.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..10b885e9c0fcbd8edf2b790d5358ed7e118c45dd Binary files /dev/null and b/modules/mobilesamv2/modeling/__pycache__/prompt_encoder.cpython-312.pyc differ diff --git a/modules/mobilesamv2/modeling/__pycache__/sam.cpython-312.pyc b/modules/mobilesamv2/modeling/__pycache__/sam.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c2f91d8cf19aea629759ab12d660204edf2bf306 Binary files /dev/null and b/modules/mobilesamv2/modeling/__pycache__/sam.cpython-312.pyc differ diff --git a/modules/mobilesamv2/modeling/__pycache__/transformer.cpython-312.pyc b/modules/mobilesamv2/modeling/__pycache__/transformer.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..82b6a480118b37b5ab1b6a8289a6ab1a35462077 Binary files /dev/null and b/modules/mobilesamv2/modeling/__pycache__/transformer.cpython-312.pyc differ diff --git a/modules/mobilesamv2/modeling/common.py b/modules/mobilesamv2/modeling/common.py new file mode 100644 index 0000000000000000000000000000000000000000..2bf15236a3eb24d8526073bc4fa2b274cccb3f96 --- /dev/null +++ b/modules/mobilesamv2/modeling/common.py @@ -0,0 +1,43 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.nn as nn + +from typing import Type + + +class MLPBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + mlp_dim: int, + act: Type[nn.Module] = nn.GELU, + ) -> None: + super().__init__() + self.lin1 = nn.Linear(embedding_dim, mlp_dim) + self.lin2 = nn.Linear(mlp_dim, embedding_dim) + self.act = act() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.lin2(self.act(self.lin1(x))) + + +# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa +# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa +class LayerNorm2d(nn.Module): + def __init__(self, num_channels: int, eps: float = 1e-6) -> None: + super().__init__() + self.weight = nn.Parameter(torch.ones(num_channels)) + self.bias = nn.Parameter(torch.zeros(num_channels)) + self.eps = eps + + def forward(self, x: torch.Tensor) -> torch.Tensor: + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x diff --git a/modules/mobilesamv2/modeling/image_encoder.py b/modules/mobilesamv2/modeling/image_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..4b3d8b76eb555e1bbef477f6d791eea21204798d --- /dev/null +++ b/modules/mobilesamv2/modeling/image_encoder.py @@ -0,0 +1,394 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from typing import Optional, Tuple, Type + +from .common import LayerNorm2d, MLPBlock + + +# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa +class ImageEncoderViT(nn.Module): + def __init__( + self, + img_size: int = 1024, + patch_size: int = 16, + in_chans: int = 3, + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + mlp_ratio: float = 4.0, + out_chans: int = 256, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_abs_pos: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + global_attn_indexes: Tuple[int, ...] = (), + ) -> None: + """ + Args: + img_size (int): Input image size. + patch_size (int): Patch size. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + depth (int): Depth of ViT. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_abs_pos (bool): If True, use absolute positional embeddings. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. + global_attn_indexes (list): Indexes for blocks using global attention. + """ + super().__init__() + self.img_size = img_size + + self.patch_embed = PatchEmbed( + kernel_size=(patch_size, patch_size), + stride=(patch_size, patch_size), + in_chans=in_chans, + embed_dim=embed_dim, + ) + + self.pos_embed: Optional[nn.Parameter] = None + if use_abs_pos: + # Initialize absolute positional embedding with pretrain image size. + self.pos_embed = nn.Parameter( + torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) + ) + + self.blocks = nn.ModuleList() + for i in range(depth): + block = Block( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + norm_layer=norm_layer, + act_layer=act_layer, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + window_size=window_size if i not in global_attn_indexes else 0, + input_size=(img_size // patch_size, img_size // patch_size), + ) + self.blocks.append(block) + + self.neck = nn.Sequential( + nn.Conv2d( + embed_dim, + out_chans, + kernel_size=1, + bias=False, + ), + LayerNorm2d(out_chans), + nn.Conv2d( + out_chans, + out_chans, + kernel_size=3, + padding=1, + bias=False, + ), + LayerNorm2d(out_chans), + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + # import pdb;pdb.set_trace() + x = self.patch_embed(x) + if self.pos_embed is not None: + x = x + self.pos_embed + for blk in self.blocks: + x = blk(x) + x = self.neck(x.permute(0, 3, 1, 2)) + + return x + + +class Block(nn.Module): + """Transformer blocks with support of window attention and residual propagation blocks""" + + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4.0, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. If it equals 0, then + use global attention. + input_size (tuple(int, int) or None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + input_size=input_size if window_size == 0 else (window_size, window_size), + ) + + self.norm2 = norm_layer(dim) + self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) + + self.window_size = window_size + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.norm1(x) + # Window partition + if self.window_size > 0: + H, W = x.shape[1], x.shape[2] + x, pad_hw = window_partition(x, self.window_size) + + x = self.attn(x) + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, self.window_size, pad_hw, (H, W)) + + x = shortcut + x + x = x + self.mlp(self.norm2(x)) + + return x + + +class Attention(nn.Module): + """Multi-head Attention block with relative position embeddings.""" + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + input_size (tuple(int, int) or None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim**-0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + self.use_rel_pos = use_rel_pos + if self.use_rel_pos: + assert ( + input_size is not None + ), "Input size must be provided if using relative positional encoding." + # initialize relative positional embeddings + self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + # qkv with shape (3, B, nHead, H * W, C) + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + # q, k, v with shape (B * nHead, H * W, C) + q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) + + attn = (q * self.scale) @ k.transpose(-2, -1) + + if self.use_rel_pos: + attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) + + attn = attn.softmax(dim=-1) + x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) + x = self.proj(x) + + return x + + +def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + if pad_h > 0 or pad_w > 0: + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows, (Hp, Wp) + + +def window_unpartition( + windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] +) -> torch.Tensor: + """ + Window unpartition into original sequences and removing padding. + Args: + windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + + if Hp > H or Wp > W: + x = x[:, :H, :W, :].contiguous() + return x + + +def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: + """ + Get relative positional embeddings according to the relative positions of + query and key sizes. + Args: + q_size (int): size of query q. + k_size (int): size of key k. + rel_pos (Tensor): relative position embeddings (L, C). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos if needed. + if rel_pos.shape[0] != max_rel_dist: + # Interpolate rel pos. + rel_pos_resized = F.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=max_rel_dist, + mode="linear", + ) + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + else: + rel_pos_resized = rel_pos + + # Scale the coords with short length if shapes for q and k are different. + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return rel_pos_resized[relative_coords.long()] + + +def add_decomposed_rel_pos( + attn: torch.Tensor, + q: torch.Tensor, + rel_pos_h: torch.Tensor, + rel_pos_w: torch.Tensor, + q_size: Tuple[int, int], + k_size: Tuple[int, int], +) -> torch.Tensor: + """ + Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. + https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 + Args: + attn (Tensor): attention map. + q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). + rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. + rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. + q_size (Tuple): spatial sequence size of query q with (q_h, q_w). + k_size (Tuple): spatial sequence size of key k with (k_h, k_w). + + Returns: + attn (Tensor): attention map with added relative positional embeddings. + """ + q_h, q_w = q_size + k_h, k_w = k_size + Rh = get_rel_pos(q_h, k_h, rel_pos_h) + Rw = get_rel_pos(q_w, k_w, rel_pos_w) + + B, _, dim = q.shape + r_q = q.reshape(B, q_h, q_w, dim) + rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) + rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) + + attn = ( + attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] + ).view(B, q_h * q_w, k_h * k_w) + + return attn + + +class PatchEmbed(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + kernel_size: Tuple[int, int] = (16, 16), + stride: Tuple[int, int] = (16, 16), + padding: Tuple[int, int] = (0, 0), + in_chans: int = 3, + embed_dim: int = 768, + ) -> None: + """ + Args: + kernel_size (Tuple): kernel size of the projection layer. + stride (Tuple): stride of the projection layer. + padding (Tuple): padding size of the projection layer. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + """ + super().__init__() + + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # B C H W -> B H W C + x = x.permute(0, 2, 3, 1) + return x diff --git a/modules/mobilesamv2/modeling/mask_decoder.py b/modules/mobilesamv2/modeling/mask_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..afc61093413bfe79982264504edbde27308f6c1b --- /dev/null +++ b/modules/mobilesamv2/modeling/mask_decoder.py @@ -0,0 +1,213 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +from torch import nn +from torch.nn import functional as F + +from typing import List, Tuple, Type + +from .common import LayerNorm2d + + +class MaskDecoder(nn.Module): + def __init__( + self, + *, + transformer_dim: int, + transformer: nn.Module, + num_multimask_outputs: int = 3, + activation: Type[nn.Module] = nn.GELU, + iou_head_depth: int = 3, + iou_head_hidden_dim: int = 256, + ) -> None: + """ + Predicts masks given an image and prompt embeddings, using a + transformer architecture. + + Arguments: + transformer_dim (int): the channel dimension of the transformer + transformer (nn.Module): the transformer used to predict masks + num_multimask_outputs (int): the number of masks to predict + when disambiguating masks + activation (nn.Module): the type of activation to use when + upscaling masks + iou_head_depth (int): the depth of the MLP used to predict + mask quality + iou_head_hidden_dim (int): the hidden dimension of the MLP + used to predict mask quality + """ + super().__init__() + self.transformer_dim = transformer_dim + self.transformer = transformer + + self.num_multimask_outputs = num_multimask_outputs + + self.iou_token = nn.Embedding(1, transformer_dim) + self.num_mask_tokens = num_multimask_outputs + 1 + self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) + + self.output_upscaling = nn.Sequential( + nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), + LayerNorm2d(transformer_dim // 4), + activation(), + nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), + activation(), + ) + self.output_hypernetworks_mlps = nn.ModuleList( + [ + MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) + for i in range(self.num_mask_tokens) + ] + ) + + self.iou_prediction_head = MLP( + transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth + ) + # self.mask_han=None + def forward( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + multimask_output: bool, + simple_type=False, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Predict masks given image and prompt embeddings. + + Arguments: + image_embeddings (torch.Tensor): the embeddings from the image encoder + image_pe (torch.Tensor): positional encoding with the shape of image_embeddings + sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes + dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs + multimask_output (bool): Whether to return multiple masks or a single + mask. + + Returns: + torch.Tensor: batched predicted masks + torch.Tensor: batched predictions of mask quality + """ + if (simple_type==False): + masks, iou_pred = self.predict_masks( + image_embeddings=image_embeddings, + image_pe=image_pe, + sparse_prompt_embeddings=sparse_prompt_embeddings, + dense_prompt_embeddings=dense_prompt_embeddings, + ) + else: + masks, iou_pred = self.predict_masks_simple( + image_embeddings=image_embeddings, + image_pe=image_pe, + sparse_prompt_embeddings=sparse_prompt_embeddings, + dense_prompt_embeddings=dense_prompt_embeddings, + ) + if multimask_output: + mask_slice = slice(1, None) + else: + mask_slice = slice(0, 1) + masks = masks[:, mask_slice, :, :] + iou_pred = iou_pred[:, mask_slice] + return masks, iou_pred + + def predict_masks( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + # Concatenate output tokens + output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) + + output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) + # Expand per-image data in batch direction to be per-mask + src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) + src = src + dense_prompt_embeddings + pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) + b, c, h, w = src.shape + + hs, src = self.transformer(src, pos_src, tokens) + iou_token_out = hs[:, 0, :] + mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] + + # Upscale mask embeddings and predict masks using the mask tokens + src = src.transpose(1, 2).view(b, c, h, w) + upscaled_embedding = self.output_upscaling(src) + hyper_in_list: List[torch.Tensor] = [] + # import pdb;pdb.set_trace() + for i in range(self.num_mask_tokens): + hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) + hyper_in = torch.stack(hyper_in_list, dim=1) + b, c, h, w = upscaled_embedding.shape + masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) + # import pdb;pdb.set_trace() + # Generate mask quality predictions + iou_pred = self.iou_prediction_head(iou_token_out) + + return masks, iou_pred + def predict_masks_simple( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) + + output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) + + src=image_embeddings + + src = src + dense_prompt_embeddings + pos_src=image_pe + b, c, h, w = src.shape + hs, src = self.transformer(src, pos_src, tokens) + iou_token_out = hs[:, 0, :] + mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] + src = src.transpose(1, 2).view(b, c, h, w) + + upscaled_embedding = self.output_upscaling(src) + hyper_in_list: List[torch.Tensor] = [] + for i in range(self.num_mask_tokens): + hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) + hyper_in = torch.stack(hyper_in_list, dim=1) + b, c, h, w = upscaled_embedding.shape + masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) + iou_pred = self.iou_prediction_head(iou_token_out) + return masks, iou_pred + + +# Lightly adapted from +# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa +class MLP(nn.Module): + def __init__( + self, + input_dim: int, + hidden_dim: int, + output_dim: int, + num_layers: int, + sigmoid_output: bool = False, + ) -> None: + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList( + nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) + ) + self.sigmoid_output = sigmoid_output + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + if self.sigmoid_output: + x = F.sigmoid(x) + return x diff --git a/modules/mobilesamv2/modeling/prompt_encoder.py b/modules/mobilesamv2/modeling/prompt_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..fbb249ea809d4ba337b1130acd2acd391a03ca9a --- /dev/null +++ b/modules/mobilesamv2/modeling/prompt_encoder.py @@ -0,0 +1,217 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch +from torch import nn + +from typing import Any, Optional, Tuple, Type + +from .common import LayerNorm2d + + +class PromptEncoder(nn.Module): + def __init__( + self, + embed_dim: int, + image_embedding_size: Tuple[int, int], + input_image_size: Tuple[int, int], + mask_in_chans: int, + activation: Type[nn.Module] = nn.GELU, + ) -> None: + """ + Encodes prompts for input to SAM's mask decoder. + + Arguments: + embed_dim (int): The prompts' embedding dimension + image_embedding_size (tuple(int, int)): The spatial size of the + image embedding, as (H, W). + input_image_size (int): The padded size of the image as input + to the image encoder, as (H, W). + mask_in_chans (int): The number of hidden channels used for + encoding input masks. + activation (nn.Module): The activation to use when encoding + input masks. + """ + super().__init__() + self.embed_dim = embed_dim + self.input_image_size = input_image_size + self.image_embedding_size = image_embedding_size + self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) + + self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners + point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] + self.point_embeddings = nn.ModuleList(point_embeddings) + self.not_a_point_embed = nn.Embedding(1, embed_dim) + + self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) + self.mask_downscaling = nn.Sequential( + nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans // 4), + activation(), + nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans), + activation(), + nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), + ) + self.no_mask_embed = nn.Embedding(1, embed_dim) + + def get_dense_pe(self) -> torch.Tensor: + """ + Returns the positional encoding used to encode point prompts, + applied to a dense set of points the shape of the image encoding. + + Returns: + torch.Tensor: Positional encoding with shape + 1x(embed_dim)x(embedding_h)x(embedding_w) + """ + return self.pe_layer(self.image_embedding_size).unsqueeze(0) + + def _embed_points( + self, + points: torch.Tensor, + labels: torch.Tensor, + pad: bool, + ) -> torch.Tensor: + """Embeds point prompts.""" + points = points + 0.5 # Shift to center of pixel + if pad: + padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) + padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) + points = torch.cat([points, padding_point], dim=1) + labels = torch.cat([labels, padding_label], dim=1) + # import pdb;pdb.set_trace() + point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) + point_embedding[labels == -1] = 0.0 + point_embedding[labels == -1] += self.not_a_point_embed.weight + point_embedding[labels == 0] += self.point_embeddings[0].weight + point_embedding[labels == 1] += self.point_embeddings[1].weight + return point_embedding + + def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: + """Embeds box prompts.""" + boxes = boxes + 0.5 # Shift to center of pixel + coords = boxes.reshape(-1, 2, 2) + corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) + corner_embedding[:, 0, :] += self.point_embeddings[2].weight + corner_embedding[:, 1, :] += self.point_embeddings[3].weight + return corner_embedding + + def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: + """Embeds mask inputs.""" + mask_embedding = self.mask_downscaling(masks) + return mask_embedding + + def _get_batch_size( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> int: + """ + Gets the batch size of the output given the batch size of the input prompts. + """ + if points is not None: + return points[0].shape[0] + elif boxes is not None: + return boxes.shape[0] + elif masks is not None: + return masks.shape[0] + else: + return 1 + + def _get_device(self) -> torch.device: + return self.point_embeddings[0].weight.device + + def forward( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Embeds different types of prompts, returning both sparse and dense + embeddings. + + Arguments: + points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates + and labels to embed. + boxes (torch.Tensor or none): boxes to embed + masks (torch.Tensor or none): masks to embed + + Returns: + torch.Tensor: sparse embeddings for the points and boxes, with shape + BxNx(embed_dim), where N is determined by the number of input points + and boxes. + torch.Tensor: dense embeddings for the masks, in the shape + Bx(embed_dim)x(embed_H)x(embed_W) + """ + #import pdb;pdb.set_trace() + bs = self._get_batch_size(points, boxes, masks) + sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) + # import pdb;pdb.set_trace() + if points is not None: + coords, labels = points + point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) + sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) + if boxes is not None: + box_embeddings = self._embed_boxes(boxes) + sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) + + if masks is not None: + dense_embeddings = self._embed_masks(masks) + else: + dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( + bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] + ) + + return sparse_embeddings, dense_embeddings + + +class PositionEmbeddingRandom(nn.Module): + """ + Positional encoding using random spatial frequencies. + """ + + def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: + super().__init__() + if scale is None or scale <= 0.0: + scale = 1.0 + self.register_buffer( + "positional_encoding_gaussian_matrix", + scale * torch.randn((2, num_pos_feats)), + ) + + def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: + """Positionally encode points that are normalized to [0,1].""" + # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape + coords = 2 * coords - 1 + coords = coords @ self.positional_encoding_gaussian_matrix + coords = 2 * np.pi * coords + # outputs d_1 x ... x d_n x C shape + return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) + + def forward(self, size: Tuple[int, int]) -> torch.Tensor: + """Generate positional encoding for a grid of the specified size.""" + h, w = size + device: Any = self.positional_encoding_gaussian_matrix.device + grid = torch.ones((h, w), device=device, dtype=torch.float32) + y_embed = grid.cumsum(dim=0) - 0.5 + x_embed = grid.cumsum(dim=1) - 0.5 + y_embed = y_embed / h + x_embed = x_embed / w + + pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) + return pe.permute(2, 0, 1) # C x H x W + + def forward_with_coords( + self, coords_input: torch.Tensor, image_size: Tuple[int, int] + ) -> torch.Tensor: + """Positionally encode points that are not normalized to [0,1].""" + coords = coords_input.clone() + coords[:, :, 0] = coords[:, :, 0] / image_size[1] + coords[:, :, 1] = coords[:, :, 1] / image_size[0] + return self._pe_encoding(coords.to(torch.float)) # B x N x C diff --git a/modules/mobilesamv2/modeling/sam.py b/modules/mobilesamv2/modeling/sam.py new file mode 100644 index 0000000000000000000000000000000000000000..9887b28b33cb0ed8c2ecd2026c4539d05a5762bc --- /dev/null +++ b/modules/mobilesamv2/modeling/sam.py @@ -0,0 +1,203 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +from torch import nn +from torch.nn import functional as F + +from typing import Any, Dict, List, Tuple + +from .image_encoder import ImageEncoderViT +from .mask_decoder import MaskDecoder +from .prompt_encoder import PromptEncoder + + +class Sam(nn.Module): + mask_threshold: float = 0.0 + image_format: str = "RGB" + + def __init__( + self, + image_encoder: ImageEncoderViT, + prompt_encoder: PromptEncoder, + mask_decoder: MaskDecoder, + pixel_mean: List[float] = [123.675, 116.28, 103.53], + pixel_std: List[float] = [58.395, 57.12, 57.375], + ) -> None: + """ + SAM predicts object masks from an image and input prompts. + + Arguments: + image_encoder (ImageEncoderViT): The backbone used to encode the + image into image embeddings that allow for efficient mask prediction. + prompt_encoder (PromptEncoder): Encodes various types of input prompts. + mask_decoder (MaskDecoder): Predicts masks from the image embeddings + and encoded prompts. + pixel_mean (list(float)): Mean values for normalizing pixels in the input image. + pixel_std (list(float)): Std values for normalizing pixels in the input image. + """ + super().__init__() + self.image_encoder = image_encoder + self.prompt_encoder = prompt_encoder + self.mask_decoder = mask_decoder + self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) + self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) + + @property + def device(self) -> Any: + return self.pixel_mean.device + + # @torch.no_grad() + def forward( + self, + batched_input: List[Dict[str, Any]], + multimask_output: bool, + ) -> List[Dict[str, torch.Tensor]]: + """ + Predicts masks end-to-end from provided images and prompts. + If prompts are not known in advance, using SamPredictor is + recommended over calling the model directly. + + Arguments: + batched_input (list(dict)): A list over input images, each a + dictionary with the following keys. A prompt key can be + excluded if it is not present. + 'image': The image as a torch tensor in 3xHxW format, + already transformed for input to the model. + 'original_size': (tuple(int, int)) The original size of + the image before transformation, as (H, W). + 'point_coords': (torch.Tensor) Batched point prompts for + this image, with shape BxNx2. Already transformed to the + input frame of the model. + 'point_labels': (torch.Tensor) Batched labels for point prompts, + with shape BxN. + 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. + Already transformed to the input frame of the model. + 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, + in the form Bx1xHxW. + multimask_output (bool): Whether the model should predict multiple + disambiguating masks, or return a single mask. + + Returns: + (list(dict)): A list over input images, where each element is + as dictionary with the following keys. + 'masks': (torch.Tensor) Batched binary mask predictions, + with shape BxCxHxW, where B is the number of input prompts, + C is determined by multimask_output, and (H, W) is the + original size of the image. + 'iou_predictions': (torch.Tensor) The model's predictions + of mask quality, in shape BxC. + 'low_res_logits': (torch.Tensor) Low resolution logits with + shape BxCxHxW, where H=W=256. Can be passed as mask input + to subsequent iterations of prediction. + """ + input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) + # gpu_name =input_images.get_device() + # print('handongshen123123',gpu_name) + image_embeddings = self.image_encoder(input_images) + outputs = [] + + for image_record, curr_embedding in zip(batched_input, image_embeddings): + if "point_coords" in image_record: + points = (image_record["point_coords"], image_record["point_labels"]) + else: + points = None + with torch.no_grad(): + sparse_embeddings, dense_embeddings = self.prompt_encoder( + points=points, + boxes=image_record.get("boxes", None), + masks=image_record.get("mask_inputs", None), + ) + low_res_masks, iou_predictions = self.mask_decoder( + image_embeddings=curr_embedding.unsqueeze(0), + image_pe=self.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + ) + masks = self.postprocess_masks( + low_res_masks, + input_size=image_record["image"].shape[-2:], + original_size=image_record["original_size"], + ) + masks = masks > self.mask_threshold + outputs.append( + { + "masks": masks, + "iou_predictions": iou_predictions, + "low_res_logits": low_res_masks, + } + ) + + return outputs + + def postprocess_masks( + self, + masks: torch.Tensor, + input_size: Tuple[int, ...], + original_size: Tuple[int, ...], + ) -> torch.Tensor: + """ + Remove padding and upscale masks to the original image size. + + Arguments: + masks (torch.Tensor): Batched masks from the mask_decoder, + in BxCxHxW format. + input_size (tuple(int, int)): The size of the image input to the + model, in (H, W) format. Used to remove padding. + original_size (tuple(int, int)): The original size of the image + before resizing for input to the model, in (H, W) format. + + Returns: + (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) + is given by original_size. + """ + masks = F.interpolate( + masks, + (self.image_encoder.img_size, self.image_encoder.img_size), + mode="bilinear", + align_corners=False, + ) + masks = masks[..., : input_size[0], : input_size[1]] + masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False) + #import pdb;pdb.set_trace() + return masks + + def preprocess(self, x: torch.Tensor) -> torch.Tensor: + """Normalize pixel values and pad to a square input.""" + # Normalize colors + x = (x - self.pixel_mean) / self.pixel_std + + # Pad + h, w = x.shape[-2:] + padh = self.image_encoder.img_size - h + padw = self.image_encoder.img_size - w + x = F.pad(x, (0, padw, 0, padh)) + return x + + def preprocess_test(self, x: torch.Tensor) -> torch.Tensor: + """Normalize pixel values and pad to a square input.""" + # Normalize colors + x = (x - (self.pixel_mean.unsqueeze(0)).cuda()) / self.pixel_std.unsqueeze(0).cuda() + + # Pad + h, w = x.shape[-2:] + padh = self.image_encoder.img_size - h + padw = self.image_encoder.img_size - w + x = F.pad(x, (0, padw, 0, padh)) + return x + + def preprocess_change(self, x: torch.Tensor) -> torch.Tensor: + """Normalize pixel values and pad to a square input.""" + # Normalize colors + x = (x - (self.pixel_mean).cuda()) / self.pixel_std.cuda() + + # Pad + # h, w = x.shape[-2:] + # padh = self.image_encoder.img_size - h + # padw = self.image_encoder.img_size - w + # x = F.pad(x, (0, padw, 0, padh)) + return x diff --git a/modules/mobilesamv2/modeling/transformer.py b/modules/mobilesamv2/modeling/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..9a48311fbf75e7ff23555fa40df560d0c47d2510 --- /dev/null +++ b/modules/mobilesamv2/modeling/transformer.py @@ -0,0 +1,240 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +from torch import Tensor, nn + +import math +from typing import Tuple, Type + +from .common import MLPBlock + + +class TwoWayTransformer(nn.Module): + def __init__( + self, + depth: int, + embedding_dim: int, + num_heads: int, + mlp_dim: int, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + ) -> None: + """ + A transformer decoder that attends to an input image using + queries whose positional embedding is supplied. + + Args: + depth (int): number of layers in the transformer + embedding_dim (int): the channel dimension for the input embeddings + num_heads (int): the number of heads for multihead attention. Must + divide embedding_dim + mlp_dim (int): the channel dimension internal to the MLP block + activation (nn.Module): the activation to use in the MLP block + """ + super().__init__() + self.depth = depth + self.embedding_dim = embedding_dim + self.num_heads = num_heads + self.mlp_dim = mlp_dim + self.layers = nn.ModuleList() + + for i in range(depth): + self.layers.append( + TwoWayAttentionBlock( + embedding_dim=embedding_dim, + num_heads=num_heads, + mlp_dim=mlp_dim, + activation=activation, + attention_downsample_rate=attention_downsample_rate, + skip_first_layer_pe=(i == 0), + ) + ) + + self.final_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm_final_attn = nn.LayerNorm(embedding_dim) + + def forward( + self, + image_embedding: Tensor, + image_pe: Tensor, + point_embedding: Tensor, + ) -> Tuple[Tensor, Tensor]: + """ + Args: + image_embedding (torch.Tensor): image to attend to. Should be shape + B x embedding_dim x h x w for any h and w. + image_pe (torch.Tensor): the positional encoding to add to the image. Must + have the same shape as image_embedding. + point_embedding (torch.Tensor): the embedding to add to the query points. + Must have shape B x N_points x embedding_dim for any N_points. + + Returns: + torch.Tensor: the processed point_embedding + torch.Tensor: the processed image_embedding + """ + # BxCxHxW -> BxHWxC == B x N_image_tokens x C + bs, c, h, w = image_embedding.shape + image_embedding = image_embedding.flatten(2).permute(0, 2, 1) #torch.Size([1, 4096, 256]) + image_pe = image_pe.flatten(2).permute(0, 2, 1) #torch.Size([1, 4096, 256]) + # import pdb;pdb.set_trace() + # Prepare queries + queries = point_embedding + keys = image_embedding + + # Apply transformer blocks and final layernorm + for layer in self.layers: + queries, keys = layer( + queries=queries, + keys=keys, + query_pe=point_embedding, + key_pe=image_pe, + ) + + # Apply the final attention layer from the points to the image + q = queries + point_embedding + k = keys + image_pe + attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm_final_attn(queries) + + return queries, keys + + +class TwoWayAttentionBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + num_heads: int, + mlp_dim: int = 2048, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + skip_first_layer_pe: bool = False, + ) -> None: + """ + A transformer block with four layers: (1) self-attention of sparse + inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp + block on sparse inputs, and (4) cross attention of dense inputs to sparse + inputs. + + Arguments: + embedding_dim (int): the channel dimension of the embeddings + num_heads (int): the number of heads in the attention layers + mlp_dim (int): the hidden dimension of the mlp block + activation (nn.Module): the activation of the mlp block + skip_first_layer_pe (bool): skip the PE on the first layer + """ + super().__init__() + self.self_attn = Attention(embedding_dim, num_heads) + self.norm1 = nn.LayerNorm(embedding_dim) + + self.cross_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm2 = nn.LayerNorm(embedding_dim) + + self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) + self.norm3 = nn.LayerNorm(embedding_dim) + + self.norm4 = nn.LayerNorm(embedding_dim) + self.cross_attn_image_to_token = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + + self.skip_first_layer_pe = skip_first_layer_pe + + def forward( + self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor + ) -> Tuple[Tensor, Tensor]: + # Self attention block + if self.skip_first_layer_pe: + queries = self.self_attn(q=queries, k=queries, v=queries) + else: + q = queries + query_pe + attn_out = self.self_attn(q=q, k=q, v=queries) + queries = queries + attn_out + queries = self.norm1(queries) + + # Cross attention block, tokens attending to image embedding + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm2(queries) + + # MLP block + mlp_out = self.mlp(queries) + queries = queries + mlp_out + queries = self.norm3(queries) + + # Cross attention block, image embedding attending to tokens + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) + keys = keys + attn_out + keys = self.norm4(keys) + + return queries, keys + + +class Attention(nn.Module): + """ + An attention layer that allows for downscaling the size of the embedding + after projection to queries, keys, and values. + """ + + def __init__( + self, + embedding_dim: int, + num_heads: int, + downsample_rate: int = 1, + ) -> None: + super().__init__() + self.embedding_dim = embedding_dim + self.internal_dim = embedding_dim // downsample_rate + self.num_heads = num_heads + assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim." + # import pdb;pdb.set_trace() + self.q_proj = nn.Linear(embedding_dim, self.internal_dim) + self.k_proj = nn.Linear(embedding_dim, self.internal_dim) + self.v_proj = nn.Linear(embedding_dim, self.internal_dim) + self.out_proj = nn.Linear(self.internal_dim, embedding_dim) + + def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: + b, n, c = x.shape + x = x.reshape(b, n, num_heads, c // num_heads) + return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head + + def _recombine_heads(self, x: Tensor) -> Tensor: + b, n_heads, n_tokens, c_per_head = x.shape + x = x.transpose(1, 2) + return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C + + def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: + # Input projections + q = self.q_proj(q) + k = self.k_proj(k) + v = self.v_proj(v) + + # Separate into heads + q = self._separate_heads(q, self.num_heads) + k = self._separate_heads(k, self.num_heads) + v = self._separate_heads(v, self.num_heads) + + # Attention + _, _, _, c_per_head = q.shape + attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens + attn = attn / math.sqrt(c_per_head) + attn = torch.softmax(attn, dim=-1) + + # Get output + out = attn @ v + out = self._recombine_heads(out) + out = self.out_proj(out) + + return out diff --git a/modules/mobilesamv2/predictor.py b/modules/mobilesamv2/predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..9e0da9c260a028f03251ebaed3d449d8c6be49f0 --- /dev/null +++ b/modules/mobilesamv2/predictor.py @@ -0,0 +1,348 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import numpy as np +from .modeling import Sam +from typing import Optional, Tuple +from .utils.transforms import ResizeLongestSide + + +class SamPredictor: + def __init__( + self, + sam_model: Sam, + ) -> None: + """ + Uses SAM to calculate the image embedding for an image, and then + allow repeated, efficient mask prediction given prompts. + Arguments: + sam_model (Sam): The model to use for mask prediction. + """ + super().__init__() + self.model = sam_model + self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) + self.reset_image() + #self.feature_name=0 + def set_image( + self, + image: np.ndarray, + image_format: str = "RGB", + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + Arguments: + image (np.ndarray): The image for calculating masks. Expects an + image in HWC uint8 format, with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + assert image_format in [ + "RGB", + "BGR", + ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." + if image_format != self.model.image_format: + image = image[..., ::-1] + + # Transform the image to the form expected by the model + input_image = self.transform.apply_image(image) + input_image_torch = torch.as_tensor(input_image, device=self.device) + input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] + + self.set_torch_image(input_image_torch, image.shape[:2]) + + @torch.no_grad() + def set_torch_image( + self, + transformed_image: torch.Tensor, + original_image_size: Tuple[int, ...], + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. Expects the input + image to be already transformed to the format expected by the model. + Arguments: + transformed_image (torch.Tensor): The input image, with shape + 1x3xHxW, which has been transformed with ResizeLongestSide. + original_image_size (tuple(int, int)): The size of the image + before transformation, in (H, W) format. + """ + assert ( + len(transformed_image.shape) == 4 + and transformed_image.shape[1] == 3 + and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size + ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." + self.reset_image() + + self.original_size = original_image_size + self.input_size = tuple(transformed_image.shape[-2:]) + input_image = self.model.preprocess(transformed_image) + #import pdb;pdb.set_trace() + # import time + # aa = time.time() + self.features = self.model.image_encoder(input_image) + # cc = time.time() + # print(cc-aa, ',') + # import pdb;pdb.set_trace() + + + + self.is_image_set = True + + def predict( + self, + point_coords: Optional[np.ndarray] = None, + point_labels: Optional[np.ndarray] = None, + box: Optional[np.ndarray] = None, + mask_input: Optional[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + han_size: Optional[np.ndarray] = None, + ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """ + Predict masks for the given input prompts, using the currently set image. + Arguments: + point_coords (np.ndarray or None): A Nx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (np.ndarray or None): A length N array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A length 4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form 1xHxW, where + for SAM, H=W=256. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + Returns: + (np.ndarray): The output masks in CxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (np.ndarray): An array of length C containing the model's + predictions for the quality of each mask. + (np.ndarray): An array of shape CxHxW, where C is the number + of masks and H=W=256. These low resolution logits can be passed to + a subsequent iteration as mask input. + """ + self.han_size=han_size + if not self.is_image_set: + raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") + + # Transform input prompts + coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None + if point_coords is not None: + assert ( + point_labels is not None + ), "point_labels must be supplied if point_coords is supplied." + point_coords = self.transform.apply_coords(point_coords, self.original_size) + coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) + labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) + coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] + if box is not None: + box = self.transform.apply_boxes(box, self.original_size) + box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) + box_torch = box_torch[None, :] + if mask_input is not None: + mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) + mask_input_torch = mask_input_torch[None, :, :, :] + # import time + # aa = time.time() + masks, iou_predictions, low_res_masks = self.predict_torch( + coords_torch, + labels_torch, + box_torch, + mask_input_torch, + multimask_output, + return_logits=return_logits, + ) + # cc = time.time() + # print('decoder_time:', cc-aa) + # import pdb; pdb.set_trace() + + + masks_np = masks[0].detach().cpu().numpy() + iou_predictions_np = iou_predictions[0].detach().cpu().numpy() + low_res_masks_np = low_res_masks[0].detach().cpu().numpy() + return masks_np, iou_predictions_np, low_res_masks_np + + @torch.no_grad() + def predict_torch( + self, + point_coords: Optional[torch.Tensor], + point_labels: Optional[torch.Tensor], + boxes: Optional[torch.Tensor] = None, + mask_input: Optional[torch.Tensor] = None, + multimask_output: bool = True, + return_logits: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + Input prompts are batched torch tensors and are expected to already be + transformed to the input frame using ResizeLongestSide. + Arguments: + point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (torch.Tensor or None): A BxN array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + boxes (np.ndarray or None): A Bx4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form Bx1xHxW, where + for SAM, H=W=256. Masks returned by a previous iteration of the + predict method do not need further transformation. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + Returns: + (torch.Tensor): The output masks in BxCxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (torch.Tensor): An array of shape BxC containing the model's + predictions for the quality of each mask. + (torch.Tensor): An array of shape BxCxHxW, where C is the number + of masks and H=W=256. These low res logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") + + if point_coords is not None: + points = (point_coords, point_labels) + else: + points = None + + # Embed prompts + # import pdb;pdb.set_trace() + sparse_embeddings, dense_embeddings = self.model.prompt_encoder( + points=points, + boxes=boxes, + masks=mask_input, + ) + #import pdb;pdb.set_trace() + # Predict masks + low_res_masks, iou_predictions = self.model.mask_decoder( + image_embeddings=self.features, + image_pe=self.model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + ) + + # Upscale the masks to the original image resolution + # if self.han_size is not None: + # self.original_size=self.han_size + masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) + # if self.han_size is not None: + # self.original_size=(1024,1024) + #import pdb;pdb.set_trace() + if not return_logits: + masks = masks > self.model.mask_threshold + + return masks, iou_predictions, low_res_masks + + def get_image_embedding(self) -> torch.Tensor: + """ + Returns the image embeddings for the currently set image, with + shape 1xCxHxW, where C is the embedding dimension and (H,W) are + the embedding spatial dimension of SAM (typically C=256, H=W=64). + """ + if not self.is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) to generate an embedding." + ) + assert self.features is not None, "Features must exist if an image has been set." + return self.features + + @property + def device(self) -> torch.device: + return self.model.device + + def reset_image(self) -> None: + """Resets the currently set image.""" + self.is_image_set = False + self.features = None + self.orig_h = None + self.orig_w = None + self.input_h = None + self.input_w = None +################################################################################### han_change + def set_image_AddAverage( + self, + image: np.ndarray, + image_format: str = "RGB", + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + + Arguments: + image (np.ndarray): The image for calculating masks. Expects an + image in HWC uint8 format, with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + assert image_format in [ + "RGB", + "BGR", + ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." + if image_format != self.model.image_format: + image = image[..., ::-1] + + # Transform the image to the form expected by the model + #input_image = self.transform.apply_image(image) + input_image_torch = torch.as_tensor(image, device=self.device) + input_image_torch = input_image_torch.permute(0, 3, 1, 2).contiguous()[:, :, :, :] + + self.set_torch_image_AddAverage(input_image_torch, image.shape[:2]) + @torch.no_grad() + def set_torch_image_AddAverage( + self, + transformed_image: torch.Tensor, + original_image_size: Tuple[int, ...], + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. Expects the input + image to be already transformed to the format expected by the model. + + Arguments: + transformed_image (torch.Tensor): The input image, with shape + 1x3xHxW, which has been transformed with ResizeLongestSide. + original_image_size (tuple(int, int)): The size of the image + before transformation, in (H, W) format. + """ + assert ( + len(transformed_image.shape) == 4 + and transformed_image.shape[1] == 3 + and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size + ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." + self.reset_image() + + self.original_size = original_image_size + self.input_size = tuple(transformed_image.shape[-2:]) + input_image = self.model.preprocess(transformed_image) + encoder_change = self.model.image_encoder(input_image) + self.features=encoder_change#+ torch.from_numpy(np.load('./model_output/mean_100.npy')).to(device=self.device) + #handongshen + #ppp=np.load('./data/val1/features/'+self.feature_name) + #self.features=torch.from_numpy(ppp).to(device=self.device) + #features = np.load(join('./data','features','sa_227195.npy')) + #array = self.features.cpu().numpy() + #np.save(self.featurename[0], array) + self.is_image_set = True + #eturn 0 + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/modules/mobilesamv2/promt_mobilesamv2/__init__.py b/modules/mobilesamv2/promt_mobilesamv2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..fcabe941a31ba3dfc8ed9c98acb1478e77f8e0e2 --- /dev/null +++ b/modules/mobilesamv2/promt_mobilesamv2/__init__.py @@ -0,0 +1,6 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .model import ObjectAwareModel +from .predict import PromptModelPredictor + +__all__ = 'ObjectAwareModel', 'PromptModelPredictor' diff --git a/modules/mobilesamv2/promt_mobilesamv2/__pycache__/__init__.cpython-312.pyc b/modules/mobilesamv2/promt_mobilesamv2/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d5f9060ac6dfda793df5bd93b4f0cdce1b0bbff3 Binary files /dev/null and b/modules/mobilesamv2/promt_mobilesamv2/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/mobilesamv2/promt_mobilesamv2/__pycache__/model.cpython-312.pyc b/modules/mobilesamv2/promt_mobilesamv2/__pycache__/model.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0abec01e6674df19b23c05eab9f3582b259066e5 Binary files /dev/null and b/modules/mobilesamv2/promt_mobilesamv2/__pycache__/model.cpython-312.pyc differ diff --git a/modules/mobilesamv2/promt_mobilesamv2/__pycache__/predict.cpython-312.pyc b/modules/mobilesamv2/promt_mobilesamv2/__pycache__/predict.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cdf0f9f7cc3350e810a970e010bfc256e8caca48 Binary files /dev/null and b/modules/mobilesamv2/promt_mobilesamv2/__pycache__/predict.cpython-312.pyc differ diff --git a/modules/mobilesamv2/promt_mobilesamv2/model.py b/modules/mobilesamv2/promt_mobilesamv2/model.py new file mode 100644 index 0000000000000000000000000000000000000000..29cde494ecd6185b2e0c873cf39e9d43771292a8 --- /dev/null +++ b/modules/mobilesamv2/promt_mobilesamv2/model.py @@ -0,0 +1,85 @@ +from modules.ultralytics.yolo.cfg import get_cfg +from modules.ultralytics.yolo.engine.exporter import Exporter +from modules.ultralytics.yolo.engine.model import YOLO +from modules.ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, ROOT, is_git_dir + +from modules.ultralytics.yolo.utils.torch_utils import model_info, smart_inference_mode +from .predict import PromptModelPredictor + + +class ObjectAwareModel(YOLO): + + @smart_inference_mode() + def predict(self, source=None, stream=False, **kwargs): + """ + Perform prediction using the YOLO model. + + Args: + source (str | int | PIL | np.ndarray): The source of the image to make predictions on. + Accepts all source types accepted by the YOLO model. + stream (bool): Whether to stream the predictions or not. Defaults to False. + **kwargs : Additional keyword arguments passed to the predictor. + Check the 'configuration' section in the documentation for all available options. + + Returns: + (List[ultralytics.yolo.engine.results.Results]): The prediction results. + """ + if source is None: + source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' + LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") + overrides = self.overrides.copy() + overrides['conf'] = 0.25 + overrides.update(kwargs) # prefer kwargs + overrides['mode'] = kwargs.get('mode', 'predict') + assert overrides['mode'] in ['track', 'predict'] + overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python + self.predictor = PromptModelPredictor(overrides=overrides) + + self.predictor.setup_model(model=self.model, verbose=False) + + try: + + return self.predictor(source, stream=stream) + except Exception as e: + return None + + def train(self, **kwargs): + raise NotImplementedError("Currently, the training codes are on the way.") + + @smart_inference_mode() + def export(self, **kwargs): + """ + Export model. + + Args: + **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs + """ + overrides = dict(task='detect') + overrides.update(kwargs) + overrides['mode'] = 'export' + args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) + args.task = self.task + if args.imgsz == DEFAULT_CFG.imgsz: + args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed + if args.batch == DEFAULT_CFG.batch: + args.batch = 1 # default to 1 if not modified + return Exporter(overrides=args)(model=self.model) + + def info(self, detailed=False, verbose=False): + """ + Logs model info. + + Args: + detailed (bool): Show detailed information about model. + verbose (bool): Controls verbosity. + """ + return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640) + + def __call__(self, source=None, stream=False, **kwargs): + """Calls the 'predict' function with given arguments to perform object detection.""" + return self.predict(source, stream, **kwargs) + + def __getattr__(self, attr): + """Raises error if object has no requested attribute.""" + name = self.__class__.__name__ + raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") diff --git a/modules/mobilesamv2/promt_mobilesamv2/predict.py b/modules/mobilesamv2/promt_mobilesamv2/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..e7805400db304e31e1133bde42b06d355dd6b63a --- /dev/null +++ b/modules/mobilesamv2/promt_mobilesamv2/predict.py @@ -0,0 +1,53 @@ +import torch +from ultralytics.yolo.engine.results import Results +from ultralytics.yolo.utils import DEFAULT_CFG, ops +from ultralytics.yolo.v8.detect.predict import DetectionPredictor + +class PromptModelPredictor(DetectionPredictor): + + def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): + super().__init__(cfg, overrides, _callbacks) + self.args.task = 'segment' + def adjust_bboxes_to_image_border(self, boxes, image_shape, threshold=20): + h, w = image_shape + boxes[:, 0] = torch.where(boxes[:, 0] < threshold, torch.tensor( + 0, dtype=torch.float, device=boxes.device), boxes[:, 0]) # x1 + boxes[:, 1] = torch.where(boxes[:, 1] < threshold, torch.tensor( + 0, dtype=torch.float, device=boxes.device), boxes[:, 1]) # y1 + boxes[:, 2] = torch.where(boxes[:, 2] > w - threshold, torch.tensor( + w, dtype=torch.float, device=boxes.device), boxes[:, 2]) # x2 + boxes[:, 3] = torch.where(boxes[:, 3] > h - threshold, torch.tensor( + h, dtype=torch.float, device=boxes.device), boxes[:, 3]) # y2 + return boxes + def postprocess(self, preds, img, orig_imgs): + p = ops.non_max_suppression(preds[0], + self.args.conf, + self.args.iou, + agnostic=self.args.agnostic_nms, + max_det=self.args.max_det, + nc=len(self.model.names), + classes=self.args.classes) + results = [] + if len(p) == 0 or len(p[0]) == 0: + print("No object detected.") + return results + full_box = torch.zeros_like(p[0][0]) + full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0 + full_box = full_box.view(1, -1) + self.adjust_bboxes_to_image_border(p[0][:, :4], img.shape[2:]) + for i, pred in enumerate(p): + orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs + path = self.batch[0] + img_path = path[i] if isinstance(path, list) else path + if not len(pred): + results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])) + continue + if self.args.retina_masks: + if not isinstance(orig_imgs, torch.Tensor): + pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) + else: + if not isinstance(orig_imgs, torch.Tensor): + pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) + results.append( + Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=torch.zeros_like(img))) + return results diff --git a/modules/mobilesamv2/utils/__init__.py b/modules/mobilesamv2/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/modules/mobilesamv2/utils/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/modules/mobilesamv2/utils/__pycache__/__init__.cpython-312.pyc b/modules/mobilesamv2/utils/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cfaf5c1ab62522c15c23af60a427e750038dc1d4 Binary files /dev/null and b/modules/mobilesamv2/utils/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/mobilesamv2/utils/__pycache__/amg.cpython-312.pyc b/modules/mobilesamv2/utils/__pycache__/amg.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..11853a0ea6a99d32c161497d8685eaa888ddae31 Binary files /dev/null and b/modules/mobilesamv2/utils/__pycache__/amg.cpython-312.pyc differ diff --git a/modules/mobilesamv2/utils/__pycache__/transforms.cpython-312.pyc b/modules/mobilesamv2/utils/__pycache__/transforms.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1723d39921ba4589d99183b5a75a956067e1dd03 Binary files /dev/null and b/modules/mobilesamv2/utils/__pycache__/transforms.cpython-312.pyc differ diff --git a/modules/mobilesamv2/utils/amg.py b/modules/mobilesamv2/utils/amg.py new file mode 100644 index 0000000000000000000000000000000000000000..ebd30c7ccc770e6e7efaf087c5d67b62f473d273 --- /dev/null +++ b/modules/mobilesamv2/utils/amg.py @@ -0,0 +1,347 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch + +import math +from copy import deepcopy +from itertools import product +from typing import Any, Dict, Generator, ItemsView, List, Tuple + + +class MaskData: + """ + A structure for storing masks and their related data in batched format. + Implements basic filtering and concatenation. + """ + + def __init__(self, **kwargs) -> None: + for v in kwargs.values(): + assert isinstance( + v, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats = dict(**kwargs) + + def __setitem__(self, key: str, item: Any) -> None: + assert isinstance( + item, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats[key] = item + + def __delitem__(self, key: str) -> None: + del self._stats[key] + + def __getitem__(self, key: str) -> Any: + return self._stats[key] + + def items(self) -> ItemsView[str, Any]: + return self._stats.items() + + def filter(self, keep: torch.Tensor) -> None: + for k, v in self._stats.items(): + if v is None: + self._stats[k] = None + elif isinstance(v, torch.Tensor): + self._stats[k] = v[torch.as_tensor(keep, device=v.device)] + elif isinstance(v, np.ndarray): + self._stats[k] = v[keep.detach().cpu().numpy()] + elif isinstance(v, list) and keep.dtype == torch.bool: + self._stats[k] = [a for i, a in enumerate(v) if keep[i]] + elif isinstance(v, list): + self._stats[k] = [v[i] for i in keep] + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def cat(self, new_stats: "MaskData") -> None: + for k, v in new_stats.items(): + if k not in self._stats or self._stats[k] is None: + self._stats[k] = deepcopy(v) + elif isinstance(v, torch.Tensor): + self._stats[k] = torch.cat([self._stats[k], v], dim=0) + elif isinstance(v, np.ndarray): + self._stats[k] = np.concatenate([self._stats[k], v], axis=0) + elif isinstance(v, list): + self._stats[k] = self._stats[k] + deepcopy(v) + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def to_numpy(self) -> None: + for k, v in self._stats.items(): + if isinstance(v, torch.Tensor): + self._stats[k] = v.detach().cpu().numpy() + + +def is_box_near_crop_edge( + boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0 +) -> torch.Tensor: + """Filter masks at the edge of a crop, but not at the edge of the original image.""" + crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) + orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) + boxes = uncrop_boxes_xyxy(boxes, crop_box).float() + near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) + near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) + near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) + return torch.any(near_crop_edge, dim=1) + + +def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: + box_xywh = deepcopy(box_xyxy) + box_xywh[2] = box_xywh[2] - box_xywh[0] + box_xywh[3] = box_xywh[3] - box_xywh[1] + return box_xywh + + +def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: + assert len(args) > 0 and all( + len(a) == len(args[0]) for a in args + ), "Batched iteration must have inputs of all the same size." + n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) + for b in range(n_batches): + yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] + + +def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: + """ + Encodes masks to an uncompressed RLE, in the format expected by + pycoco tools. + """ + # Put in fortran order and flatten h,w + b, h, w = tensor.shape + tensor = tensor.permute(0, 2, 1).flatten(1) + + # Compute change indices + diff = tensor[:, 1:] ^ tensor[:, :-1] + change_indices = diff.nonzero() + + # Encode run length + out = [] + for i in range(b): + cur_idxs = change_indices[change_indices[:, 0] == i, 1] + cur_idxs = torch.cat( + [ + torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), + cur_idxs + 1, + torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), + ] + ) + btw_idxs = cur_idxs[1:] - cur_idxs[:-1] + counts = [] if tensor[i, 0] == 0 else [0] + counts.extend(btw_idxs.detach().cpu().tolist()) + out.append({"size": [h, w], "counts": counts}) + return out + + +def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: + """Compute a binary mask from an uncompressed RLE.""" + h, w = rle["size"] + mask = np.empty(h * w, dtype=bool) + idx = 0 + parity = False + for count in rle["counts"]: + mask[idx : idx + count] = parity + idx += count + parity ^= True + mask = mask.reshape(w, h) + return mask.transpose() # Put in C order + + +def area_from_rle(rle: Dict[str, Any]) -> int: + return sum(rle["counts"][1::2]) + + +def calculate_stability_score( + masks: torch.Tensor, mask_threshold: float, threshold_offset: float +) -> torch.Tensor: + """ + Computes the stability score for a batch of masks. The stability + score is the IoU between the binary masks obtained by thresholding + the predicted mask logits at high and low values. + """ + # One mask is always contained inside the other. + # Save memory by preventing unnecessary cast to torch.int64 + intersections = ( + (masks > (mask_threshold + threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + unions = ( + (masks > (mask_threshold - threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + return intersections / unions + + +def build_point_grid(n_per_side: int) -> np.ndarray: + """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" + offset = 1 / (2 * n_per_side) + points_one_side = np.linspace(offset, 1 - offset, n_per_side) + points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) + points_y = np.tile(points_one_side[:, None], (1, n_per_side)) + points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) + return points + + +def build_all_layer_point_grids( + n_per_side: int, n_layers: int, scale_per_layer: int +) -> List[np.ndarray]: + """Generates point grids for all crop layers.""" + points_by_layer = [] + for i in range(n_layers + 1): + n_points = int(n_per_side / (scale_per_layer**i)) + points_by_layer.append(build_point_grid(n_points)) + return points_by_layer + + +def generate_crop_boxes( + im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float +) -> Tuple[List[List[int]], List[int]]: + """ + Generates a list of crop boxes of different sizes. Each layer + has (2**i)**2 boxes for the ith layer. + """ + crop_boxes, layer_idxs = [], [] + im_h, im_w = im_size + short_side = min(im_h, im_w) + + # Original image + crop_boxes.append([0, 0, im_w, im_h]) + layer_idxs.append(0) + + def crop_len(orig_len, n_crops, overlap): + return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) + + for i_layer in range(n_layers): + n_crops_per_side = 2 ** (i_layer + 1) + overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) + + crop_w = crop_len(im_w, n_crops_per_side, overlap) + crop_h = crop_len(im_h, n_crops_per_side, overlap) + + crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] + crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] + + # Crops in XYWH format + for x0, y0 in product(crop_box_x0, crop_box_y0): + box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] + crop_boxes.append(box) + layer_idxs.append(i_layer + 1) + + return crop_boxes, layer_idxs + + +def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) + # Check if boxes has a channel dimension + if len(boxes.shape) == 3: + offset = offset.unsqueeze(1) + return boxes + offset + + +def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0]], device=points.device) + # Check if points has a channel dimension + if len(points.shape) == 3: + offset = offset.unsqueeze(1) + return points + offset + + +def uncrop_masks( + masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int +) -> torch.Tensor: + x0, y0, x1, y1 = crop_box + if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: + return masks + # Coordinate transform masks + pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) + pad = (x0, pad_x - x0, y0, pad_y - y0) + return torch.nn.functional.pad(masks, pad, value=0) + + +def remove_small_regions( + mask: np.ndarray, area_thresh: float, mode: str +) -> Tuple[np.ndarray, bool]: + """ + Removes small disconnected regions and holes in a mask. Returns the + mask and an indicator of if the mask has been modified. + """ + import cv2 # type: ignore + + assert mode in ["holes", "islands"] + correct_holes = mode == "holes" + working_mask = (correct_holes ^ mask).astype(np.uint8) + n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) + sizes = stats[:, -1][1:] # Row 0 is background label + small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] + if len(small_regions) == 0: + return mask, False + fill_labels = [0] + small_regions + if not correct_holes: + fill_labels = [i for i in range(n_labels) if i not in fill_labels] + # If every region is below threshold, keep largest + if len(fill_labels) == 0: + fill_labels = [int(np.argmax(sizes)) + 1] + mask = np.isin(regions, fill_labels) + return mask, True + + +def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: + from pycocotools import mask as mask_utils # type: ignore + import pdb;pdb.set_trace() + h, w = uncompressed_rle["size"] + rle = mask_utils.frPyObjects(uncompressed_rle, h, w) + #rle = mask_utils.merge(rle)#handongshen append for the same as lvis + rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json + return rle + + +def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: + """ + Calculates boxes in XYXY format around masks. Return [0,0,0,0] for + an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. + """ + # torch.max below raises an error on empty inputs, just skip in this case + if torch.numel(masks) == 0: + return torch.zeros(*masks.shape[:-2], 4, device=masks.device) + + # Normalize shape to CxHxW + shape = masks.shape + h, w = shape[-2:] + if len(shape) > 2: + masks = masks.flatten(0, -3) + else: + masks = masks.unsqueeze(0) + + # Get top and bottom edges + in_height, _ = torch.max(masks, dim=-1) + in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] + bottom_edges, _ = torch.max(in_height_coords, dim=-1) + in_height_coords = in_height_coords + h * (~in_height) + top_edges, _ = torch.min(in_height_coords, dim=-1) + + # Get left and right edges + in_width, _ = torch.max(masks, dim=-2) + in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] + right_edges, _ = torch.max(in_width_coords, dim=-1) + in_width_coords = in_width_coords + w * (~in_width) + left_edges, _ = torch.min(in_width_coords, dim=-1) + + # If the mask is empty the right edge will be to the left of the left edge. + # Replace these boxes with [0, 0, 0, 0] + empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) + out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) + out = out * (~empty_filter).unsqueeze(-1) + + # Return to original shape + if len(shape) > 2: + out = out.reshape(*shape[:-2], 4) + else: + out = out[0] + + return out diff --git a/modules/mobilesamv2/utils/onnx.py b/modules/mobilesamv2/utils/onnx.py new file mode 100644 index 0000000000000000000000000000000000000000..3196bdf4b782e6eeb3da4ad66ef3c7b1741535fe --- /dev/null +++ b/modules/mobilesamv2/utils/onnx.py @@ -0,0 +1,144 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.nn as nn +from torch.nn import functional as F + +from typing import Tuple + +from ..modeling import Sam +from .amg import calculate_stability_score + + +class SamOnnxModel(nn.Module): + """ + This model should not be called directly, but is used in ONNX export. + It combines the prompt encoder, mask decoder, and mask postprocessing of Sam, + with some functions modified to enable model tracing. Also supports extra + options controlling what information. See the ONNX export script for details. + """ + + def __init__( + self, + model: Sam, + return_single_mask: bool, + use_stability_score: bool = False, + return_extra_metrics: bool = False, + ) -> None: + super().__init__() + self.mask_decoder = model.mask_decoder + self.model = model + self.img_size = model.image_encoder.img_size + self.return_single_mask = return_single_mask + self.use_stability_score = use_stability_score + self.stability_score_offset = 1.0 + self.return_extra_metrics = return_extra_metrics + + @staticmethod + def resize_longest_image_size( + input_image_size: torch.Tensor, longest_side: int + ) -> torch.Tensor: + input_image_size = input_image_size.to(torch.float32) + scale = longest_side / torch.max(input_image_size) + transformed_size = scale * input_image_size + transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64) + return transformed_size + + def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor: + point_coords = point_coords + 0.5 + point_coords = point_coords / self.img_size + point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords) + point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding) + + point_embedding = point_embedding * (point_labels != -1) + point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * ( + point_labels == -1 + ) + + for i in range(self.model.prompt_encoder.num_point_embeddings): + point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[ + i + ].weight * (point_labels == i) + + return point_embedding + + def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor: + mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask) + mask_embedding = mask_embedding + ( + 1 - has_mask_input + ) * self.model.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1) + return mask_embedding + + def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor: + masks = F.interpolate( + masks, + size=(self.img_size, self.img_size), + mode="bilinear", + align_corners=False, + ) + + prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size).to(torch.int64) + masks = masks[..., : prepadded_size[0], : prepadded_size[1]] # type: ignore + + orig_im_size = orig_im_size.to(torch.int64) + h, w = orig_im_size[0], orig_im_size[1] + masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False) + return masks + + def select_masks( + self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int + ) -> Tuple[torch.Tensor, torch.Tensor]: + # Determine if we should return the multiclick mask or not from the number of points. + # The reweighting is used to avoid control flow. + score_reweight = torch.tensor( + [[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)] + ).to(iou_preds.device) + score = iou_preds + (num_points - 2.5) * score_reweight + best_idx = torch.argmax(score, dim=1) + masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1) + iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1) + + return masks, iou_preds + + @torch.no_grad() + def forward( + self, + image_embeddings: torch.Tensor, + point_coords: torch.Tensor, + point_labels: torch.Tensor, + mask_input: torch.Tensor, + has_mask_input: torch.Tensor, + orig_im_size: torch.Tensor, + ): + sparse_embedding = self._embed_points(point_coords, point_labels) + dense_embedding = self._embed_masks(mask_input, has_mask_input) + + masks, scores = self.model.mask_decoder.predict_masks( + image_embeddings=image_embeddings, + image_pe=self.model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embedding, + dense_prompt_embeddings=dense_embedding, + ) + + if self.use_stability_score: + scores = calculate_stability_score( + masks, self.model.mask_threshold, self.stability_score_offset + ) + + if self.return_single_mask: + masks, scores = self.select_masks(masks, scores, point_coords.shape[1]) + + upscaled_masks = self.mask_postprocessing(masks, orig_im_size) + + if self.return_extra_metrics: + stability_scores = calculate_stability_score( + upscaled_masks, self.model.mask_threshold, self.stability_score_offset + ) + areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1) + return upscaled_masks, scores, stability_scores, areas, masks + + return upscaled_masks, scores, masks diff --git a/modules/mobilesamv2/utils/transforms.py b/modules/mobilesamv2/utils/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..a43ab5e38789ca9b69d5afab15f25beb431258d1 --- /dev/null +++ b/modules/mobilesamv2/utils/transforms.py @@ -0,0 +1,103 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch +from torch.nn import functional as F +from torchvision.transforms.functional import resize, to_pil_image # type: ignore + +from copy import deepcopy +from typing import Tuple + + +class ResizeLongestSide: + """ + Resizes images to the longest side 'target_length', as well as provides + methods for resizing coordinates and boxes. Provides methods for + transforming both numpy array and batched torch tensors. + """ + + def __init__(self, target_length: int) -> None: + self.target_length = target_length + + def apply_image(self, image: np.ndarray) -> np.ndarray: + """ + Expects a numpy array with shape HxWxC in uint8 format. + """ + target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) + return np.array(resize(to_pil_image(image), target_size)) + + + def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: + """ + Expects a numpy array of length 2 in the final dimension. Requires the + original image size in (H, W) format. + """ + old_h, old_w = original_size + new_h, new_w = self.get_preprocess_shape( + original_size[0], original_size[1], self.target_length + ) + coords = deepcopy(coords).astype(float) + coords[..., 0] = coords[..., 0] * (new_w / old_w) + coords[..., 1] = coords[..., 1] * (new_h / old_h) + return coords + + def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: + """ + Expects a numpy array shape Bx4. Requires the original image size + in (H, W) format. + """ + boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) + return boxes.reshape(-1, 4) + + def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: + """ + Expects batched images with shape BxCxHxW and float format. This + transformation may not exactly match apply_image. apply_image is + the transformation expected by the model. + """ + # Expects an image in BCHW format. May not exactly match apply_image. + target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length) + return F.interpolate( + image, target_size, mode="bilinear", align_corners=False, antialias=True + ) + + def apply_coords_torch( + self, coords: torch.Tensor, original_size: Tuple[int, ...] + ) -> torch.Tensor: + """ + Expects a torch tensor with length 2 in the last dimension. Requires the + original image size in (H, W) format. + """ + old_h, old_w = original_size + new_h, new_w = self.get_preprocess_shape( + original_size[0], original_size[1], self.target_length + ) + coords = deepcopy(coords).to(torch.float) + coords[..., 0] = coords[..., 0] * (new_w / old_w) + coords[..., 1] = coords[..., 1] * (new_h / old_h) + return coords + + def apply_boxes_torch( + self, boxes: torch.Tensor, original_size: Tuple[int, ...] + ) -> torch.Tensor: + """ + Expects a torch tensor with shape Bx4. Requires the original image + size in (H, W) format. + """ + boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) + return boxes.reshape(-1, 4) + + @staticmethod + def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]: + """ + Compute the output size given input size and target long side length. + """ + scale = long_side_length * 1.0 / max(oldh, oldw) + newh, neww = oldh * scale, oldw * scale + neww = int(neww + 0.5) + newh = int(newh + 0.5) + return (newh, neww) diff --git a/modules/pe3r/__init__.py b/modules/pe3r/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/pe3r/__pycache__/__init__.cpython-312.pyc b/modules/pe3r/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..42530bca990125a2b51983e8bc1184e1cca667c8 Binary files /dev/null and b/modules/pe3r/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/pe3r/__pycache__/demo.cpython-312.pyc b/modules/pe3r/__pycache__/demo.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8ded8d665293e830c537dddc9dc59adf92630462 Binary files /dev/null and b/modules/pe3r/__pycache__/demo.cpython-312.pyc differ diff --git a/modules/pe3r/__pycache__/images.cpython-312.pyc b/modules/pe3r/__pycache__/images.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..22dcb6bba970abd0302529eea3788334da6c6450 Binary files /dev/null and b/modules/pe3r/__pycache__/images.cpython-312.pyc differ diff --git a/modules/pe3r/__pycache__/models.cpython-312.pyc b/modules/pe3r/__pycache__/models.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..100bc7df51600797e3fa14d122bde4fc3d5cb7ff Binary files /dev/null and b/modules/pe3r/__pycache__/models.cpython-312.pyc differ diff --git a/modules/pe3r/demo.py b/modules/pe3r/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..7e570c067b74f78b1359cdcf0721a2152ea9769f --- /dev/null +++ b/modules/pe3r/demo.py @@ -0,0 +1,652 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# gradio demo +# -------------------------------------------------------- + +import math + +import gradio +import os +import torch +import numpy as np +import functools +import trimesh +import copy +from PIL import Image +from scipy.spatial.transform import Rotation + +from modules.pe3r.images import Images + +from modules.dust3r.inference import inference +from modules.dust3r.image_pairs import make_pairs +from modules.dust3r.utils.image import load_images, rgb +from modules.dust3r.utils.device import to_numpy +from modules.dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes +from modules.dust3r.cloud_opt import global_aligner, GlobalAlignerMode +from copy import deepcopy +import cv2 +from typing import Any, Dict, Generator,List +import matplotlib.pyplot as pl + +from modules.mobilesamv2.utils.transforms import ResizeLongestSide + + +def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, + cam_color=None, as_pointcloud=False, + transparent_cams=False, silent=False): + assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) + pts3d = to_numpy(pts3d) + imgs = to_numpy(imgs) + focals = to_numpy(focals) + cams2world = to_numpy(cams2world) + + scene = trimesh.Scene() + + # full pointcloud + if as_pointcloud: + pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) + col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) + pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) + scene.add_geometry(pct) + else: + meshes = [] + for i in range(len(imgs)): + meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i])) + mesh = trimesh.Trimesh(**cat_meshes(meshes)) + scene.add_geometry(mesh) + + # add each camera + for i, pose_c2w in enumerate(cams2world): + if isinstance(cam_color, list): + camera_edge_color = cam_color[i] + else: + camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] + add_scene_cam(scene, pose_c2w, camera_edge_color, + None if transparent_cams else imgs[i], focals[i], + imsize=imgs[i].shape[1::-1], screen_width=cam_size) + + rot = np.eye(4) + rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() + scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) + outfile = os.path.join(outdir, 'scene.glb') + if not silent: + print('(exporting 3D scene to', outfile, ')') + scene.export(file_obj=outfile) + return outfile + + +def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False, + clean_depth=False, transparent_cams=False, cam_size=0.05): + """ + extract 3D_model (glb file) from a reconstructed scene + """ + if scene is None: + return None + # post processes + if clean_depth: + scene = scene.clean_pointcloud() + if mask_sky: + scene = scene.mask_sky() + + # get optimized values from scene + rgbimg = scene.ori_imgs + focals = scene.get_focals().cpu() + cams2world = scene.get_im_poses().cpu() + # 3D pointcloud from depthmap, poses and intrinsics + pts3d = to_numpy(scene.get_pts3d()) + scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr))) + msk = to_numpy(scene.get_masks()) + return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, + transparent_cams=transparent_cams, cam_size=cam_size, silent=silent) + +def mask_nms(masks, threshold=0.8): + keep = [] + mask_num = len(masks) + suppressed = np.zeros((mask_num), dtype=np.int64) + for i in range(mask_num): + if suppressed[i] == 1: + continue + keep.append(i) + for j in range(i + 1, mask_num): + if suppressed[j] == 1: + continue + intersection = (masks[i] & masks[j]).sum() + if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold: + suppressed[j] = 1 + return keep + +def filter(masks, keep): + ret = [] + for i, m in enumerate(masks): + if i in keep: ret.append(m) + return ret + +def mask_to_box(mask): + if mask.sum() == 0: + return np.array([0, 0, 0, 0]) + + # Get the rows and columns where the mask is 1 + rows = np.any(mask, axis=1) + cols = np.any(mask, axis=0) + + # Get top, bottom, left, right edges + top = np.argmax(rows) + bottom = len(rows) - 1 - np.argmax(np.flip(rows)) + left = np.argmax(cols) + right = len(cols) - 1 - np.argmax(np.flip(cols)) + + return np.array([left, top, right, bottom]) + +def box_xyxy_to_xywh(box_xyxy): + box_xywh = deepcopy(box_xyxy) + box_xywh[2] = box_xywh[2] - box_xywh[0] + box_xywh[3] = box_xywh[3] - box_xywh[1] + return box_xywh + +def get_seg_img(mask, box, image): + image = image.copy() + x, y, w, h = box + # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8) + box_area = w * h + mask_area = mask.sum() + if 1 - (mask_area / box_area) < 0.2: + image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8) + else: + random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8) + image[mask == 0] = random_values[mask == 0] + seg_img = image[y:y+h, x:x+w, ...] + return seg_img + +def pad_img(img): + h, w, _ = img.shape + l = max(w,h) + pad = np.zeros((l,l,3), dtype=np.uint8) # + if h > w: + pad[:,(h-w)//2:(h-w)//2 + w, :] = img + else: + pad[(w-h)//2:(w-h)//2 + h, :, :] = img + return pad + +def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: + assert len(args) > 0 and all( + len(a) == len(args[0]) for a in args + ), "Batched iteration must have inputs of all the same size." + n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) + for b in range(n_batches): + yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] + +def slerp(u1, u2, t): + """ + Perform spherical linear interpolation (Slerp) between two unit vectors. + + Args: + - u1 (torch.Tensor): First unit vector, shape (1024,) + - u2 (torch.Tensor): Second unit vector, shape (1024,) + - t (float): Interpolation parameter + + Returns: + - torch.Tensor: Interpolated vector, shape (1024,) + """ + # Compute the dot product + dot_product = torch.sum(u1 * u2) + + # Ensure the dot product is within the valid range [-1, 1] + dot_product = torch.clamp(dot_product, -1.0, 1.0) + + # Compute the angle between the vectors + theta = torch.acos(dot_product) + + # Compute the coefficients for the interpolation + sin_theta = torch.sin(theta) + if sin_theta == 0: + # Vectors are parallel, return a linear interpolation + return u1 + t * (u2 - u1) + + s1 = torch.sin((1 - t) * theta) / sin_theta + s2 = torch.sin(t * theta) / sin_theta + + # Perform the interpolation + return s1 * u1 + s2 * u2 + +def slerp_multiple(vectors, t_values): + """ + Perform spherical linear interpolation (Slerp) for multiple vectors. + + Args: + - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024) + - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,) + + Returns: + - torch.Tensor: Interpolated vector, shape (1024,) + """ + n = vectors.shape[0] + + # Initialize the interpolated vector with the first vector + interpolated_vector = vectors[0] + + # Perform Slerp iteratively + for i in range(1, n): + # Perform Slerp between the current interpolated vector and the next vector + t = t_values[i] / (t_values[i] + t_values[i-1]) + interpolated_vector = slerp(interpolated_vector, vectors[i], t) + + return interpolated_vector + +@torch.no_grad +def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform): + sam_mask=[] + img_area = original_size[0] * original_size[1] + + obj_results = yolov8(yolov8_image,device='cuda',retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False) + input_boxes1 = obj_results[0].boxes.xyxy + input_boxes1 = input_boxes1.cpu().numpy() + input_boxes1 = transform.apply_boxes(input_boxes1, original_size) + input_boxes = torch.from_numpy(input_boxes1).cuda() + + # obj_results = yolov8(yolov8_image,device='cuda',retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False) + # input_boxes2 = obj_results[0].boxes.xyxy + # input_boxes2 = input_boxes2.cpu().numpy() + # input_boxes2 = transform.apply_boxes(input_boxes2, original_size) + # input_boxes2 = torch.from_numpy(input_boxes2).cuda() + + # input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0) + + input_image = mobilesamv2.preprocess(sam1_image) + image_embedding = mobilesamv2.image_encoder(input_image) + + image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0) + prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe() + prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0) + for (boxes,) in batch_iterator(320, input_boxes): + with torch.no_grad(): + image_embedding=image_embedding[0:boxes.shape[0],:,:,:] + prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:] + sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder( + points=None, + boxes=boxes, + masks=None,) + low_res_masks, _ = mobilesamv2.mask_decoder( + image_embeddings=image_embedding, + image_pe=prompt_embedding, + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=False, + simple_type=True, + ) + low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size) + sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold) + for mask in sam_mask_pre: + if mask.sum() / img_area > 0.002: + sam_mask.append(mask.squeeze(1)) + sam_mask=torch.cat(sam_mask) + sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True) + keep = mask_nms(sorted_sam_mask) + ret_mask = filter(sorted_sam_mask, keep) + + return ret_mask + +@torch.no_grad +def get_cog_feats(images, pe3r): + cog_seg_maps = [] + rev_cog_seg_maps = [] + inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1]) + mask_num = 0 + + sam1_images = images.sam1_images + sam1_images_size = images.sam1_images_size + np_images = images.np_images + np_images_size = images.np_images_size + + sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform) + for mask in sam1_masks: + _, _, _ = pe3r.sam2.add_new_mask( + inference_state=inference_state, + frame_idx=0, + obj_id=mask_num, + mask=mask, + ) + mask_num += 1 + + video_segments = {} # video_segments contains the per-frame segmentation results + for out_frame_idx, out_obj_ids, out_mask_logits in pe3r.sam2.propagate_in_video(inference_state): + sam2_masks = (out_mask_logits > 0.0).squeeze(1) + + video_segments[out_frame_idx] = { + out_obj_id: sam2_masks[i].cpu().numpy() + for i, out_obj_id in enumerate(out_obj_ids) + } + + if out_frame_idx == 0: + continue + + sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform) + + for sam1_mask in sam1_masks: + flg = 1 + for sam2_mask in sam2_masks: + # print(sam1_mask.shape, sam2_mask.shape) + area1 = sam1_mask.sum() + area2 = sam2_mask.sum() + intersection = (sam1_mask & sam2_mask).sum() + if min(intersection / area1, intersection / area2) > 0.25: + flg = 0 + break + if flg: + video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy() + mask_num += 1 + + multi_view_clip_feats = torch.zeros((mask_num+1, 1024)) + multi_view_clip_feats_map = {} + multi_view_clip_area_map = {} + for now_frame in range(0, len(video_segments), 1): + image = np_images[now_frame] + + seg_img_list = [] + out_obj_id_list = [] + out_obj_mask_list = [] + out_obj_area_list = [] + # NOTE: background: -1 + rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64) + sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False) + for out_obj_id, mask in sorted_dict_items: + if mask.sum() == 0: + continue + rev_seg_map[mask] = out_obj_id + rev_cog_seg_maps.append(rev_seg_map) + + seg_map = -np.ones(image.shape[:2], dtype=np.int64) + sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True) + for out_obj_id, mask in sorted_dict_items: + if mask.sum() == 0: + continue + box = np.int32(box_xyxy_to_xywh(mask_to_box(mask))) + + if box[2] == 0 and box[3] == 0: + continue + # print(box) + seg_img = get_seg_img(mask, box, image) + pad_seg_img = cv2.resize(pad_img(seg_img), (256,256)) + seg_img_list.append(pad_seg_img) + seg_map[mask] = out_obj_id + out_obj_id_list.append(out_obj_id) + out_obj_area_list.append(np.count_nonzero(mask)) + out_obj_mask_list.append(mask) + + if len(seg_img_list) == 0: + cog_seg_maps.append(seg_map) + continue + + seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3 + seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0 + + inputs = pe3r.siglip_processor(images=seg_imgs, return_tensors="pt") + inputs = {key: value.to("cuda") for key, value in inputs.items()} + + image_features = pe3r.siglip.get_image_features(**inputs) + image_features = image_features / image_features.norm(dim=-1, keepdim=True) + image_features = image_features.detach().cpu() + + for i in range(len(out_obj_mask_list)): + for j in range(i + 1, len(out_obj_mask_list)): + mask1 = out_obj_mask_list[i] + mask2 = out_obj_mask_list[j] + intersection = np.logical_and(mask1, mask2).sum() + area1 = out_obj_area_list[i] + area2 = out_obj_area_list[j] + if min(intersection / area1, intersection / area2) > 0.025: + conf1 = area1 / (area1 + area2) + # conf2 = area2 / (area1 + area2) + image_features[j] = slerp(image_features[j], image_features[i], conf1) + + for i, clip_feat in enumerate(image_features): + id = out_obj_id_list[i] + if id in multi_view_clip_feats_map.keys(): + multi_view_clip_feats_map[id].append(clip_feat) + multi_view_clip_area_map[id].append(out_obj_area_list[i]) + else: + multi_view_clip_feats_map[id] = [clip_feat] + multi_view_clip_area_map[id] = [out_obj_area_list[i]] + + cog_seg_maps.append(seg_map) + del image_features + + for i in range(mask_num): + if i in multi_view_clip_feats_map.keys(): + clip_feats = multi_view_clip_feats_map[i] + mask_area = multi_view_clip_area_map[i] + multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area)) + else: + multi_view_clip_feats[i] = torch.zeros((1024)) + multi_view_clip_feats[mask_num] = torch.zeros((1024)) + + return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats + + +def get_reconstructed_scene(outdir, pe3r, device, silent, filelist, schedule, niter, min_conf_thr, + as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, + scenegraph_type, winsize, refid): + """ + from a list of images, run dust3r inference, global aligner. + then run get_3D_model_from_scene + """ + if len(filelist) < 2: + raise gradio.Error("Please input at least 2 images.") + + images = Images(filelist=filelist, device=device) + + try: + cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, pe3r) + imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent) + except Exception as e: + rev_cog_seg_maps = [] + for tmp_img in images.np_images: + rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64) + rev_cog_seg_maps.append(rev_seg_map) + cog_seg_maps = rev_cog_seg_maps + cog_feats = torch.zeros((1, 1024)) + imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent) + + if len(imgs) == 1: + imgs = [imgs[0], copy.deepcopy(imgs[0])] + imgs[1]['idx'] = 1 + + if scenegraph_type == "swin": + scenegraph_type = scenegraph_type + "-" + str(winsize) + elif scenegraph_type == "oneref": + scenegraph_type = scenegraph_type + "-" + str(refid) + + pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) + output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent) + mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer + scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent) + lr = 0.01 + # if mode == GlobalAlignerMode.PointCloudOptimizer: + loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr) + + try: + import torchvision.transforms as tvf + ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + for i in range(len(imgs)): + # print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None]) + imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None] + pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) + output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent) + mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer + scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent) + ori_imgs = scene.ori_imgs + lr = 0.01 + # if mode == GlobalAlignerMode.PointCloudOptimizer: + loss = scene.compute_global_alignment(tune_flg=False, init='mst', niter=niter, schedule=schedule, lr=lr) + except Exception as e: + scene = scene_1 + scene.imgs = ori_imgs + scene.ori_imgs = ori_imgs + print(e) + + + outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size) + + # also return rgb, depth and confidence imgs + # depth is normalized with the max value for all images + # we apply the jet colormap on the confidence maps + rgbimg = scene.imgs + depths = to_numpy(scene.get_depthmaps()) + confs = to_numpy([c for c in scene.im_conf]) + # confs = to_numpy([c for c in scene.conf_2]) + cmap = pl.get_cmap('jet') + depths_max = max([d.max() for d in depths]) + depths = [d / depths_max for d in depths] + confs_max = max([d.max() for d in confs]) + confs = [cmap(d / confs_max) for d in confs] + + imgs = [] + for i in range(len(rgbimg)): + imgs.append(rgbimg[i]) + imgs.append(rgb(depths[i])) + imgs.append(rgb(confs[i])) + + return scene, outfile, imgs + + +def get_3D_object_from_scene(outdir, pe3r, silent, text, threshold, scene, min_conf_thr, as_pointcloud, + mask_sky, clean_depth, transparent_cams, cam_size): + + texts = [text] + inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt") + inputs = {key: value.to("cuda") for key, value in inputs.items()} + with torch.no_grad(): + text_feats =pe3r.siglip.get_text_features(**inputs) + text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True) + scene.render_image(text_feats, threshold) + scene.ori_imgs = scene.rendered_imgs + outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size) + return outfile + + +def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type): + num_files = len(inputfiles) if inputfiles is not None else 1 + max_winsize = max(1, math.ceil((num_files - 1) / 2)) + if scenegraph_type == "swin": + winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, + minimum=1, maximum=max_winsize, step=1, visible=True) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, + maximum=num_files - 1, step=1, visible=False) + elif scenegraph_type == "oneref": + winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, + minimum=1, maximum=max_winsize, step=1, visible=False) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, + maximum=num_files - 1, step=1, visible=True) + else: + winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, + minimum=1, maximum=max_winsize, step=1, visible=False) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, + maximum=num_files - 1, step=1, visible=False) + return winsize, refid + + +def main_demo(tmpdirname, pe3r, device, server_name, server_port, silent=False): +# scene, outfile, imgs = get_reconstructed_scene( +# outdir=tmpdirname, pe3r=pe3r, device=device, silent=silent, +# filelist=['/home/hujie/pe3r/datasets/mipnerf360_ov/bonsai/black_chair/images/DSCF5590.png', +# '/home/hujie/pe3r/datasets/mipnerf360_ov/bonsai/black_chair/images/DSCF5602.png', +# '/home/hujie/pe3r/datasets/mipnerf360_ov/bonsai/black_chair/images/DSCF5609.png'], +# schedule="linear", niter=300, min_conf_thr=3.0, as_pointcloud=False, mask_sky=True, clean_depth=True, transparent_cams=False, +# cam_size=0.05, scenegraph_type="complete", winsize=1, refid=0) + + recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, pe3r, device, silent) + model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname, silent) + get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname, pe3r, silent) + + with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo: + # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference + scene = gradio.State(None) + gradio.HTML('

PE3R Demo

') + with gradio.Column(): + inputfiles = gradio.File(file_count="multiple") + with gradio.Row(): + schedule = gradio.Dropdown(["linear", "cosine"], + value='linear', label="schedule", info="For global alignment!", + visible=False) + niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000, + label="num_iterations", info="For global alignment!", + visible=False) + scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"), + ("swin: sliding window", "swin"), + ("oneref: match one image with all", "oneref")], + value='complete', label="Scenegraph", + info="Define how to make pairs", + interactive=True, + visible=False) + winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, + minimum=1, maximum=1, step=1, visible=False) + refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False) + + run_btn = gradio.Button("Reconstruct") + + with gradio.Row(): + # adjust the confidence threshold + min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1, visible=False) + # adjust the camera size in the output pointcloud + cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001, visible=False) + with gradio.Row(): + as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud") + # two post process implemented + mask_sky = gradio.Checkbox(value=False, label="Mask sky", visible=False) + clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False) + transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras") + + with gradio.Row(): + text_input = gradio.Textbox(label="Query Text") + threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01) + + find_btn = gradio.Button("Find") + + outmodel = gradio.Model3D() + outgallery = gradio.Gallery(label='rgb,depth,confidence', columns=3, height="100%", + visible=False) + + # events + scenegraph_type.change(set_scenegraph_options, + inputs=[inputfiles, winsize, refid, scenegraph_type], + outputs=[winsize, refid]) + inputfiles.change(set_scenegraph_options, + inputs=[inputfiles, winsize, refid, scenegraph_type], + outputs=[winsize, refid]) + run_btn.click(fn=recon_fun, + inputs=[inputfiles, schedule, niter, min_conf_thr, as_pointcloud, + mask_sky, clean_depth, transparent_cams, cam_size, + scenegraph_type, winsize, refid], + outputs=[scene, outmodel, outgallery]) + min_conf_thr.release(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + cam_size.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + as_pointcloud.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + mask_sky.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + clean_depth.change(fn=model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + transparent_cams.change(model_from_scene_fun, + inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + find_btn.click(fn=get_3D_object_from_scene_fun, + inputs=[text_input, threshold, scene, min_conf_thr, as_pointcloud, mask_sky, + clean_depth, transparent_cams, cam_size], + outputs=outmodel) + demo.launch(share=False, server_name=server_name, server_port=server_port) diff --git a/modules/pe3r/images.py b/modules/pe3r/images.py new file mode 100644 index 0000000000000000000000000000000000000000..4fe7b5e9c4e6a0ce25066980d474ee2d87f2d0dc --- /dev/null +++ b/modules/pe3r/images.py @@ -0,0 +1,84 @@ +import numpy as np +import torch +from PIL import Image +from modules.mobilesamv2.utils.transforms import ResizeLongestSide + +from modules.dust3r.utils.image import _resize_pil_image + +class Images: + def __init__(self, filelist, device, size=512): + + self.pil_images = [] + self.pil_images_size = [] + self.np_images = [] + self.np_images_size = [] + # -- original images -- + tmp_images = [] + first_image_size = None + all_images_same_size = True + for img_path in filelist: + pil_image = Image.open(img_path).convert("RGB") + tmp_images.append(pil_image) + + current_image_size = pil_image.size + if first_image_size is None: + first_image_size = current_image_size + else: + if current_image_size != first_image_size: + all_images_same_size = False + + for img in tmp_images: + + if not all_images_same_size: + # resize long side to 512 + pil_image = _resize_pil_image(img, size) + W, H = pil_image.size + cx, cy = W//2, H//2 + halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8 + if W == H: + halfh = 3*halfw/4 + pil_image = pil_image.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) + else: + pil_image = img + + np_image = np.array(pil_image) + + height, width = pil_image.size + np_shape = np_image.shape[:2] + + self.pil_images.append(pil_image) + self.np_images.append(np_image) + + self.pil_images_size.append((height, width)) + self.np_images_size.append(np_shape) + + + # -- sam2 images -- + img_mean = torch.tensor((0.485, 0.456, 0.406))[:, None, None] + img_std = torch.tensor((0.229, 0.224, 0.225))[:, None, None] + self.sam2_images = [] + # TODO + self.sam2_video_size = (self.pil_images_size[0][1], self.pil_images_size[0][0]) + self.sam2_input_size = 512 + for pil_image in self.pil_images: + np_image = np.array(pil_image.resize((self.sam2_input_size, self.sam2_input_size))) + np_image = np_image / 255.0 + sam2_image = torch.from_numpy(np_image).permute(2, 0, 1) + self.sam2_images.append(sam2_image) + self.sam2_images = torch.stack(self.sam2_images) + self.sam2_images -= img_mean + self.sam2_images /= img_std + self.sam2_images.to(device) + + # -- sam1 images -- + self.sam1_images = [] + self.sam1_images_size = [] + self.sam1_input_size = 1024 + self.sam1_transform = ResizeLongestSide(self.sam1_input_size) + for np_image in self.np_images: + sam1_image = self.sam1_transform.apply_image(np_image) + sam1_image_torch = torch.as_tensor(sam1_image, device=device) + transformed_image = sam1_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] + + self.sam1_images.append(transformed_image) + self.sam1_images_size.append(tuple(transformed_image.shape[-2:])) \ No newline at end of file diff --git a/modules/pe3r/models.py b/modules/pe3r/models.py new file mode 100644 index 0000000000000000000000000000000000000000..18adbd660255a4366c785a82dc4797280589555c --- /dev/null +++ b/modules/pe3r/models.py @@ -0,0 +1,43 @@ +import os +import sys +sys.path.append(os.path.abspath('./modules/ultralytics')) + +from transformers import AutoTokenizer, AutoModel, AutoProcessor +from modules.mast3r.model import AsymmetricMASt3R + +from modules.sam2.build_sam import build_sam2_video_predictor +from modules.mobilesamv2.promt_mobilesamv2 import ObjectAwareModel +from modules.mobilesamv2 import sam_model_registry + +class Models: + def __init__(self, device): + # -- mast3r -- + MAST3R_CKP = './checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth' + self.mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device) + + # -- sam2 -- + SAM2_CKP = "./checkpoints/sam2.1_hiera_large.pt" + SAM2_CONFIG = "./configs/sam2.1/sam2.1_hiera_l.yaml" + self.sam2 = build_sam2_video_predictor(SAM2_CONFIG, SAM2_CKP, device=device, apply_postprocessing=False) + self.sam2.eval() + + # -- mobilesamv2 & sam1 -- + SAM1_ENCODER_CKP = './checkpoints/sam_vit_h.pt' + SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt' + self.mobilesamv2 = sam_model_registry['sam_vit_h'](None) + image_encoder=sam_model_registry['sam_vit_h_encoder'](SAM1_ENCODER_CKP) + prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP) + self.mobilesamv2.prompt_encoder = prompt_encoder + self.mobilesamv2.mask_decoder = mask_decoder + self.mobilesamv2.image_encoder=image_encoder + self.mobilesamv2.to(device=device) + self.mobilesamv2.eval() + + # -- yolov8 -- + YOLO8_CKP='./checkpoints/ObjectAwareModel.pt' + self.yolov8 = ObjectAwareModel(YOLO8_CKP) + + # -- siglip -- + self.siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device) + self.siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256", device_map=device) + self.siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256", device_map=device) \ No newline at end of file diff --git a/modules/sam2/__init__.py b/modules/sam2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0712dd03cb280ab94ba04f8a32aa8ddc8aa3db4a --- /dev/null +++ b/modules/sam2/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from hydra import initialize_config_module +from hydra.core.global_hydra import GlobalHydra + +if not GlobalHydra.instance().is_initialized(): + initialize_config_module("sam2", version_base="1.2") diff --git a/modules/sam2/__pycache__/__init__.cpython-312.pyc b/modules/sam2/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c7249eb9a4e3f97a50cf76bcc07602b2e77347b7 Binary files /dev/null and b/modules/sam2/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/sam2/__pycache__/automatic_mask_generator.cpython-312.pyc b/modules/sam2/__pycache__/automatic_mask_generator.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad7620fbcff387616dc6498f2cd1753c16f40ac9 Binary files /dev/null and b/modules/sam2/__pycache__/automatic_mask_generator.cpython-312.pyc differ diff --git a/modules/sam2/__pycache__/build_sam.cpython-312.pyc b/modules/sam2/__pycache__/build_sam.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b45dcfc94b61ee37d0b513f509e2689dabc12149 Binary files /dev/null and b/modules/sam2/__pycache__/build_sam.cpython-312.pyc differ diff --git a/modules/sam2/__pycache__/sam2_image_predictor.cpython-312.pyc b/modules/sam2/__pycache__/sam2_image_predictor.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5acd0a3d8a384c3088a667e05cceda5ae2d4df20 Binary files /dev/null and b/modules/sam2/__pycache__/sam2_image_predictor.cpython-312.pyc differ diff --git a/modules/sam2/__pycache__/sam2_video_predictor.cpython-312.pyc b/modules/sam2/__pycache__/sam2_video_predictor.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..373ffd7b4bf93fc432b97d50fc8ba1e8eadf99c2 Binary files /dev/null and b/modules/sam2/__pycache__/sam2_video_predictor.cpython-312.pyc differ diff --git a/modules/sam2/automatic_mask_generator.py b/modules/sam2/automatic_mask_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..065e469e27c2d3af40d51d072031e828692c799b --- /dev/null +++ b/modules/sam2/automatic_mask_generator.py @@ -0,0 +1,454 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py +from typing import Any, Dict, List, Optional, Tuple + +import numpy as np +import torch +from torchvision.ops.boxes import batched_nms, box_area # type: ignore + +from sam2.modeling.sam2_base import SAM2Base +from sam2.sam2_image_predictor import SAM2ImagePredictor +from sam2.utils.amg import ( + area_from_rle, + batch_iterator, + batched_mask_to_box, + box_xyxy_to_xywh, + build_all_layer_point_grids, + calculate_stability_score, + coco_encode_rle, + generate_crop_boxes, + is_box_near_crop_edge, + mask_to_rle_pytorch, + MaskData, + remove_small_regions, + rle_to_mask, + uncrop_boxes_xyxy, + uncrop_masks, + uncrop_points, +) + + +class SAM2AutomaticMaskGenerator: + def __init__( + self, + model: SAM2Base, + points_per_side: Optional[int] = 32, + points_per_batch: int = 64, + pred_iou_thresh: float = 0.8, + stability_score_thresh: float = 0.95, + stability_score_offset: float = 1.0, + mask_threshold: float = 0.0, + box_nms_thresh: float = 0.7, + crop_n_layers: int = 0, + crop_nms_thresh: float = 0.7, + crop_overlap_ratio: float = 512 / 1500, + crop_n_points_downscale_factor: int = 1, + point_grids: Optional[List[np.ndarray]] = None, + min_mask_region_area: int = 0, + output_mode: str = "binary_mask", + use_m2m: bool = False, + multimask_output: bool = True, + **kwargs, + ) -> None: + """ + Using a SAM 2 model, generates masks for the entire image. + Generates a grid of point prompts over the image, then filters + low quality and duplicate masks. The default settings are chosen + for SAM 2 with a HieraL backbone. + + Arguments: + model (Sam): The SAM 2 model to use for mask prediction. + points_per_side (int or None): The number of points to be sampled + along one side of the image. The total number of points is + points_per_side**2. If None, 'point_grids' must provide explicit + point sampling. + points_per_batch (int): Sets the number of points run simultaneously + by the model. Higher numbers may be faster but use more GPU memory. + pred_iou_thresh (float): A filtering threshold in [0,1], using the + model's predicted mask quality. + stability_score_thresh (float): A filtering threshold in [0,1], using + the stability of the mask under changes to the cutoff used to binarize + the model's mask predictions. + stability_score_offset (float): The amount to shift the cutoff when + calculated the stability score. + mask_threshold (float): Threshold for binarizing the mask logits + box_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks. + crop_n_layers (int): If >0, mask prediction will be run again on + crops of the image. Sets the number of layers to run, where each + layer has 2**i_layer number of image crops. + crop_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks between different crops. + crop_overlap_ratio (float): Sets the degree to which crops overlap. + In the first crop layer, crops will overlap by this fraction of + the image length. Later layers with more crops scale down this overlap. + crop_n_points_downscale_factor (int): The number of points-per-side + sampled in layer n is scaled down by crop_n_points_downscale_factor**n. + point_grids (list(np.ndarray) or None): A list over explicit grids + of points used for sampling, normalized to [0,1]. The nth grid in the + list is used in the nth crop layer. Exclusive with points_per_side. + min_mask_region_area (int): If >0, postprocessing will be applied + to remove disconnected regions and holes in masks with area smaller + than min_mask_region_area. Requires opencv. + output_mode (str): The form masks are returned in. Can be 'binary_mask', + 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. + For large resolutions, 'binary_mask' may consume large amounts of + memory. + use_m2m (bool): Whether to add a one step refinement using previous mask predictions. + multimask_output (bool): Whether to output multimask at each point of the grid. + """ + + assert (points_per_side is None) != ( + point_grids is None + ), "Exactly one of points_per_side or point_grid must be provided." + if points_per_side is not None: + self.point_grids = build_all_layer_point_grids( + points_per_side, + crop_n_layers, + crop_n_points_downscale_factor, + ) + elif point_grids is not None: + self.point_grids = point_grids + else: + raise ValueError("Can't have both points_per_side and point_grid be None.") + + assert output_mode in [ + "binary_mask", + "uncompressed_rle", + "coco_rle", + ], f"Unknown output_mode {output_mode}." + if output_mode == "coco_rle": + try: + from pycocotools import mask as mask_utils # type: ignore # noqa: F401 + except ImportError as e: + print("Please install pycocotools") + raise e + + self.predictor = SAM2ImagePredictor( + model, + max_hole_area=min_mask_region_area, + max_sprinkle_area=min_mask_region_area, + ) + self.points_per_batch = points_per_batch + self.pred_iou_thresh = pred_iou_thresh + self.stability_score_thresh = stability_score_thresh + self.stability_score_offset = stability_score_offset + self.mask_threshold = mask_threshold + self.box_nms_thresh = box_nms_thresh + self.crop_n_layers = crop_n_layers + self.crop_nms_thresh = crop_nms_thresh + self.crop_overlap_ratio = crop_overlap_ratio + self.crop_n_points_downscale_factor = crop_n_points_downscale_factor + self.min_mask_region_area = min_mask_region_area + self.output_mode = output_mode + self.use_m2m = use_m2m + self.multimask_output = multimask_output + + @classmethod + def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator": + """ + Load a pretrained model from the Hugging Face hub. + + Arguments: + model_id (str): The Hugging Face repository ID. + **kwargs: Additional arguments to pass to the model constructor. + + Returns: + (SAM2AutomaticMaskGenerator): The loaded model. + """ + from sam2.build_sam import build_sam2_hf + + sam_model = build_sam2_hf(model_id, **kwargs) + return cls(sam_model, **kwargs) + + @torch.no_grad() + def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: + """ + Generates masks for the given image. + + Arguments: + image (np.ndarray): The image to generate masks for, in HWC uint8 format. + + Returns: + list(dict(str, any)): A list over records for masks. Each record is + a dict containing the following keys: + segmentation (dict(str, any) or np.ndarray): The mask. If + output_mode='binary_mask', is an array of shape HW. Otherwise, + is a dictionary containing the RLE. + bbox (list(float)): The box around the mask, in XYWH format. + area (int): The area in pixels of the mask. + predicted_iou (float): The model's own prediction of the mask's + quality. This is filtered by the pred_iou_thresh parameter. + point_coords (list(list(float))): The point coordinates input + to the model to generate this mask. + stability_score (float): A measure of the mask's quality. This + is filtered on using the stability_score_thresh parameter. + crop_box (list(float)): The crop of the image used to generate + the mask, given in XYWH format. + """ + + # Generate masks + mask_data = self._generate_masks(image) + + # Encode masks + if self.output_mode == "coco_rle": + mask_data["segmentations"] = [ + coco_encode_rle(rle) for rle in mask_data["rles"] + ] + elif self.output_mode == "binary_mask": + mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] + else: + mask_data["segmentations"] = mask_data["rles"] + + # Write mask records + curr_anns = [] + for idx in range(len(mask_data["segmentations"])): + ann = { + "segmentation": mask_data["segmentations"][idx], + "area": area_from_rle(mask_data["rles"][idx]), + "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), + "predicted_iou": mask_data["iou_preds"][idx].item(), + "point_coords": [mask_data["points"][idx].tolist()], + "stability_score": mask_data["stability_score"][idx].item(), + "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), + } + curr_anns.append(ann) + + return curr_anns + + def _generate_masks(self, image: np.ndarray) -> MaskData: + orig_size = image.shape[:2] + crop_boxes, layer_idxs = generate_crop_boxes( + orig_size, self.crop_n_layers, self.crop_overlap_ratio + ) + + # Iterate over image crops + data = MaskData() + for crop_box, layer_idx in zip(crop_boxes, layer_idxs): + crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) + data.cat(crop_data) + + # Remove duplicate masks between crops + if len(crop_boxes) > 1: + # Prefer masks from smaller crops + scores = 1 / box_area(data["crop_boxes"]) + scores = scores.to(data["boxes"].device) + keep_by_nms = batched_nms( + data["boxes"].float(), + scores, + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.crop_nms_thresh, + ) + data.filter(keep_by_nms) + data.to_numpy() + return data + + def _process_crop( + self, + image: np.ndarray, + crop_box: List[int], + crop_layer_idx: int, + orig_size: Tuple[int, ...], + ) -> MaskData: + # Crop the image and calculate embeddings + x0, y0, x1, y1 = crop_box + cropped_im = image[y0:y1, x0:x1, :] + cropped_im_size = cropped_im.shape[:2] + self.predictor.set_image(cropped_im) + + # Get points for this crop + points_scale = np.array(cropped_im_size)[None, ::-1] + points_for_image = self.point_grids[crop_layer_idx] * points_scale + + # Generate masks for this crop in batches + data = MaskData() + for (points,) in batch_iterator(self.points_per_batch, points_for_image): + batch_data = self._process_batch( + points, cropped_im_size, crop_box, orig_size, normalize=True + ) + data.cat(batch_data) + del batch_data + self.predictor.reset_predictor() + + # Remove duplicates within this crop. + keep_by_nms = batched_nms( + data["boxes"].float(), + data["iou_preds"], + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.box_nms_thresh, + ) + data.filter(keep_by_nms) + + # Return to the original image frame + data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) + data["points"] = uncrop_points(data["points"], crop_box) + data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) + + return data + + def _process_batch( + self, + points: np.ndarray, + im_size: Tuple[int, ...], + crop_box: List[int], + orig_size: Tuple[int, ...], + normalize=False, + ) -> MaskData: + orig_h, orig_w = orig_size + + # Run model on this batch + points = torch.as_tensor( + points, dtype=torch.float32, device=self.predictor.device + ) + in_points = self.predictor._transforms.transform_coords( + points, normalize=normalize, orig_hw=im_size + ) + in_labels = torch.ones( + in_points.shape[0], dtype=torch.int, device=in_points.device + ) + masks, iou_preds, low_res_masks = self.predictor._predict( + in_points[:, None, :], + in_labels[:, None], + multimask_output=self.multimask_output, + return_logits=True, + ) + + # Serialize predictions and store in MaskData + data = MaskData( + masks=masks.flatten(0, 1), + iou_preds=iou_preds.flatten(0, 1), + points=points.repeat_interleave(masks.shape[1], dim=0), + low_res_masks=low_res_masks.flatten(0, 1), + ) + del masks + + if not self.use_m2m: + # Filter by predicted IoU + if self.pred_iou_thresh > 0.0: + keep_mask = data["iou_preds"] > self.pred_iou_thresh + data.filter(keep_mask) + + # Calculate and filter by stability score + data["stability_score"] = calculate_stability_score( + data["masks"], self.mask_threshold, self.stability_score_offset + ) + if self.stability_score_thresh > 0.0: + keep_mask = data["stability_score"] >= self.stability_score_thresh + data.filter(keep_mask) + else: + # One step refinement using previous mask predictions + in_points = self.predictor._transforms.transform_coords( + data["points"], normalize=normalize, orig_hw=im_size + ) + labels = torch.ones( + in_points.shape[0], dtype=torch.int, device=in_points.device + ) + masks, ious = self.refine_with_m2m( + in_points, labels, data["low_res_masks"], self.points_per_batch + ) + data["masks"] = masks.squeeze(1) + data["iou_preds"] = ious.squeeze(1) + + if self.pred_iou_thresh > 0.0: + keep_mask = data["iou_preds"] > self.pred_iou_thresh + data.filter(keep_mask) + + data["stability_score"] = calculate_stability_score( + data["masks"], self.mask_threshold, self.stability_score_offset + ) + if self.stability_score_thresh > 0.0: + keep_mask = data["stability_score"] >= self.stability_score_thresh + data.filter(keep_mask) + + # Threshold masks and calculate boxes + data["masks"] = data["masks"] > self.mask_threshold + data["boxes"] = batched_mask_to_box(data["masks"]) + + # Filter boxes that touch crop boundaries + keep_mask = ~is_box_near_crop_edge( + data["boxes"], crop_box, [0, 0, orig_w, orig_h] + ) + if not torch.all(keep_mask): + data.filter(keep_mask) + + # Compress to RLE + data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) + data["rles"] = mask_to_rle_pytorch(data["masks"]) + del data["masks"] + + return data + + @staticmethod + def postprocess_small_regions( + mask_data: MaskData, min_area: int, nms_thresh: float + ) -> MaskData: + """ + Removes small disconnected regions and holes in masks, then reruns + box NMS to remove any new duplicates. + + Edits mask_data in place. + + Requires open-cv as a dependency. + """ + if len(mask_data["rles"]) == 0: + return mask_data + + # Filter small disconnected regions and holes + new_masks = [] + scores = [] + for rle in mask_data["rles"]: + mask = rle_to_mask(rle) + + mask, changed = remove_small_regions(mask, min_area, mode="holes") + unchanged = not changed + mask, changed = remove_small_regions(mask, min_area, mode="islands") + unchanged = unchanged and not changed + + new_masks.append(torch.as_tensor(mask).unsqueeze(0)) + # Give score=0 to changed masks and score=1 to unchanged masks + # so NMS will prefer ones that didn't need postprocessing + scores.append(float(unchanged)) + + # Recalculate boxes and remove any new duplicates + masks = torch.cat(new_masks, dim=0) + boxes = batched_mask_to_box(masks) + keep_by_nms = batched_nms( + boxes.float(), + torch.as_tensor(scores), + torch.zeros_like(boxes[:, 0]), # categories + iou_threshold=nms_thresh, + ) + + # Only recalculate RLEs for masks that have changed + for i_mask in keep_by_nms: + if scores[i_mask] == 0.0: + mask_torch = masks[i_mask].unsqueeze(0) + mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0] + mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly + mask_data.filter(keep_by_nms) + + return mask_data + + def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch): + new_masks = [] + new_iou_preds = [] + + for cur_points, cur_point_labels, low_res_mask in batch_iterator( + points_per_batch, points, point_labels, low_res_masks + ): + best_masks, best_iou_preds, _ = self.predictor._predict( + cur_points[:, None, :], + cur_point_labels[:, None], + mask_input=low_res_mask[:, None, :], + multimask_output=False, + return_logits=True, + ) + new_masks.append(best_masks) + new_iou_preds.append(best_iou_preds) + masks = torch.cat(new_masks, dim=0) + return masks, torch.cat(new_iou_preds, dim=0) diff --git a/modules/sam2/build_sam.py b/modules/sam2/build_sam.py new file mode 100644 index 0000000000000000000000000000000000000000..a5cb49b6499c3366530fe71168d7c3af38681e7a --- /dev/null +++ b/modules/sam2/build_sam.py @@ -0,0 +1,168 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging +import os + +import torch +from hydra import compose +from hydra.utils import instantiate +from omegaconf import OmegaConf + +import sam2 + +# Check if the user is running Python from the parent directory of the sam2 repo +# (i.e. the directory where this repo is cloned into) -- this is not supported since +# it could shadow the sam2 package and cause issues. +if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")): + # If the user has "sam2/sam2" in their path, they are likey importing the repo itself + # as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory). + # This typically happens because the user is running Python from the parent directory + # that contains the sam2 repo they cloned. + raise RuntimeError( + "You're likely running Python from the parent directory of the sam2 repository " + "(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). " + "This is not supported since the `sam2` Python package could be shadowed by the " + "repository name (the repository is also named `sam2` and contains the Python package " + "in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir " + "rather than its parent dir, or from your home directory) after installing SAM 2." + ) + + +HF_MODEL_ID_TO_FILENAMES = { + "facebook/sam2-hiera-tiny": ( + "configs/sam2/sam2_hiera_t.yaml", + "sam2_hiera_tiny.pt", + ), + "facebook/sam2-hiera-small": ( + "configs/sam2/sam2_hiera_s.yaml", + "sam2_hiera_small.pt", + ), + "facebook/sam2-hiera-base-plus": ( + "configs/sam2/sam2_hiera_b+.yaml", + "sam2_hiera_base_plus.pt", + ), + "facebook/sam2-hiera-large": ( + "configs/sam2/sam2_hiera_l.yaml", + "sam2_hiera_large.pt", + ), + "facebook/sam2.1-hiera-tiny": ( + "configs/sam2.1/sam2.1_hiera_t.yaml", + "sam2.1_hiera_tiny.pt", + ), + "facebook/sam2.1-hiera-small": ( + "configs/sam2.1/sam2.1_hiera_s.yaml", + "sam2.1_hiera_small.pt", + ), + "facebook/sam2.1-hiera-base-plus": ( + "configs/sam2.1/sam2.1_hiera_b+.yaml", + "sam2.1_hiera_base_plus.pt", + ), + "facebook/sam2.1-hiera-large": ( + "configs/sam2.1/sam2.1_hiera_l.yaml", + "sam2.1_hiera_large.pt", + ), +} + + +def build_sam2( + config_file, + ckpt_path=None, + device="cuda", + mode="eval", + hydra_overrides_extra=[], + apply_postprocessing=True, + **kwargs, +): + + if apply_postprocessing: + hydra_overrides_extra = hydra_overrides_extra.copy() + hydra_overrides_extra += [ + # dynamically fall back to multi-mask if the single mask is not stable + "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", + ] + # Read config and init model + cfg = compose(config_name=config_file, overrides=hydra_overrides_extra) + OmegaConf.resolve(cfg) + model = instantiate(cfg.model, _recursive_=True) + _load_checkpoint(model, ckpt_path) + model = model.to(device) + if mode == "eval": + model.eval() + return model + + +def build_sam2_video_predictor( + config_file, + ckpt_path=None, + device="cuda", + mode="eval", + hydra_overrides_extra=[], + apply_postprocessing=True, + **kwargs, +): + hydra_overrides = [ + "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor", + ] + if apply_postprocessing: + hydra_overrides_extra = hydra_overrides_extra.copy() + hydra_overrides_extra += [ + # dynamically fall back to multi-mask if the single mask is not stable + "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", + # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking + "++model.binarize_mask_from_pts_for_mem_enc=true", + # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution) + "++model.fill_hole_area=8", + ] + hydra_overrides.extend(hydra_overrides_extra) + + # Read config and init model + # print(config_file) + cfg = compose(config_name=config_file, overrides=hydra_overrides) + OmegaConf.resolve(cfg) + model = instantiate(cfg.model, _recursive_=True) + _load_checkpoint(model, ckpt_path) + model = model.to(device) + if mode == "eval": + model.eval() + return model + + +def _hf_download(model_id): + from huggingface_hub import hf_hub_download + + config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id] + ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name) + return config_name, ckpt_path + + +def build_sam2_hf(model_id, **kwargs): + config_name, ckpt_path = _hf_download(model_id) + return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs) + + +def build_sam2_video_predictor_hf(model_id, **kwargs): + config_name, ckpt_path = _hf_download(model_id) + return build_sam2_video_predictor( + config_file=config_name, ckpt_path=ckpt_path, **kwargs + ) + + +def _load_checkpoint(model, ckpt_path): + if ckpt_path is not None: + sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"] + missing_keys, unexpected_keys = model.load_state_dict(sd) + if missing_keys: + logging.error(missing_keys) + raise RuntimeError() + if unexpected_keys: + logging.error(unexpected_keys) + raise RuntimeError() + logging.info("Loaded checkpoint sucessfully") diff --git a/modules/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml b/modules/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cbee3cf9b3977ebe4cc868797a9bfa9e348cb3a3 --- /dev/null +++ b/modules/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml @@ -0,0 +1,116 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 112 + num_heads: 2 + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [896, 448, 224, 112] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + no_obj_embed_spatial: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: true + proj_tpos_enc_in_obj_ptrs: true + use_signed_tpos_enc_to_obj_ptrs: true + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/modules/sam2/configs/sam2.1/sam2.1_hiera_l.yaml b/modules/sam2/configs/sam2.1/sam2.1_hiera_l.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ffad2deb8111e784bdb08badb2070dd8e9252a49 --- /dev/null +++ b/modules/sam2/configs/sam2.1/sam2.1_hiera_l.yaml @@ -0,0 +1,120 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 144 + num_heads: 2 + stages: [2, 6, 36, 4] + global_att_blocks: [23, 33, 43] + window_pos_embed_bkg_spatial_size: [7, 7] + window_spec: [8, 4, 16, 8] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [1152, 576, 288, 144] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 512 #1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + no_obj_embed_spatial: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: true + proj_tpos_enc_in_obj_ptrs: true + use_signed_tpos_enc_to_obj_ptrs: true + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/modules/sam2/configs/sam2.1/sam2.1_hiera_s.yaml b/modules/sam2/configs/sam2.1/sam2.1_hiera_s.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8e803dfea5904f5eb5e73981918c913197587728 --- /dev/null +++ b/modules/sam2/configs/sam2.1/sam2.1_hiera_s.yaml @@ -0,0 +1,119 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 96 + num_heads: 1 + stages: [1, 2, 11, 2] + global_att_blocks: [7, 10, 13] + window_pos_embed_bkg_spatial_size: [7, 7] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [768, 384, 192, 96] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + no_obj_embed_spatial: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: true + proj_tpos_enc_in_obj_ptrs: true + use_signed_tpos_enc_to_obj_ptrs: true + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/modules/sam2/configs/sam2.1/sam2.1_hiera_t.yaml b/modules/sam2/configs/sam2.1/sam2.1_hiera_t.yaml new file mode 100644 index 0000000000000000000000000000000000000000..983c2ea031b7a17db439fe89fa8b7bd426ecd9bb --- /dev/null +++ b/modules/sam2/configs/sam2.1/sam2.1_hiera_t.yaml @@ -0,0 +1,121 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 96 + num_heads: 1 + stages: [1, 2, 7, 2] + global_att_blocks: [5, 7, 9] + window_pos_embed_bkg_spatial_size: [7, 7] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [768, 384, 192, 96] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + # SAM decoder + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + no_obj_embed_spatial: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: true + proj_tpos_enc_in_obj_ptrs: true + use_signed_tpos_enc_to_obj_ptrs: true + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + # HieraT does not currently support compilation, should always be set to False + compile_image_encoder: False diff --git a/modules/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml b/modules/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml new file mode 100644 index 0000000000000000000000000000000000000000..204679146854110ce8a59e9adc462a6688e56d30 --- /dev/null +++ b/modules/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml @@ -0,0 +1,339 @@ +# @package _global_ + +scratch: + resolution: 1024 + train_batch_size: 1 + num_train_workers: 10 + num_frames: 8 + max_num_objects: 3 + base_lr: 5.0e-6 + vision_lr: 3.0e-06 + phases_per_epoch: 1 + num_epochs: 40 + +dataset: + # PATHS to Dataset + img_folder: null # PATH to MOSE JPEGImages folder + gt_folder: null # PATH to MOSE Annotations folder + file_list_txt: training/assets/MOSE_sample_train_list.txt # Optional PATH to filelist containing a subset of videos to be used for training + multiplier: 2 + +# Video transforms +vos: + train_transforms: + - _target_: training.dataset.transforms.ComposeAPI + transforms: + - _target_: training.dataset.transforms.RandomHorizontalFlip + consistent_transform: True + - _target_: training.dataset.transforms.RandomAffine + degrees: 25 + shear: 20 + image_interpolation: bilinear + consistent_transform: True + - _target_: training.dataset.transforms.RandomResizeAPI + sizes: ${scratch.resolution} + square: true + consistent_transform: True + - _target_: training.dataset.transforms.ColorJitter + consistent_transform: True + brightness: 0.1 + contrast: 0.03 + saturation: 0.03 + hue: null + - _target_: training.dataset.transforms.RandomGrayscale + p: 0.05 + consistent_transform: True + - _target_: training.dataset.transforms.ColorJitter + consistent_transform: False + brightness: 0.1 + contrast: 0.05 + saturation: 0.05 + hue: null + - _target_: training.dataset.transforms.ToTensorAPI + - _target_: training.dataset.transforms.NormalizeAPI + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + +trainer: + _target_: training.trainer.Trainer + mode: train_only + max_epochs: ${times:${scratch.num_epochs},${scratch.phases_per_epoch}} + accelerator: cuda + seed_value: 123 + + model: + _target_: training.model.sam2.SAM2Train + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 112 + num_heads: 2 + drop_path_rate: 0.1 + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [896, 448, 224, 112] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: ${scratch.resolution} + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + no_obj_embed_spatial: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: true + proj_tpos_enc_in_obj_ptrs: true + use_signed_tpos_enc_to_obj_ptrs: true + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + # compile_image_encoder: False + + ####### Training specific params ####### + # box/point input and corrections + prob_to_use_pt_input_for_train: 0.5 + prob_to_use_pt_input_for_eval: 0.0 + prob_to_use_box_input_for_train: 0.5 # 0.5*0.5 = 0.25 prob to use box instead of points + prob_to_use_box_input_for_eval: 0.0 + prob_to_sample_from_gt_for_train: 0.1 # with a small prob, sampling correction points from GT mask instead of prediction errors + num_frames_to_correct_for_train: 2 # iteratively sample on random 1~2 frames (always include the first frame) + num_frames_to_correct_for_eval: 1 # only iteratively sample on first frame + rand_frames_to_correct_for_train: True # random #init-cond-frame ~ 2 + add_all_frames_to_correct_as_cond: True # when a frame receives a correction click, it becomes a conditioning frame (even if it's not initially a conditioning frame) + # maximum 2 initial conditioning frames + num_init_cond_frames_for_train: 2 + rand_init_cond_frames_for_train: True # random 1~2 + num_correction_pt_per_frame: 7 + use_act_ckpt_iterative_pt_sampling: false + + + + num_init_cond_frames_for_eval: 1 # only mask on the first frame + forward_backbone_per_frame_for_eval: True + + + data: + train: + _target_: training.dataset.sam2_datasets.TorchTrainMixedDataset + phases_per_epoch: ${scratch.phases_per_epoch} + batch_sizes: + - ${scratch.train_batch_size} + + datasets: + - _target_: training.dataset.utils.RepeatFactorWrapper + dataset: + _target_: training.dataset.utils.ConcatDataset + datasets: + - _target_: training.dataset.vos_dataset.VOSDataset + transforms: ${vos.train_transforms} + training: true + video_dataset: + _target_: training.dataset.vos_raw_dataset.PNGRawDataset + img_folder: ${dataset.img_folder} + gt_folder: ${dataset.gt_folder} + file_list_txt: ${dataset.file_list_txt} + sampler: + _target_: training.dataset.vos_sampler.RandomUniformSampler + num_frames: ${scratch.num_frames} + max_num_objects: ${scratch.max_num_objects} + multiplier: ${dataset.multiplier} + shuffle: True + num_workers: ${scratch.num_train_workers} + pin_memory: True + drop_last: True + collate_fn: + _target_: training.utils.data_utils.collate_fn + _partial_: true + dict_key: all + + optim: + amp: + enabled: True + amp_dtype: bfloat16 + + optimizer: + _target_: torch.optim.AdamW + + gradient_clip: + _target_: training.optimizer.GradientClipper + max_norm: 0.1 + norm_type: 2 + + param_group_modifiers: + - _target_: training.optimizer.layer_decay_param_modifier + _partial_: True + layer_decay_value: 0.9 + apply_to: 'image_encoder.trunk' + overrides: + - pattern: '*pos_embed*' + value: 1.0 + + options: + lr: + - scheduler: + _target_: fvcore.common.param_scheduler.CosineParamScheduler + start_value: ${scratch.base_lr} + end_value: ${divide:${scratch.base_lr},10} + - scheduler: + _target_: fvcore.common.param_scheduler.CosineParamScheduler + start_value: ${scratch.vision_lr} + end_value: ${divide:${scratch.vision_lr},10} + param_names: + - 'image_encoder.*' + weight_decay: + - scheduler: + _target_: fvcore.common.param_scheduler.ConstantParamScheduler + value: 0.1 + - scheduler: + _target_: fvcore.common.param_scheduler.ConstantParamScheduler + value: 0.0 + param_names: + - '*bias*' + module_cls_names: ['torch.nn.LayerNorm'] + + loss: + all: + _target_: training.loss_fns.MultiStepMultiMasksAndIous + weight_dict: + loss_mask: 20 + loss_dice: 1 + loss_iou: 1 + loss_class: 1 + supervise_all_iou: true + iou_use_l1_loss: true + pred_obj_scores: true + focal_gamma_obj_score: 0.0 + focal_alpha_obj_score: -1.0 + + distributed: + backend: nccl + find_unused_parameters: True + + logging: + tensorboard_writer: + _target_: training.utils.logger.make_tensorboard_logger + log_dir: ${launcher.experiment_log_dir}/tensorboard + flush_secs: 120 + should_log: True + log_dir: ${launcher.experiment_log_dir}/logs + log_freq: 10 + + # initialize from a SAM 2 checkpoint + checkpoint: + save_dir: ${launcher.experiment_log_dir}/checkpoints + save_freq: 0 # 0 only last checkpoint is saved. + model_weight_initializer: + _partial_: True + _target_: training.utils.checkpoint_utils.load_state_dict_into_model + strict: True + ignore_unexpected_keys: null + ignore_missing_keys: null + + state_dict: + _target_: training.utils.checkpoint_utils.load_checkpoint_and_apply_kernels + checkpoint_path: ./checkpoints/sam2.1_hiera_base_plus.pt # PATH to SAM 2.1 checkpoint + ckpt_state_dict_keys: ['model'] + +launcher: + num_nodes: 1 + gpus_per_node: 8 + experiment_log_dir: null # Path to log directory, defaults to ./sam2_logs/${config_name} + +# SLURM args if running on a cluster +submitit: + partition: null + account: null + qos: null + cpus_per_task: 10 + use_cluster: false + timeout_hour: 24 + name: null + port_range: [10000, 65000] + diff --git a/modules/sam2/configs/sam2/sam2_hiera_b+.yaml b/modules/sam2/configs/sam2/sam2_hiera_b+.yaml new file mode 100644 index 0000000000000000000000000000000000000000..58f3eb81554018e873f8515ecb98e36d16ac29e4 --- /dev/null +++ b/modules/sam2/configs/sam2/sam2_hiera_b+.yaml @@ -0,0 +1,113 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 112 + num_heads: 2 + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [896, 448, 224, 112] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/modules/sam2/configs/sam2/sam2_hiera_l.yaml b/modules/sam2/configs/sam2/sam2_hiera_l.yaml new file mode 100644 index 0000000000000000000000000000000000000000..918667f50c3e1ad2dcf77c0c14cb4dd114cfd080 --- /dev/null +++ b/modules/sam2/configs/sam2/sam2_hiera_l.yaml @@ -0,0 +1,117 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 144 + num_heads: 2 + stages: [2, 6, 36, 4] + global_att_blocks: [23, 33, 43] + window_pos_embed_bkg_spatial_size: [7, 7] + window_spec: [8, 4, 16, 8] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [1152, 576, 288, 144] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/modules/sam2/configs/sam2/sam2_hiera_s.yaml b/modules/sam2/configs/sam2/sam2_hiera_s.yaml new file mode 100644 index 0000000000000000000000000000000000000000..26e5d4d39f7b2892396106005c37c7ffe6c83bc2 --- /dev/null +++ b/modules/sam2/configs/sam2/sam2_hiera_s.yaml @@ -0,0 +1,116 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 96 + num_heads: 1 + stages: [1, 2, 11, 2] + global_att_blocks: [7, 10, 13] + window_pos_embed_bkg_spatial_size: [7, 7] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [768, 384, 192, 96] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/modules/sam2/configs/sam2/sam2_hiera_t.yaml b/modules/sam2/configs/sam2/sam2_hiera_t.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a62c903aaa5f80828077c6e06a59626926570ed6 --- /dev/null +++ b/modules/sam2/configs/sam2/sam2_hiera_t.yaml @@ -0,0 +1,118 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 96 + num_heads: 1 + stages: [1, 2, 7, 2] + global_att_blocks: [5, 7, 9] + window_pos_embed_bkg_spatial_size: [7, 7] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [768, 384, 192, 96] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + # SAM decoder + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + # HieraT does not currently support compilation, should always be set to False + compile_image_encoder: False diff --git a/modules/sam2/csrc/connected_components.cu b/modules/sam2/csrc/connected_components.cu new file mode 100644 index 0000000000000000000000000000000000000000..ced21eb32eaaadb818d441c1322b99d1bf068f45 --- /dev/null +++ b/modules/sam2/csrc/connected_components.cu @@ -0,0 +1,289 @@ +// Copyright (c) Meta Platforms, Inc. and affiliates. +// All rights reserved. + +// This source code is licensed under the license found in the +// LICENSE file in the root directory of this source tree. + +// adapted from https://github.com/zsef123/Connected_components_PyTorch +// with license found in the LICENSE_cctorch file in the root directory. +#include +#include +#include +#include +#include +#include + +// 2d +#define BLOCK_ROWS 16 +#define BLOCK_COLS 16 + +namespace cc2d { + +template +__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) { + return (bitmap >> pos) & 1; +} + +__device__ int32_t find(const int32_t* s_buf, int32_t n) { + while (s_buf[n] != n) + n = s_buf[n]; + return n; +} + +__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) { + const int32_t id = n; + while (s_buf[n] != n) { + n = s_buf[n]; + s_buf[id] = n; + } + return n; +} + +__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) { + bool done; + do { + a = find(s_buf, a); + b = find(s_buf, b); + + if (a < b) { + int32_t old = atomicMin(s_buf + b, a); + done = (old == b); + b = old; + } else if (b < a) { + int32_t old = atomicMin(s_buf + a, b); + done = (old == a); + a = old; + } else + done = true; + + } while (!done); +} + +__global__ void +init_labeling(int32_t* label, const uint32_t W, const uint32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row < H && col < W) + label[idx] = idx; +} + +__global__ void +merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + uint32_t P = 0; + + if (img[idx]) + P |= 0x777; + if (row + 1 < H && img[idx + W]) + P |= 0x777 << 4; + if (col + 1 < W && img[idx + 1]) + P |= 0x777 << 1; + + if (col == 0) + P &= 0xEEEE; + if (col + 1 >= W) + P &= 0x3333; + else if (col + 2 >= W) + P &= 0x7777; + + if (row == 0) + P &= 0xFFF0; + if (row + 1 >= H) + P &= 0xFF; + + if (P > 0) { + // If need check about top-left pixel(if flag the first bit) and hit the + // top-left pixel + if (hasBit(P, 0) && img[idx - W - 1]) { + union_(label, idx, idx - 2 * W - 2); // top left block + } + + if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1])) + union_(label, idx, idx - 2 * W); // top bottom block + + if (hasBit(P, 3) && img[idx + 2 - W]) + union_(label, idx, idx - 2 * W + 2); // top right block + + if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1])) + union_(label, idx, idx - 2); // just left block + } +} + +__global__ void compression(int32_t* label, const int32_t W, const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row < H && col < W) + find_n_compress(label, idx); +} + +__global__ void final_labeling( + const uint8_t* img, + int32_t* label, + const int32_t W, + const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + int32_t y = label[idx] + 1; + + if (img[idx]) + label[idx] = y; + else + label[idx] = 0; + + if (col + 1 < W) { + if (img[idx + 1]) + label[idx + 1] = y; + else + label[idx + 1] = 0; + + if (row + 1 < H) { + if (img[idx + W + 1]) + label[idx + W + 1] = y; + else + label[idx + W + 1] = 0; + } + } + + if (row + 1 < H) { + if (img[idx + W]) + label[idx + W] = y; + else + label[idx + W] = 0; + } +} + +__global__ void init_counting( + const int32_t* label, + int32_t* count_init, + const int32_t W, + const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + int32_t y = label[idx]; + if (y > 0) { + int32_t count_idx = y - 1; + atomicAdd(count_init + count_idx, 1); + } +} + +__global__ void final_counting( + const int32_t* label, + const int32_t* count_init, + int32_t* count_final, + const int32_t W, + const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + int32_t y = label[idx]; + if (y > 0) { + int32_t count_idx = y - 1; + count_final[idx] = count_init[count_idx]; + } else { + count_final[idx] = 0; + } +} + +} // namespace cc2d + +std::vector get_connected_componnets( + const torch::Tensor& inputs) { + AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor"); + AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape"); + AT_ASSERTM( + inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type"); + + const uint32_t N = inputs.size(0); + const uint32_t C = inputs.size(1); + const uint32_t H = inputs.size(2); + const uint32_t W = inputs.size(3); + + AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape"); + AT_ASSERTM((H % 2) == 0, "height must be an even number"); + AT_ASSERTM((W % 2) == 0, "width must be an even number"); + + // label must be uint32_t + auto label_options = + torch::TensorOptions().dtype(torch::kInt32).device(inputs.device()); + torch::Tensor labels = torch::zeros({N, C, H, W}, label_options); + torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options); + torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options); + + dim3 grid = dim3( + ((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS, + ((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS); + dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS); + dim3 grid_count = + dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS); + dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS); + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + for (int n = 0; n < N; n++) { + uint32_t offset = n * H * W; + + cc2d::init_labeling<<>>( + labels.data_ptr() + offset, W, H); + cc2d::merge<<>>( + inputs.data_ptr() + offset, + labels.data_ptr() + offset, + W, + H); + cc2d::compression<<>>( + labels.data_ptr() + offset, W, H); + cc2d::final_labeling<<>>( + inputs.data_ptr() + offset, + labels.data_ptr() + offset, + W, + H); + + // get the counting of each pixel + cc2d::init_counting<<>>( + labels.data_ptr() + offset, + counts_init.data_ptr() + offset, + W, + H); + cc2d::final_counting<<>>( + labels.data_ptr() + offset, + counts_init.data_ptr() + offset, + counts_final.data_ptr() + offset, + W, + H); + } + + // returned values are [labels, counts] + std::vector outputs; + outputs.push_back(labels); + outputs.push_back(counts_final); + return outputs; +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def( + "get_connected_componnets", + &get_connected_componnets, + "get_connected_componnets"); +} diff --git a/modules/sam2/modeling/__init__.py b/modules/sam2/modeling/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/modules/sam2/modeling/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/modules/sam2/modeling/__pycache__/__init__.cpython-312.pyc b/modules/sam2/modeling/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ba590a921b29a5d80d814fe871bd1b492c83939d Binary files /dev/null and b/modules/sam2/modeling/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/sam2/modeling/__pycache__/memory_attention.cpython-312.pyc b/modules/sam2/modeling/__pycache__/memory_attention.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3f8f16c766c1908a31265adf3366ce91d4167e3e Binary files /dev/null and b/modules/sam2/modeling/__pycache__/memory_attention.cpython-312.pyc differ diff --git a/modules/sam2/modeling/__pycache__/memory_encoder.cpython-312.pyc b/modules/sam2/modeling/__pycache__/memory_encoder.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a192a37a754860c5e4af5756f7d025e6c16df480 Binary files /dev/null and b/modules/sam2/modeling/__pycache__/memory_encoder.cpython-312.pyc differ diff --git a/modules/sam2/modeling/__pycache__/position_encoding.cpython-312.pyc b/modules/sam2/modeling/__pycache__/position_encoding.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c9589510e9ddbcb8a8c2c2443877f6f0855106f3 Binary files /dev/null and b/modules/sam2/modeling/__pycache__/position_encoding.cpython-312.pyc differ diff --git a/modules/sam2/modeling/__pycache__/sam2_base.cpython-312.pyc b/modules/sam2/modeling/__pycache__/sam2_base.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..83e22739b1785dd6a856efff98f323a07b3dbc56 Binary files /dev/null and b/modules/sam2/modeling/__pycache__/sam2_base.cpython-312.pyc differ diff --git a/modules/sam2/modeling/__pycache__/sam2_utils.cpython-312.pyc b/modules/sam2/modeling/__pycache__/sam2_utils.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..94d353f1051f7849f910f0336e7700294fe3cc3d Binary files /dev/null and b/modules/sam2/modeling/__pycache__/sam2_utils.cpython-312.pyc differ diff --git a/modules/sam2/modeling/backbones/__init__.py b/modules/sam2/modeling/backbones/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/modules/sam2/modeling/backbones/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/modules/sam2/modeling/backbones/__pycache__/__init__.cpython-312.pyc b/modules/sam2/modeling/backbones/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b4827caef4d1240f328a7fa9f8165a77c1461ad7 Binary files /dev/null and b/modules/sam2/modeling/backbones/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/sam2/modeling/backbones/__pycache__/hieradet.cpython-312.pyc b/modules/sam2/modeling/backbones/__pycache__/hieradet.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..41db03a48782d87fc215d35b2128a5150f6bd67c Binary files /dev/null and b/modules/sam2/modeling/backbones/__pycache__/hieradet.cpython-312.pyc differ diff --git a/modules/sam2/modeling/backbones/__pycache__/image_encoder.cpython-312.pyc b/modules/sam2/modeling/backbones/__pycache__/image_encoder.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e780f9cb6a39b2a5646e7e38fcb716456914411a Binary files /dev/null and b/modules/sam2/modeling/backbones/__pycache__/image_encoder.cpython-312.pyc differ diff --git a/modules/sam2/modeling/backbones/__pycache__/utils.cpython-312.pyc b/modules/sam2/modeling/backbones/__pycache__/utils.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c0765d33fcdae67a5514ab6d2283ac11f2745494 Binary files /dev/null and b/modules/sam2/modeling/backbones/__pycache__/utils.cpython-312.pyc differ diff --git a/modules/sam2/modeling/backbones/hieradet.py b/modules/sam2/modeling/backbones/hieradet.py new file mode 100644 index 0000000000000000000000000000000000000000..19ac77b61d8e1345a301686d39ef2ab6e4b035fb --- /dev/null +++ b/modules/sam2/modeling/backbones/hieradet.py @@ -0,0 +1,317 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging +from functools import partial +from typing import List, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from iopath.common.file_io import g_pathmgr + +from sam2.modeling.backbones.utils import ( + PatchEmbed, + window_partition, + window_unpartition, +) + +from sam2.modeling.sam2_utils import DropPath, MLP + + +def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor: + if pool is None: + return x + # (B, H, W, C) -> (B, C, H, W) + x = x.permute(0, 3, 1, 2) + x = pool(x) + # (B, C, H', W') -> (B, H', W', C) + x = x.permute(0, 2, 3, 1) + if norm: + x = norm(x) + + return x + + +class MultiScaleAttention(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + num_heads: int, + q_pool: nn.Module = None, + ): + super().__init__() + + self.dim = dim + self.dim_out = dim_out + self.num_heads = num_heads + self.q_pool = q_pool + self.qkv = nn.Linear(dim, dim_out * 3) + self.proj = nn.Linear(dim_out, dim_out) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + # qkv with shape (B, H * W, 3, nHead, C) + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) + # q, k, v with shape (B, H * W, nheads, C) + q, k, v = torch.unbind(qkv, 2) + + # Q pooling (for downsample at stage changes) + if self.q_pool: + q = do_pool(q.reshape(B, H, W, -1), self.q_pool) + H, W = q.shape[1:3] # downsampled shape + q = q.reshape(B, H * W, self.num_heads, -1) + + # Torch's SDPA expects [B, nheads, H*W, C] so we transpose + x = F.scaled_dot_product_attention( + q.transpose(1, 2), + k.transpose(1, 2), + v.transpose(1, 2), + ) + # Transpose back + x = x.transpose(1, 2) + x = x.reshape(B, H, W, -1) + + x = self.proj(x) + + return x + + +class MultiScaleBlock(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + num_heads: int, + mlp_ratio: float = 4.0, + drop_path: float = 0.0, + norm_layer: Union[nn.Module, str] = "LayerNorm", + q_stride: Tuple[int, int] = None, + act_layer: nn.Module = nn.GELU, + window_size: int = 0, + ): + super().__init__() + + if isinstance(norm_layer, str): + norm_layer = partial(getattr(nn, norm_layer), eps=1e-6) + + self.dim = dim + self.dim_out = dim_out + self.norm1 = norm_layer(dim) + + self.window_size = window_size + + self.pool, self.q_stride = None, q_stride + if self.q_stride: + self.pool = nn.MaxPool2d( + kernel_size=q_stride, stride=q_stride, ceil_mode=False + ) + + self.attn = MultiScaleAttention( + dim, + dim_out, + num_heads=num_heads, + q_pool=self.pool, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + self.norm2 = norm_layer(dim_out) + self.mlp = MLP( + dim_out, + int(dim_out * mlp_ratio), + dim_out, + num_layers=2, + activation=act_layer, + ) + + if dim != dim_out: + self.proj = nn.Linear(dim, dim_out) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x # B, H, W, C + x = self.norm1(x) + + # Skip connection + if self.dim != self.dim_out: + shortcut = do_pool(self.proj(x), self.pool) + + # Window partition + window_size = self.window_size + if window_size > 0: + H, W = x.shape[1], x.shape[2] + x, pad_hw = window_partition(x, window_size) + + # Window Attention + Q Pooling (if stage change) + x = self.attn(x) + if self.q_stride: + # Shapes have changed due to Q pooling + window_size = self.window_size // self.q_stride[0] + H, W = shortcut.shape[1:3] + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + pad_hw = (H + pad_h, W + pad_w) + + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, window_size, pad_hw, (H, W)) + + x = shortcut + self.drop_path(x) + # MLP + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class Hiera(nn.Module): + """ + Reference: https://arxiv.org/abs/2306.00989 + """ + + def __init__( + self, + embed_dim: int = 96, # initial embed dim + num_heads: int = 1, # initial number of heads + drop_path_rate: float = 0.0, # stochastic depth + q_pool: int = 3, # number of q_pool stages + q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages + stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage + dim_mul: float = 2.0, # dim_mul factor at stage shift + head_mul: float = 2.0, # head_mul factor at stage shift + window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14), + # window size per stage, when not using global att. + window_spec: Tuple[int, ...] = ( + 8, + 4, + 14, + 7, + ), + # global attn in these blocks + global_att_blocks: Tuple[int, ...] = ( + 12, + 16, + 20, + ), + weights_path=None, + return_interm_layers=True, # return feats from every stage + ): + super().__init__() + + assert len(stages) == len(window_spec) + self.window_spec = window_spec + + depth = sum(stages) + self.q_stride = q_stride + self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] + assert 0 <= q_pool <= len(self.stage_ends[:-1]) + self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] + self.return_interm_layers = return_interm_layers + + self.patch_embed = PatchEmbed( + embed_dim=embed_dim, + ) + # Which blocks have global att? + self.global_att_blocks = global_att_blocks + + # Windowed positional embedding (https://arxiv.org/abs/2311.05613) + self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size + self.pos_embed = nn.Parameter( + torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size) + ) + self.pos_embed_window = nn.Parameter( + torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]) + ) + + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, depth) + ] # stochastic depth decay rule + + cur_stage = 1 + self.blocks = nn.ModuleList() + + for i in range(depth): + dim_out = embed_dim + # lags by a block, so first block of + # next stage uses an initial window size + # of previous stage and final window size of current stage + window_size = self.window_spec[cur_stage - 1] + + if self.global_att_blocks is not None: + window_size = 0 if i in self.global_att_blocks else window_size + + if i - 1 in self.stage_ends: + dim_out = int(embed_dim * dim_mul) + num_heads = int(num_heads * head_mul) + cur_stage += 1 + + block = MultiScaleBlock( + dim=embed_dim, + dim_out=dim_out, + num_heads=num_heads, + drop_path=dpr[i], + q_stride=self.q_stride if i in self.q_pool_blocks else None, + window_size=window_size, + ) + + embed_dim = dim_out + self.blocks.append(block) + + self.channel_list = ( + [self.blocks[i].dim_out for i in self.stage_ends[::-1]] + if return_interm_layers + else [self.blocks[-1].dim_out] + ) + + if weights_path is not None: + with g_pathmgr.open(weights_path, "rb") as f: + chkpt = torch.load(f, map_location="cpu") + logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False)) + + def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: + h, w = hw + window_embed = self.pos_embed_window + pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") + pos_embed = pos_embed + window_embed.tile( + [x // y for x, y in zip(pos_embed.shape, window_embed.shape)] + ) + pos_embed = pos_embed.permute(0, 2, 3, 1) + return pos_embed + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + x = self.patch_embed(x) + # x: (B, H, W, C) + + # Add pos embed + x = x + self._get_pos_embed(x.shape[1:3]) + + outputs = [] + for i, blk in enumerate(self.blocks): + x = blk(x) + if (i == self.stage_ends[-1]) or ( + i in self.stage_ends and self.return_interm_layers + ): + feats = x.permute(0, 3, 1, 2) + outputs.append(feats) + + return outputs + + def get_layer_id(self, layer_name): + # https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33 + num_layers = self.get_num_layers() + + if layer_name.find("rel_pos") != -1: + return num_layers + 1 + elif layer_name.find("pos_embed") != -1: + return 0 + elif layer_name.find("patch_embed") != -1: + return 0 + elif layer_name.find("blocks") != -1: + return int(layer_name.split("blocks")[1].split(".")[1]) + 1 + else: + return num_layers + 1 + + def get_num_layers(self) -> int: + return len(self.blocks) diff --git a/modules/sam2/modeling/backbones/image_encoder.py b/modules/sam2/modeling/backbones/image_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..37e9266bc98596e97ca303118c910ed24f6cee2c --- /dev/null +++ b/modules/sam2/modeling/backbones/image_encoder.py @@ -0,0 +1,134 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import List, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class ImageEncoder(nn.Module): + def __init__( + self, + trunk: nn.Module, + neck: nn.Module, + scalp: int = 0, + ): + super().__init__() + self.trunk = trunk + self.neck = neck + self.scalp = scalp + assert ( + self.trunk.channel_list == self.neck.backbone_channel_list + ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}" + + def forward(self, sample: torch.Tensor): + # Forward through backbone + features, pos = self.neck(self.trunk(sample)) + if self.scalp > 0: + # Discard the lowest resolution features + features, pos = features[: -self.scalp], pos[: -self.scalp] + + src = features[-1] + output = { + "vision_features": src, + "vision_pos_enc": pos, + "backbone_fpn": features, + } + return output + + +class FpnNeck(nn.Module): + """ + A modified variant of Feature Pyramid Network (FPN) neck + (we remove output conv and also do bicubic interpolation similar to ViT + pos embed interpolation) + """ + + def __init__( + self, + position_encoding: nn.Module, + d_model: int, + backbone_channel_list: List[int], + kernel_size: int = 1, + stride: int = 1, + padding: int = 0, + fpn_interp_model: str = "bilinear", + fuse_type: str = "sum", + fpn_top_down_levels: Optional[List[int]] = None, + ): + """Initialize the neck + :param trunk: the backbone + :param position_encoding: the positional encoding to use + :param d_model: the dimension of the model + :param neck_norm: the normalization to use + """ + super().__init__() + self.position_encoding = position_encoding + self.convs = nn.ModuleList() + self.backbone_channel_list = backbone_channel_list + self.d_model = d_model + for dim in backbone_channel_list: + current = nn.Sequential() + current.add_module( + "conv", + nn.Conv2d( + in_channels=dim, + out_channels=d_model, + kernel_size=kernel_size, + stride=stride, + padding=padding, + ), + ) + + self.convs.append(current) + self.fpn_interp_model = fpn_interp_model + assert fuse_type in ["sum", "avg"] + self.fuse_type = fuse_type + + # levels to have top-down features in its outputs + # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3 + # have top-down propagation, while outputs of level 0 and level 1 have only + # lateral features from the same backbone level. + if fpn_top_down_levels is None: + # default is to have top-down features on all levels + fpn_top_down_levels = range(len(self.convs)) + self.fpn_top_down_levels = list(fpn_top_down_levels) + + def forward(self, xs: List[torch.Tensor]): + + out = [None] * len(self.convs) + pos = [None] * len(self.convs) + assert len(xs) == len(self.convs) + # fpn forward pass + # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py + prev_features = None + # forward in top-down order (from low to high resolution) + n = len(self.convs) - 1 + for i in range(n, -1, -1): + x = xs[i] + lateral_features = self.convs[n - i](x) + if i in self.fpn_top_down_levels and prev_features is not None: + top_down_features = F.interpolate( + prev_features.to(dtype=torch.float32), + scale_factor=2.0, + mode=self.fpn_interp_model, + align_corners=( + None if self.fpn_interp_model == "nearest" else False + ), + antialias=False, + ) + prev_features = lateral_features + top_down_features + if self.fuse_type == "avg": + prev_features /= 2 + else: + prev_features = lateral_features + x_out = prev_features + out[i] = x_out + pos[i] = self.position_encoding(x_out).to(x_out.dtype) + + return out, pos diff --git a/modules/sam2/modeling/backbones/utils.py b/modules/sam2/modeling/backbones/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..32d55c7545f064de133a5ff0200ba1ece9b504b7 --- /dev/null +++ b/modules/sam2/modeling/backbones/utils.py @@ -0,0 +1,95 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +"""Some utilities for backbones, in particular for windowing""" + +from typing import Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def window_partition(x, window_size): + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + if pad_h > 0 or pad_w > 0: + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = ( + x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + ) + return windows, (Hp, Wp) + + +def window_unpartition(windows, window_size, pad_hw, hw): + """ + Window unpartition into original sequences and removing padding. + Args: + x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view( + B, Hp // window_size, Wp // window_size, window_size, window_size, -1 + ) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + + if Hp > H or Wp > W: + x = x[:, :H, :W, :].contiguous() + return x + + +class PatchEmbed(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + kernel_size: Tuple[int, ...] = (7, 7), + stride: Tuple[int, ...] = (4, 4), + padding: Tuple[int, ...] = (3, 3), + in_chans: int = 3, + embed_dim: int = 768, + ): + """ + Args: + kernel_size (Tuple): kernel size of the projection layer. + stride (Tuple): stride of the projection layer. + padding (Tuple): padding size of the projection layer. + in_chans (int): Number of input image channels. + embed_dim (int): embed_dim (int): Patch embedding dimension. + """ + super().__init__() + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # B C H W -> B H W C + x = x.permute(0, 2, 3, 1) + return x diff --git a/modules/sam2/modeling/memory_attention.py b/modules/sam2/modeling/memory_attention.py new file mode 100644 index 0000000000000000000000000000000000000000..0b07f9d87e3d8194ca5e11fc20f01604d591a59d --- /dev/null +++ b/modules/sam2/modeling/memory_attention.py @@ -0,0 +1,169 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Optional + +import torch +from torch import nn, Tensor + +from sam2.modeling.sam.transformer import RoPEAttention + +from sam2.modeling.sam2_utils import get_activation_fn, get_clones + + +class MemoryAttentionLayer(nn.Module): + + def __init__( + self, + activation: str, + cross_attention: nn.Module, + d_model: int, + dim_feedforward: int, + dropout: float, + pos_enc_at_attn: bool, + pos_enc_at_cross_attn_keys: bool, + pos_enc_at_cross_attn_queries: bool, + self_attention: nn.Module, + ): + super().__init__() + self.d_model = d_model + self.dim_feedforward = dim_feedforward + self.dropout_value = dropout + self.self_attn = self_attention + self.cross_attn_image = cross_attention + + # Implementation of Feedforward model + self.linear1 = nn.Linear(d_model, dim_feedforward) + self.dropout = nn.Dropout(dropout) + self.linear2 = nn.Linear(dim_feedforward, d_model) + + self.norm1 = nn.LayerNorm(d_model) + self.norm2 = nn.LayerNorm(d_model) + self.norm3 = nn.LayerNorm(d_model) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + self.dropout3 = nn.Dropout(dropout) + + self.activation_str = activation + self.activation = get_activation_fn(activation) + + # Where to add pos enc + self.pos_enc_at_attn = pos_enc_at_attn + self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries + self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys + + def _forward_sa(self, tgt, query_pos): + # Self-Attention + tgt2 = self.norm1(tgt) + q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2 + tgt2 = self.self_attn(q, k, v=tgt2) + tgt = tgt + self.dropout1(tgt2) + return tgt + + def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0): + kwds = {} + if num_k_exclude_rope > 0: + assert isinstance(self.cross_attn_image, RoPEAttention) + kwds = {"num_k_exclude_rope": num_k_exclude_rope} + + # Cross-Attention + tgt2 = self.norm2(tgt) + tgt2 = self.cross_attn_image( + q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, + k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, + v=memory, + **kwds, + ) + tgt = tgt + self.dropout2(tgt2) + return tgt + + def forward( + self, + tgt, + memory, + pos: Optional[Tensor] = None, + query_pos: Optional[Tensor] = None, + num_k_exclude_rope: int = 0, + ) -> torch.Tensor: + + # Self-Attn, Cross-Attn + tgt = self._forward_sa(tgt, query_pos) + tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope) + # MLP + tgt2 = self.norm3(tgt) + tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) + tgt = tgt + self.dropout3(tgt2) + return tgt + + +class MemoryAttention(nn.Module): + def __init__( + self, + d_model: int, + pos_enc_at_input: bool, + layer: nn.Module, + num_layers: int, + batch_first: bool = True, # Do layers expect batch first input? + ): + super().__init__() + self.d_model = d_model + self.layers = get_clones(layer, num_layers) + self.num_layers = num_layers + self.norm = nn.LayerNorm(d_model) + self.pos_enc_at_input = pos_enc_at_input + self.batch_first = batch_first + + def forward( + self, + curr: torch.Tensor, # self-attention inputs + memory: torch.Tensor, # cross-attention inputs + curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs + memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs + num_obj_ptr_tokens: int = 0, # number of object pointer *tokens* + ): + if isinstance(curr, list): + assert isinstance(curr_pos, list) + assert len(curr) == len(curr_pos) == 1 + curr, curr_pos = ( + curr[0], + curr_pos[0], + ) + + assert ( + curr.shape[1] == memory.shape[1] + ), "Batch size must be the same for curr and memory" + + output = curr + if self.pos_enc_at_input and curr_pos is not None: + output = output + 0.1 * curr_pos + + if self.batch_first: + # Convert to batch first + output = output.transpose(0, 1) + curr_pos = curr_pos.transpose(0, 1) + memory = memory.transpose(0, 1) + memory_pos = memory_pos.transpose(0, 1) + + for layer in self.layers: + kwds = {} + if isinstance(layer.cross_attn_image, RoPEAttention): + kwds = {"num_k_exclude_rope": num_obj_ptr_tokens} + + output = layer( + tgt=output, + memory=memory, + pos=memory_pos, + query_pos=curr_pos, + **kwds, + ) + normed_output = self.norm(output) + + if self.batch_first: + # Convert back to seq first + normed_output = normed_output.transpose(0, 1) + curr_pos = curr_pos.transpose(0, 1) + + return normed_output diff --git a/modules/sam2/modeling/memory_encoder.py b/modules/sam2/modeling/memory_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..f60202dfaba87232c3870fb2101b5322a119d985 --- /dev/null +++ b/modules/sam2/modeling/memory_encoder.py @@ -0,0 +1,181 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from typing import Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d + + +class MaskDownSampler(nn.Module): + """ + Progressively downsample a mask by total_stride, each time by stride. + Note that LayerNorm is applied per *token*, like in ViT. + + With each downsample (by a factor stride**2), channel capacity increases by the same factor. + In the end, we linearly project to embed_dim channels. + """ + + def __init__( + self, + embed_dim=256, + kernel_size=4, + stride=4, + padding=0, + total_stride=16, + activation=nn.GELU, + ): + super().__init__() + num_layers = int(math.log2(total_stride) // math.log2(stride)) + assert stride**num_layers == total_stride + self.encoder = nn.Sequential() + mask_in_chans, mask_out_chans = 1, 1 + for _ in range(num_layers): + mask_out_chans = mask_in_chans * (stride**2) + self.encoder.append( + nn.Conv2d( + mask_in_chans, + mask_out_chans, + kernel_size=kernel_size, + stride=stride, + padding=padding, + ) + ) + self.encoder.append(LayerNorm2d(mask_out_chans)) + self.encoder.append(activation()) + mask_in_chans = mask_out_chans + + self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1)) + + def forward(self, x): + return self.encoder(x) + + +# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt) +class CXBlock(nn.Module): + r"""ConvNeXt Block. There are two equivalent implementations: + (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) + (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back + We use (2) as we find it slightly faster in PyTorch + + Args: + dim (int): Number of input channels. + drop_path (float): Stochastic depth rate. Default: 0.0 + layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. + """ + + def __init__( + self, + dim, + kernel_size=7, + padding=3, + drop_path=0.0, + layer_scale_init_value=1e-6, + use_dwconv=True, + ): + super().__init__() + self.dwconv = nn.Conv2d( + dim, + dim, + kernel_size=kernel_size, + padding=padding, + groups=dim if use_dwconv else 1, + ) # depthwise conv + self.norm = LayerNorm2d(dim, eps=1e-6) + self.pwconv1 = nn.Linear( + dim, 4 * dim + ) # pointwise/1x1 convs, implemented with linear layers + self.act = nn.GELU() + self.pwconv2 = nn.Linear(4 * dim, dim) + self.gamma = ( + nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) + if layer_scale_init_value > 0 + else None + ) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + input = x + x = self.dwconv(x) + x = self.norm(x) + x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) + x = self.pwconv1(x) + x = self.act(x) + x = self.pwconv2(x) + if self.gamma is not None: + x = self.gamma * x + x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) + + x = input + self.drop_path(x) + return x + + +class Fuser(nn.Module): + def __init__(self, layer, num_layers, dim=None, input_projection=False): + super().__init__() + self.proj = nn.Identity() + self.layers = get_clones(layer, num_layers) + + if input_projection: + assert dim is not None + self.proj = nn.Conv2d(dim, dim, kernel_size=1) + + def forward(self, x): + # normally x: (N, C, H, W) + x = self.proj(x) + for layer in self.layers: + x = layer(x) + return x + + +class MemoryEncoder(nn.Module): + def __init__( + self, + out_dim, + mask_downsampler, + fuser, + position_encoding, + in_dim=256, # in_dim of pix_feats + ): + super().__init__() + + self.mask_downsampler = mask_downsampler + + self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1) + self.fuser = fuser + self.position_encoding = position_encoding + self.out_proj = nn.Identity() + if out_dim != in_dim: + self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) + + def forward( + self, + pix_feat: torch.Tensor, + masks: torch.Tensor, + skip_mask_sigmoid: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor]: + ## Process masks + # sigmoid, so that less domain shift from gt masks which are bool + if not skip_mask_sigmoid: + masks = F.sigmoid(masks) + masks = self.mask_downsampler(masks) + + ## Fuse pix_feats and downsampled masks + # in case the visual features are on CPU, cast them to CUDA + pix_feat = pix_feat.to(masks.device) + + x = self.pix_feat_proj(pix_feat) + x = x + masks + x = self.fuser(x) + x = self.out_proj(x) + + pos = self.position_encoding(x).to(x.dtype) + + return {"vision_features": x, "vision_pos_enc": [pos]} diff --git a/modules/sam2/modeling/position_encoding.py b/modules/sam2/modeling/position_encoding.py new file mode 100644 index 0000000000000000000000000000000000000000..52ac22674d5d4fdd9e83b6bdf034bff56d04bc0d --- /dev/null +++ b/modules/sam2/modeling/position_encoding.py @@ -0,0 +1,221 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from typing import Any, Optional, Tuple + +import numpy as np + +import torch +from torch import nn + + +class PositionEmbeddingSine(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one + used by the Attention Is All You Need paper, generalized to work on images. + """ + + def __init__( + self, + num_pos_feats, + temperature: int = 10000, + normalize: bool = True, + scale: Optional[float] = None, + ): + super().__init__() + assert num_pos_feats % 2 == 0, "Expecting even model width" + self.num_pos_feats = num_pos_feats // 2 + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + self.cache = {} + + def _encode_xy(self, x, y): + # The positions are expected to be normalized + assert len(x) == len(y) and x.ndim == y.ndim == 1 + x_embed = x * self.scale + y_embed = y * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, None] / dim_t + pos_y = y_embed[:, None] / dim_t + pos_x = torch.stack( + (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2 + ).flatten(1) + pos_y = torch.stack( + (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2 + ).flatten(1) + return pos_x, pos_y + + @torch.no_grad() + def encode_boxes(self, x, y, w, h): + pos_x, pos_y = self._encode_xy(x, y) + pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) + return pos + + encode = encode_boxes # Backwards compatibility + + @torch.no_grad() + def encode_points(self, x, y, labels): + (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape + assert bx == by and nx == ny and bx == bl and nx == nl + pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten()) + pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1) + pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) + return pos + + @torch.no_grad() + def forward(self, x: torch.Tensor): + cache_key = (x.shape[-2], x.shape[-1]) + if cache_key in self.cache: + return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) + y_embed = ( + torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device) + .view(1, -1, 1) + .repeat(x.shape[0], 1, x.shape[-1]) + ) + x_embed = ( + torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device) + .view(1, 1, -1) + .repeat(x.shape[0], x.shape[-2], 1) + ) + + if self.normalize: + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack( + (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos_y = torch.stack( + (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + self.cache[cache_key] = pos[0] + return pos + + +class PositionEmbeddingRandom(nn.Module): + """ + Positional encoding using random spatial frequencies. + """ + + def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: + super().__init__() + if scale is None or scale <= 0.0: + scale = 1.0 + self.register_buffer( + "positional_encoding_gaussian_matrix", + scale * torch.randn((2, num_pos_feats)), + ) + + def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: + """Positionally encode points that are normalized to [0,1].""" + # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape + coords = 2 * coords - 1 + coords = coords @ self.positional_encoding_gaussian_matrix + coords = 2 * np.pi * coords + # outputs d_1 x ... x d_n x C shape + return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) + + def forward(self, size: Tuple[int, int]) -> torch.Tensor: + """Generate positional encoding for a grid of the specified size.""" + h, w = size + device: Any = self.positional_encoding_gaussian_matrix.device + grid = torch.ones((h, w), device=device, dtype=torch.float32) + y_embed = grid.cumsum(dim=0) - 0.5 + x_embed = grid.cumsum(dim=1) - 0.5 + y_embed = y_embed / h + x_embed = x_embed / w + + pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) + return pe.permute(2, 0, 1) # C x H x W + + def forward_with_coords( + self, coords_input: torch.Tensor, image_size: Tuple[int, int] + ) -> torch.Tensor: + """Positionally encode points that are not normalized to [0,1].""" + coords = coords_input.clone() + coords[:, :, 0] = coords[:, :, 0] / image_size[1] + coords[:, :, 1] = coords[:, :, 1] / image_size[0] + return self._pe_encoding(coords.to(torch.float)) # B x N x C + + +# Rotary Positional Encoding, adapted from: +# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py +# 2. https://github.com/naver-ai/rope-vit +# 3. https://github.com/lucidrains/rotary-embedding-torch + + +def init_t_xy(end_x: int, end_y: int): + t = torch.arange(end_x * end_y, dtype=torch.float32) + t_x = (t % end_x).float() + t_y = torch.div(t, end_x, rounding_mode="floor").float() + return t_x, t_y + + +def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0): + freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) + freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) + + t_x, t_y = init_t_xy(end_x, end_y) + freqs_x = torch.outer(t_x, freqs_x) + freqs_y = torch.outer(t_y, freqs_y) + freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) + freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) + return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) + + +def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): + ndim = x.ndim + assert 0 <= 1 < ndim + assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) + shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] + return freqs_cis.view(*shape) + + +def apply_rotary_enc( + xq: torch.Tensor, + xk: torch.Tensor, + freqs_cis: torch.Tensor, + repeat_freqs_k: bool = False, +): + xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) + xk_ = ( + torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) + if xk.shape[-2] != 0 + else None + ) + freqs_cis = reshape_for_broadcast(freqs_cis, xq_) + xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) + if xk_ is None: + # no keys to rotate, due to dropout + return xq_out.type_as(xq).to(xq.device), xk + # repeat freqs along seq_len dim to match k seq_len + if repeat_freqs_k: + r = xk_.shape[-2] // xq_.shape[-2] + if freqs_cis.is_cuda: + freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) + else: + # torch.repeat on complex numbers may not be supported on non-CUDA devices + # (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten + freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3) + xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) + return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) diff --git a/modules/sam2/modeling/sam/__init__.py b/modules/sam2/modeling/sam/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/modules/sam2/modeling/sam/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/modules/sam2/modeling/sam/__pycache__/__init__.cpython-312.pyc b/modules/sam2/modeling/sam/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..94fdea372a6d48f5b9b197c2d1a2a734457896e0 Binary files /dev/null and b/modules/sam2/modeling/sam/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/sam2/modeling/sam/__pycache__/mask_decoder.cpython-312.pyc b/modules/sam2/modeling/sam/__pycache__/mask_decoder.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8fa8b165400a4d98985d214d3e516ea279ad53f4 Binary files /dev/null and b/modules/sam2/modeling/sam/__pycache__/mask_decoder.cpython-312.pyc differ diff --git a/modules/sam2/modeling/sam/__pycache__/prompt_encoder.cpython-312.pyc b/modules/sam2/modeling/sam/__pycache__/prompt_encoder.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5d1c264956264dba24f8e2344df54d8dbfe98bd7 Binary files /dev/null and b/modules/sam2/modeling/sam/__pycache__/prompt_encoder.cpython-312.pyc differ diff --git a/modules/sam2/modeling/sam/__pycache__/transformer.cpython-312.pyc b/modules/sam2/modeling/sam/__pycache__/transformer.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..83f3a42c101480c848b519d29d387993f8e95f78 Binary files /dev/null and b/modules/sam2/modeling/sam/__pycache__/transformer.cpython-312.pyc differ diff --git a/modules/sam2/modeling/sam/mask_decoder.py b/modules/sam2/modeling/sam/mask_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..9bebc0366b2703ffcb80a44bfd19cce8339b4fed --- /dev/null +++ b/modules/sam2/modeling/sam/mask_decoder.py @@ -0,0 +1,295 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import List, Optional, Tuple, Type + +import torch +from torch import nn + +from sam2.modeling.sam2_utils import LayerNorm2d, MLP + + +class MaskDecoder(nn.Module): + def __init__( + self, + *, + transformer_dim: int, + transformer: nn.Module, + num_multimask_outputs: int = 3, + activation: Type[nn.Module] = nn.GELU, + iou_head_depth: int = 3, + iou_head_hidden_dim: int = 256, + use_high_res_features: bool = False, + iou_prediction_use_sigmoid=False, + dynamic_multimask_via_stability=False, + dynamic_multimask_stability_delta=0.05, + dynamic_multimask_stability_thresh=0.98, + pred_obj_scores: bool = False, + pred_obj_scores_mlp: bool = False, + use_multimask_token_for_obj_ptr: bool = False, + ) -> None: + """ + Predicts masks given an image and prompt embeddings, using a + transformer architecture. + + Arguments: + transformer_dim (int): the channel dimension of the transformer + transformer (nn.Module): the transformer used to predict masks + num_multimask_outputs (int): the number of masks to predict + when disambiguating masks + activation (nn.Module): the type of activation to use when + upscaling masks + iou_head_depth (int): the depth of the MLP used to predict + mask quality + iou_head_hidden_dim (int): the hidden dimension of the MLP + used to predict mask quality + """ + super().__init__() + self.transformer_dim = transformer_dim + self.transformer = transformer + + self.num_multimask_outputs = num_multimask_outputs + + self.iou_token = nn.Embedding(1, transformer_dim) + self.num_mask_tokens = num_multimask_outputs + 1 + self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) + + self.pred_obj_scores = pred_obj_scores + if self.pred_obj_scores: + self.obj_score_token = nn.Embedding(1, transformer_dim) + self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr + + self.output_upscaling = nn.Sequential( + nn.ConvTranspose2d( + transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 + ), + LayerNorm2d(transformer_dim // 4), + activation(), + nn.ConvTranspose2d( + transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 + ), + activation(), + ) + self.use_high_res_features = use_high_res_features + if use_high_res_features: + self.conv_s0 = nn.Conv2d( + transformer_dim, transformer_dim // 8, kernel_size=1, stride=1 + ) + self.conv_s1 = nn.Conv2d( + transformer_dim, transformer_dim // 4, kernel_size=1, stride=1 + ) + + self.output_hypernetworks_mlps = nn.ModuleList( + [ + MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) + for i in range(self.num_mask_tokens) + ] + ) + + self.iou_prediction_head = MLP( + transformer_dim, + iou_head_hidden_dim, + self.num_mask_tokens, + iou_head_depth, + sigmoid_output=iou_prediction_use_sigmoid, + ) + if self.pred_obj_scores: + self.pred_obj_score_head = nn.Linear(transformer_dim, 1) + if pred_obj_scores_mlp: + self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) + + # When outputting a single mask, optionally we can dynamically fall back to the best + # multimask output token if the single mask output token gives low stability scores. + self.dynamic_multimask_via_stability = dynamic_multimask_via_stability + self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta + self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh + + def forward( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + multimask_output: bool, + repeat_image: bool, + high_res_features: Optional[List[torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Predict masks given image and prompt embeddings. + + Arguments: + image_embeddings (torch.Tensor): the embeddings from the image encoder + image_pe (torch.Tensor): positional encoding with the shape of image_embeddings + sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes + dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs + multimask_output (bool): Whether to return multiple masks or a single + mask. + + Returns: + torch.Tensor: batched predicted masks + torch.Tensor: batched predictions of mask quality + torch.Tensor: batched SAM token for mask output + """ + masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks( + image_embeddings=image_embeddings, + image_pe=image_pe, + sparse_prompt_embeddings=sparse_prompt_embeddings, + dense_prompt_embeddings=dense_prompt_embeddings, + repeat_image=repeat_image, + high_res_features=high_res_features, + ) + + # Select the correct mask or masks for output + if multimask_output: + masks = masks[:, 1:, :, :] + iou_pred = iou_pred[:, 1:] + elif self.dynamic_multimask_via_stability and not self.training: + masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred) + else: + masks = masks[:, 0:1, :, :] + iou_pred = iou_pred[:, 0:1] + + if multimask_output and self.use_multimask_token_for_obj_ptr: + sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape + else: + # Take the mask output token. Here we *always* use the token for single mask output. + # At test time, even if we track after 1-click (and using multimask_output=True), + # we still take the single mask token here. The rationale is that we always track + # after multiple clicks during training, so the past tokens seen during training + # are always the single mask token (and we'll let it be the object-memory token). + sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape + + # Prepare output + return masks, iou_pred, sam_tokens_out, object_score_logits + + def predict_masks( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + repeat_image: bool, + high_res_features: Optional[List[torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + # Concatenate output tokens + s = 0 + if self.pred_obj_scores: + output_tokens = torch.cat( + [ + self.obj_score_token.weight, + self.iou_token.weight, + self.mask_tokens.weight, + ], + dim=0, + ) + s = 1 + else: + output_tokens = torch.cat( + [self.iou_token.weight, self.mask_tokens.weight], dim=0 + ) + output_tokens = output_tokens.unsqueeze(0).expand( + sparse_prompt_embeddings.size(0), -1, -1 + ) + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) + + # Expand per-image data in batch direction to be per-mask + if repeat_image: + src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) + else: + assert image_embeddings.shape[0] == tokens.shape[0] + src = image_embeddings + src = src + dense_prompt_embeddings + assert ( + image_pe.size(0) == 1 + ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)" + pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) + b, c, h, w = src.shape + + # Run the transformer + hs, src = self.transformer(src, pos_src, tokens) + iou_token_out = hs[:, s, :] + mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :] + + # Upscale mask embeddings and predict masks using the mask tokens + src = src.transpose(1, 2).view(b, c, h, w) + if not self.use_high_res_features: + upscaled_embedding = self.output_upscaling(src) + else: + dc1, ln1, act1, dc2, act2 = self.output_upscaling + feat_s0, feat_s1 = high_res_features + upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) + upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) + + hyper_in_list: List[torch.Tensor] = [] + for i in range(self.num_mask_tokens): + hyper_in_list.append( + self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) + ) + hyper_in = torch.stack(hyper_in_list, dim=1) + b, c, h, w = upscaled_embedding.shape + masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) + + # Generate mask quality predictions + iou_pred = self.iou_prediction_head(iou_token_out) + if self.pred_obj_scores: + assert s == 1 + object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) + else: + # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1 + object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) + + return masks, iou_pred, mask_tokens_out, object_score_logits + + def _get_stability_scores(self, mask_logits): + """ + Compute stability scores of the mask logits based on the IoU between upper and + lower thresholds. + """ + mask_logits = mask_logits.flatten(-2) + stability_delta = self.dynamic_multimask_stability_delta + area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() + area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() + stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) + return stability_scores + + def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): + """ + When outputting a single mask, if the stability score from the current single-mask + output (based on output token 0) falls below a threshold, we instead select from + multi-mask outputs (based on output token 1~3) the mask with the highest predicted + IoU score. This is intended to ensure a valid mask for both clicking and tracking. + """ + # The best mask from multimask output tokens (1~3) + multimask_logits = all_mask_logits[:, 1:, :, :] + multimask_iou_scores = all_iou_scores[:, 1:] + best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) + batch_inds = torch.arange( + multimask_iou_scores.size(0), device=all_iou_scores.device + ) + best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] + best_multimask_logits = best_multimask_logits.unsqueeze(1) + best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] + best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) + + # The mask from singlemask output token 0 and its stability score + singlemask_logits = all_mask_logits[:, 0:1, :, :] + singlemask_iou_scores = all_iou_scores[:, 0:1] + stability_scores = self._get_stability_scores(singlemask_logits) + is_stable = stability_scores >= self.dynamic_multimask_stability_thresh + + # Dynamically fall back to best multimask output upon low stability scores. + mask_logits_out = torch.where( + is_stable[..., None, None].expand_as(singlemask_logits), + singlemask_logits, + best_multimask_logits, + ) + iou_scores_out = torch.where( + is_stable.expand_as(singlemask_iou_scores), + singlemask_iou_scores, + best_multimask_iou_scores, + ) + return mask_logits_out, iou_scores_out diff --git a/modules/sam2/modeling/sam/prompt_encoder.py b/modules/sam2/modeling/sam/prompt_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..6b3bbb95be0aea9c88f49f586ac959a9fda1b18b --- /dev/null +++ b/modules/sam2/modeling/sam/prompt_encoder.py @@ -0,0 +1,182 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Optional, Tuple, Type + +import torch +from torch import nn + +from sam2.modeling.position_encoding import PositionEmbeddingRandom + +from sam2.modeling.sam2_utils import LayerNorm2d + + +class PromptEncoder(nn.Module): + def __init__( + self, + embed_dim: int, + image_embedding_size: Tuple[int, int], + input_image_size: Tuple[int, int], + mask_in_chans: int, + activation: Type[nn.Module] = nn.GELU, + ) -> None: + """ + Encodes prompts for input to SAM's mask decoder. + + Arguments: + embed_dim (int): The prompts' embedding dimension + image_embedding_size (tuple(int, int)): The spatial size of the + image embedding, as (H, W). + input_image_size (int): The padded size of the image as input + to the image encoder, as (H, W). + mask_in_chans (int): The number of hidden channels used for + encoding input masks. + activation (nn.Module): The activation to use when encoding + input masks. + """ + super().__init__() + self.embed_dim = embed_dim + self.input_image_size = input_image_size + self.image_embedding_size = image_embedding_size + self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) + + self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners + point_embeddings = [ + nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings) + ] + self.point_embeddings = nn.ModuleList(point_embeddings) + self.not_a_point_embed = nn.Embedding(1, embed_dim) + + self.mask_input_size = ( + 4 * image_embedding_size[0], + 4 * image_embedding_size[1], + ) + self.mask_downscaling = nn.Sequential( + nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans // 4), + activation(), + nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans), + activation(), + nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), + ) + self.no_mask_embed = nn.Embedding(1, embed_dim) + + def get_dense_pe(self) -> torch.Tensor: + """ + Returns the positional encoding used to encode point prompts, + applied to a dense set of points the shape of the image encoding. + + Returns: + torch.Tensor: Positional encoding with shape + 1x(embed_dim)x(embedding_h)x(embedding_w) + """ + return self.pe_layer(self.image_embedding_size).unsqueeze(0) + + def _embed_points( + self, + points: torch.Tensor, + labels: torch.Tensor, + pad: bool, + ) -> torch.Tensor: + """Embeds point prompts.""" + points = points + 0.5 # Shift to center of pixel + if pad: + padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) + padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) + points = torch.cat([points, padding_point], dim=1) + labels = torch.cat([labels, padding_label], dim=1) + point_embedding = self.pe_layer.forward_with_coords( + points, self.input_image_size + ) + point_embedding[labels == -1] = 0.0 + point_embedding[labels == -1] += self.not_a_point_embed.weight + point_embedding[labels == 0] += self.point_embeddings[0].weight + point_embedding[labels == 1] += self.point_embeddings[1].weight + point_embedding[labels == 2] += self.point_embeddings[2].weight + point_embedding[labels == 3] += self.point_embeddings[3].weight + return point_embedding + + def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: + """Embeds box prompts.""" + boxes = boxes + 0.5 # Shift to center of pixel + coords = boxes.reshape(-1, 2, 2) + corner_embedding = self.pe_layer.forward_with_coords( + coords, self.input_image_size + ) + corner_embedding[:, 0, :] += self.point_embeddings[2].weight + corner_embedding[:, 1, :] += self.point_embeddings[3].weight + return corner_embedding + + def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: + """Embeds mask inputs.""" + mask_embedding = self.mask_downscaling(masks) + return mask_embedding + + def _get_batch_size( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> int: + """ + Gets the batch size of the output given the batch size of the input prompts. + """ + if points is not None: + return points[0].shape[0] + elif boxes is not None: + return boxes.shape[0] + elif masks is not None: + return masks.shape[0] + else: + return 1 + + def _get_device(self) -> torch.device: + return self.point_embeddings[0].weight.device + + def forward( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Embeds different types of prompts, returning both sparse and dense + embeddings. + + Arguments: + points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates + and labels to embed. + boxes (torch.Tensor or none): boxes to embed + masks (torch.Tensor or none): masks to embed + + Returns: + torch.Tensor: sparse embeddings for the points and boxes, with shape + BxNx(embed_dim), where N is determined by the number of input points + and boxes. + torch.Tensor: dense embeddings for the masks, in the shape + Bx(embed_dim)x(embed_H)x(embed_W) + """ + bs = self._get_batch_size(points, boxes, masks) + sparse_embeddings = torch.empty( + (bs, 0, self.embed_dim), device=self._get_device() + ) + if points is not None: + coords, labels = points + point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) + sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) + if boxes is not None: + box_embeddings = self._embed_boxes(boxes) + sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) + + if masks is not None: + dense_embeddings = self._embed_masks(masks) + else: + dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( + bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] + ) + + return sparse_embeddings, dense_embeddings diff --git a/modules/sam2/modeling/sam/transformer.py b/modules/sam2/modeling/sam/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..b5b6fa2f87e85a7f222fb2ba0b661734dc57a08a --- /dev/null +++ b/modules/sam2/modeling/sam/transformer.py @@ -0,0 +1,360 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import contextlib +import math +import warnings +from functools import partial +from typing import Tuple, Type + +import torch +import torch.nn.functional as F +from torch import nn, Tensor + +from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis +from sam2.modeling.sam2_utils import MLP +from sam2.utils.misc import get_sdpa_settings + +warnings.simplefilter(action="ignore", category=FutureWarning) +# Check whether Flash Attention is available (and use it by default) +OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings() +# A fallback setting to allow all available kernels if Flash Attention fails +ALLOW_ALL_KERNELS = False + + +def sdp_kernel_context(dropout_p): + """ + Get the context for the attention scaled dot-product kernel. We use Flash Attention + by default, but fall back to all available kernels if Flash Attention fails. + """ + if ALLOW_ALL_KERNELS: + return contextlib.nullcontext() + + return torch.backends.cuda.sdp_kernel( + enable_flash=USE_FLASH_ATTN, + # if Flash attention kernel is off, then math kernel needs to be enabled + enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, + enable_mem_efficient=OLD_GPU, + ) + + +class TwoWayTransformer(nn.Module): + def __init__( + self, + depth: int, + embedding_dim: int, + num_heads: int, + mlp_dim: int, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + ) -> None: + """ + A transformer decoder that attends to an input image using + queries whose positional embedding is supplied. + + Args: + depth (int): number of layers in the transformer + embedding_dim (int): the channel dimension for the input embeddings + num_heads (int): the number of heads for multihead attention. Must + divide embedding_dim + mlp_dim (int): the channel dimension internal to the MLP block + activation (nn.Module): the activation to use in the MLP block + """ + super().__init__() + self.depth = depth + self.embedding_dim = embedding_dim + self.num_heads = num_heads + self.mlp_dim = mlp_dim + self.layers = nn.ModuleList() + + for i in range(depth): + self.layers.append( + TwoWayAttentionBlock( + embedding_dim=embedding_dim, + num_heads=num_heads, + mlp_dim=mlp_dim, + activation=activation, + attention_downsample_rate=attention_downsample_rate, + skip_first_layer_pe=(i == 0), + ) + ) + + self.final_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm_final_attn = nn.LayerNorm(embedding_dim) + + def forward( + self, + image_embedding: Tensor, + image_pe: Tensor, + point_embedding: Tensor, + ) -> Tuple[Tensor, Tensor]: + """ + Args: + image_embedding (torch.Tensor): image to attend to. Should be shape + B x embedding_dim x h x w for any h and w. + image_pe (torch.Tensor): the positional encoding to add to the image. Must + have the same shape as image_embedding. + point_embedding (torch.Tensor): the embedding to add to the query points. + Must have shape B x N_points x embedding_dim for any N_points. + + Returns: + torch.Tensor: the processed point_embedding + torch.Tensor: the processed image_embedding + """ + # BxCxHxW -> BxHWxC == B x N_image_tokens x C + bs, c, h, w = image_embedding.shape + image_embedding = image_embedding.flatten(2).permute(0, 2, 1) + image_pe = image_pe.flatten(2).permute(0, 2, 1) + + # Prepare queries + queries = point_embedding + keys = image_embedding + + # Apply transformer blocks and final layernorm + for layer in self.layers: + queries, keys = layer( + queries=queries, + keys=keys, + query_pe=point_embedding, + key_pe=image_pe, + ) + + # Apply the final attention layer from the points to the image + q = queries + point_embedding + k = keys + image_pe + attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm_final_attn(queries) + + return queries, keys + + +class TwoWayAttentionBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + num_heads: int, + mlp_dim: int = 2048, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + skip_first_layer_pe: bool = False, + ) -> None: + """ + A transformer block with four layers: (1) self-attention of sparse + inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp + block on sparse inputs, and (4) cross attention of dense inputs to sparse + inputs. + + Arguments: + embedding_dim (int): the channel dimension of the embeddings + num_heads (int): the number of heads in the attention layers + mlp_dim (int): the hidden dimension of the mlp block + activation (nn.Module): the activation of the mlp block + skip_first_layer_pe (bool): skip the PE on the first layer + """ + super().__init__() + self.self_attn = Attention(embedding_dim, num_heads) + self.norm1 = nn.LayerNorm(embedding_dim) + + self.cross_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm2 = nn.LayerNorm(embedding_dim) + + self.mlp = MLP( + embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation + ) + self.norm3 = nn.LayerNorm(embedding_dim) + + self.norm4 = nn.LayerNorm(embedding_dim) + self.cross_attn_image_to_token = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + + self.skip_first_layer_pe = skip_first_layer_pe + + def forward( + self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor + ) -> Tuple[Tensor, Tensor]: + # Self attention block + if self.skip_first_layer_pe: + queries = self.self_attn(q=queries, k=queries, v=queries) + else: + q = queries + query_pe + attn_out = self.self_attn(q=q, k=q, v=queries) + queries = queries + attn_out + queries = self.norm1(queries) + + # Cross attention block, tokens attending to image embedding + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm2(queries) + + # MLP block + mlp_out = self.mlp(queries) + queries = queries + mlp_out + queries = self.norm3(queries) + + # Cross attention block, image embedding attending to tokens + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) + keys = keys + attn_out + keys = self.norm4(keys) + + return queries, keys + + +class Attention(nn.Module): + """ + An attention layer that allows for downscaling the size of the embedding + after projection to queries, keys, and values. + """ + + def __init__( + self, + embedding_dim: int, + num_heads: int, + downsample_rate: int = 1, + dropout: float = 0.0, + kv_in_dim: int = None, + ) -> None: + super().__init__() + self.embedding_dim = embedding_dim + self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim + self.internal_dim = embedding_dim // downsample_rate + self.num_heads = num_heads + assert ( + self.internal_dim % num_heads == 0 + ), "num_heads must divide embedding_dim." + + self.q_proj = nn.Linear(embedding_dim, self.internal_dim) + self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) + self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) + self.out_proj = nn.Linear(self.internal_dim, embedding_dim) + + self.dropout_p = dropout + + def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: + b, n, c = x.shape + x = x.reshape(b, n, num_heads, c // num_heads) + return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head + + def _recombine_heads(self, x: Tensor) -> Tensor: + b, n_heads, n_tokens, c_per_head = x.shape + x = x.transpose(1, 2) + return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C + + def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: + # Input projections + q = self.q_proj(q) + k = self.k_proj(k) + v = self.v_proj(v) + + # Separate into heads + q = self._separate_heads(q, self.num_heads) + k = self._separate_heads(k, self.num_heads) + v = self._separate_heads(v, self.num_heads) + + dropout_p = self.dropout_p if self.training else 0.0 + # Attention + try: + with sdp_kernel_context(dropout_p): + out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) + except Exception as e: + # Fall back to all kernels if the Flash attention kernel fails + warnings.warn( + f"Flash Attention kernel failed due to: {e}\nFalling back to all available " + f"kernels for scaled_dot_product_attention (which may have a slower speed).", + category=UserWarning, + stacklevel=2, + ) + global ALLOW_ALL_KERNELS + ALLOW_ALL_KERNELS = True + out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) + + out = self._recombine_heads(out) + out = self.out_proj(out) + + return out + + +class RoPEAttention(Attention): + """Attention with rotary position encoding.""" + + def __init__( + self, + *args, + rope_theta=10000.0, + # whether to repeat q rope to match k length + # this is needed for cross-attention to memories + rope_k_repeat=False, + feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution + **kwargs, + ): + super().__init__(*args, **kwargs) + + self.compute_cis = partial( + compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta + ) + freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1]) + self.freqs_cis = freqs_cis + self.rope_k_repeat = rope_k_repeat + + def forward( + self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0 + ) -> Tensor: + # Input projections + q = self.q_proj(q) + k = self.k_proj(k) + v = self.v_proj(v) + + # Separate into heads + q = self._separate_heads(q, self.num_heads) + k = self._separate_heads(k, self.num_heads) + v = self._separate_heads(v, self.num_heads) + + # Apply rotary position encoding + w = h = math.sqrt(q.shape[-2]) + self.freqs_cis = self.freqs_cis.to(q.device) + if self.freqs_cis.shape[0] != q.shape[-2]: + self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device) + if q.shape[-2] != k.shape[-2]: + assert self.rope_k_repeat + + num_k_rope = k.size(-2) - num_k_exclude_rope + q, k[:, :, :num_k_rope] = apply_rotary_enc( + q, + k[:, :, :num_k_rope], + freqs_cis=self.freqs_cis, + repeat_freqs_k=self.rope_k_repeat, + ) + + dropout_p = self.dropout_p if self.training else 0.0 + # Attention + try: + with sdp_kernel_context(dropout_p): + out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) + except Exception as e: + # Fall back to all kernels if the Flash attention kernel fails + warnings.warn( + f"Flash Attention kernel failed due to: {e}\nFalling back to all available " + f"kernels for scaled_dot_product_attention (which may have a slower speed).", + category=UserWarning, + stacklevel=2, + ) + global ALLOW_ALL_KERNELS + ALLOW_ALL_KERNELS = True + out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) + + out = self._recombine_heads(out) + out = self.out_proj(out) + + return out diff --git a/modules/sam2/modeling/sam2_base.py b/modules/sam2/modeling/sam2_base.py new file mode 100644 index 0000000000000000000000000000000000000000..a5d243adc9d7071f254dee115f92ff03d3b6e871 --- /dev/null +++ b/modules/sam2/modeling/sam2_base.py @@ -0,0 +1,907 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.distributed +import torch.nn.functional as F + +from torch.nn.init import trunc_normal_ + +from sam2.modeling.sam.mask_decoder import MaskDecoder +from sam2.modeling.sam.prompt_encoder import PromptEncoder +from sam2.modeling.sam.transformer import TwoWayTransformer +from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames + +# a large negative value as a placeholder score for missing objects +NO_OBJ_SCORE = -1024.0 + + +class SAM2Base(torch.nn.Module): + def __init__( + self, + image_encoder, + memory_attention, + memory_encoder, + num_maskmem=7, # default 1 input frame + 6 previous frames + image_size=512, + backbone_stride=16, # stride of the image backbone output + sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob + sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob + # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks + binarize_mask_from_pts_for_mem_enc=False, + use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder + # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit, + # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model + # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM. + max_cond_frames_in_attn=-1, + # on the first frame, whether to directly add the no-memory embedding to the image feature + # (instead of using the transformer encoder) + directly_add_no_mem_embed=False, + # whether to use high-resolution feature maps in the SAM mask decoder + use_high_res_features_in_sam=False, + # whether to output multiple (3) masks for the first click on initial conditioning frames + multimask_output_in_sam=False, + # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`; + # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points) + multimask_min_pt_num=1, + multimask_max_pt_num=1, + # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`) + multimask_output_for_tracking=False, + # Whether to use multimask tokens for obj ptr; Only relevant when both + # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True + use_multimask_token_for_obj_ptr: bool = False, + # whether to use sigmoid to restrict ious prediction to [0-1] + iou_prediction_use_sigmoid=False, + # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5). + # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of + # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame. + memory_temporal_stride_for_eval=1, + # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks) + non_overlap_masks_for_mem_enc=False, + # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder=False, + # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`) + max_obj_ptrs_in_encoder=16, + # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`) + add_tpos_enc_to_obj_ptrs=True, + # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference + # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`) + proj_tpos_enc_in_obj_ptrs=False, + # whether to use signed distance (instead of unsigned absolute distance) in the temporal positional encoding in the object pointers + # (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`) + use_signed_tpos_enc_to_obj_ptrs=False, + # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation + # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking) + only_obj_ptrs_in_the_past_for_eval=False, + # Whether to predict if there is an object in the frame + pred_obj_scores: bool = False, + # Whether to use an MLP to predict object scores + pred_obj_scores_mlp: bool = False, + # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True; + # Whether to have a fixed no obj pointer when there is no object present + # or to use it as an additive embedding with obj_ptr produced by decoder + fixed_no_obj_ptr: bool = False, + # Soft no object, i.e. mix in no_obj_ptr softly, + # hope to make recovery easier if there is a mistake and mitigate accumulation of errors + soft_no_obj_ptr: bool = False, + use_mlp_for_obj_ptr_proj: bool = False, + # add no obj embedding to spatial frames + no_obj_embed_spatial: bool = False, + # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class. + sam_mask_decoder_extra_args=None, + compile_image_encoder: bool = False, + ): + super().__init__() + + # Part 1: the image backbone + self.image_encoder = image_encoder + # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting + self.use_high_res_features_in_sam = use_high_res_features_in_sam + self.num_feature_levels = 3 if use_high_res_features_in_sam else 1 + self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder + self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder + if use_obj_ptrs_in_encoder: + # A conv layer to downsample the mask prompt to stride 4 (the same stride as + # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale, + # so that it can be fed into the SAM mask decoder to generate a pointer. + self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4) + self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs + if proj_tpos_enc_in_obj_ptrs: + assert add_tpos_enc_to_obj_ptrs # these options need to be used together + self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs + self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs + self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval + + # Part 2: memory attention to condition current frame's visual features + # with memories (and obj ptrs) from past frames + self.memory_attention = memory_attention + self.hidden_dim = image_encoder.neck.d_model + + # Part 3: memory encoder for the previous frame's outputs + self.memory_encoder = memory_encoder + self.mem_dim = self.hidden_dim + if hasattr(self.memory_encoder, "out_proj") and hasattr( + self.memory_encoder.out_proj, "weight" + ): + # if there is compression of memories along channel dim + self.mem_dim = self.memory_encoder.out_proj.weight.shape[0] + self.num_maskmem = num_maskmem # Number of memories accessible + # Temporal encoding of the memories + self.maskmem_tpos_enc = torch.nn.Parameter( + torch.zeros(num_maskmem, 1, 1, self.mem_dim) + ) + trunc_normal_(self.maskmem_tpos_enc, std=0.02) + # a single token to indicate no memory embedding from previous frames + self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) + self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) + trunc_normal_(self.no_mem_embed, std=0.02) + trunc_normal_(self.no_mem_pos_enc, std=0.02) + self.directly_add_no_mem_embed = directly_add_no_mem_embed + # Apply sigmoid to the output raw mask logits (to turn them from + # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder + self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc + self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc + self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc + self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc + self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval + # On frames with mask input, whether to directly output the input mask without + # using a SAM prompt encoder + mask decoder + self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam + self.multimask_output_in_sam = multimask_output_in_sam + self.multimask_min_pt_num = multimask_min_pt_num + self.multimask_max_pt_num = multimask_max_pt_num + self.multimask_output_for_tracking = multimask_output_for_tracking + self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr + self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid + + # Part 4: SAM-style prompt encoder (for both mask and point inputs) + # and SAM-style mask decoder for the final mask output + self.image_size = image_size + self.backbone_stride = backbone_stride + self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args + self.pred_obj_scores = pred_obj_scores + self.pred_obj_scores_mlp = pred_obj_scores_mlp + self.fixed_no_obj_ptr = fixed_no_obj_ptr + self.soft_no_obj_ptr = soft_no_obj_ptr + if self.fixed_no_obj_ptr: + assert self.pred_obj_scores + assert self.use_obj_ptrs_in_encoder + if self.pred_obj_scores and self.use_obj_ptrs_in_encoder: + self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim)) + trunc_normal_(self.no_obj_ptr, std=0.02) + self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj + self.no_obj_embed_spatial = None + if no_obj_embed_spatial: + self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim)) + trunc_normal_(self.no_obj_embed_spatial, std=0.02) + + self._build_sam_heads() + self.max_cond_frames_in_attn = max_cond_frames_in_attn + + # Model compilation + if compile_image_encoder: + # Compile the forward function (not the full module) to allow loading checkpoints. + print( + "Image encoder compilation is enabled. First forward pass will be slow." + ) + self.image_encoder.forward = torch.compile( + self.image_encoder.forward, + mode="max-autotune", + fullgraph=True, + dynamic=False, + ) + + @property + def device(self): + return next(self.parameters()).device + + def forward(self, *args, **kwargs): + raise NotImplementedError( + "Please use the corresponding methods in SAM2VideoPredictor for inference or SAM2Train for training/fine-tuning" + "See notebooks/video_predictor_example.ipynb for an inference example." + ) + + def _build_sam_heads(self): + """Build SAM-style prompt encoder and mask decoder.""" + self.sam_prompt_embed_dim = self.hidden_dim + self.sam_image_embedding_size = self.image_size // self.backbone_stride + + # build PromptEncoder and MaskDecoder from SAM + # (their hyperparameters like `mask_in_chans=16` are from SAM code) + self.sam_prompt_encoder = PromptEncoder( + embed_dim=self.sam_prompt_embed_dim, + image_embedding_size=( + self.sam_image_embedding_size, + self.sam_image_embedding_size, + ), + input_image_size=(self.image_size, self.image_size), + mask_in_chans=16, + ) + self.sam_mask_decoder = MaskDecoder( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=self.sam_prompt_embed_dim, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=self.sam_prompt_embed_dim, + iou_head_depth=3, + iou_head_hidden_dim=256, + use_high_res_features=self.use_high_res_features_in_sam, + iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, + pred_obj_scores=self.pred_obj_scores, + pred_obj_scores_mlp=self.pred_obj_scores_mlp, + use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, + **(self.sam_mask_decoder_extra_args or {}), + ) + if self.use_obj_ptrs_in_encoder: + # a linear projection on SAM output tokens to turn them into object pointers + self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim) + if self.use_mlp_for_obj_ptr_proj: + self.obj_ptr_proj = MLP( + self.hidden_dim, self.hidden_dim, self.hidden_dim, 3 + ) + else: + self.obj_ptr_proj = torch.nn.Identity() + if self.proj_tpos_enc_in_obj_ptrs: + # a linear projection on temporal positional encoding in object pointers to + # avoid potential interference with spatial positional encoding + self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim) + else: + self.obj_ptr_tpos_proj = torch.nn.Identity() + + def _forward_sam_heads( + self, + backbone_features, + point_inputs=None, + mask_inputs=None, + high_res_features=None, + multimask_output=False, + ): + """ + Forward SAM prompt encoders and mask heads. + + Inputs: + - backbone_features: image features of [B, C, H, W] shape + - point_inputs: a dictionary with "point_coords" and "point_labels", where + 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the + absolute pixel-unit coordinate in (x, y) format of the P input points + 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means + positive clicks, 0 means negative clicks, and -1 means padding + - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the + same spatial size as the image. + - high_res_features: either 1) None or 2) or a list of length 2 containing + two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively, + which will be used as high-resolution feature maps for SAM decoder. + - multimask_output: if it's True, we output 3 candidate masks and their 3 + corresponding IoU estimates, and if it's False, we output only 1 mask and + its corresponding IoU estimate. + + Outputs: + - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if + `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM + output mask logits (before sigmoid) for the low-resolution masks, with 4x + the resolution (1/4 stride) of the input backbone_features. + - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3 + if `multimask_output=True` and M = 1 if `multimask_output=False`), + upsampled from the low-resolution masks, with shape size as the image + (stride is 1 pixel). + - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1 + if `multimask_output=False`), the estimated IoU of each output mask. + - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`. + If `multimask_output=True`, it's the mask with the highest IoU estimate. + If `multimask_output=False`, it's the same as `low_res_multimasks`. + - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`. + If `multimask_output=True`, it's the mask with the highest IoU estimate. + If `multimask_output=False`, it's the same as `high_res_multimasks`. + - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted + based on the output token from the SAM mask decoder. + """ + B = backbone_features.size(0) + device = backbone_features.device + assert backbone_features.size(1) == self.sam_prompt_embed_dim + assert backbone_features.size(2) == self.sam_image_embedding_size + assert backbone_features.size(3) == self.sam_image_embedding_size + + # a) Handle point prompts + if point_inputs is not None: + sam_point_coords = point_inputs["point_coords"] + sam_point_labels = point_inputs["point_labels"] + assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B + else: + # If no points are provide, pad with an empty point (with label -1) + sam_point_coords = torch.zeros(B, 1, 2, device=device) + sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) + + # b) Handle mask prompts + if mask_inputs is not None: + # If mask_inputs is provided, downsize it into low-res mask input if needed + # and feed it as a dense mask prompt into the SAM mask encoder + assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) + if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: + sam_mask_prompt = F.interpolate( + mask_inputs.float(), + size=self.sam_prompt_encoder.mask_input_size, + align_corners=False, + mode="bilinear", + antialias=True, # use antialias for downsampling + ) + else: + sam_mask_prompt = mask_inputs + else: + # Otherwise, simply feed None (and SAM's prompt encoder will add + # a learned `no_mask_embed` to indicate no mask input in this case). + sam_mask_prompt = None + + sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( + points=(sam_point_coords, sam_point_labels), + boxes=None, + masks=sam_mask_prompt, + ) + ( + low_res_multimasks, + ious, + sam_output_tokens, + object_score_logits, + ) = self.sam_mask_decoder( + image_embeddings=backbone_features, + image_pe=self.sam_prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + repeat_image=False, # the image is already batched + high_res_features=high_res_features, + ) + if self.pred_obj_scores: + is_obj_appearing = object_score_logits > 0 + + # Mask used for spatial memories is always a *hard* choice between obj and no obj, + # consistent with the actual mask prediction + low_res_multimasks = torch.where( + is_obj_appearing[:, None, None], + low_res_multimasks, + NO_OBJ_SCORE, + ) + + # convert masks from possibly bfloat16 (or float16) to float32 + # (older PyTorch versions before 2.1 don't support `interpolate` on bf16) + low_res_multimasks = low_res_multimasks.float() + high_res_multimasks = F.interpolate( + low_res_multimasks, + size=(self.image_size, self.image_size), + mode="bilinear", + align_corners=False, + ) + + sam_output_token = sam_output_tokens[:, 0] + if multimask_output: + # take the best mask prediction (with the highest IoU estimation) + best_iou_inds = torch.argmax(ious, dim=-1) + batch_inds = torch.arange(B, device=device) + low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) + high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) + if sam_output_tokens.size(1) > 1: + sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] + else: + low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks + + # Extract object pointer from the SAM output token (with occlusion handling) + obj_ptr = self.obj_ptr_proj(sam_output_token) + if self.pred_obj_scores: + # Allow *soft* no obj ptr, unlike for masks + if self.soft_no_obj_ptr: + lambda_is_obj_appearing = object_score_logits.sigmoid() + else: + lambda_is_obj_appearing = is_obj_appearing.float() + + if self.fixed_no_obj_ptr: + obj_ptr = lambda_is_obj_appearing * obj_ptr + obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr + + return ( + low_res_multimasks, + high_res_multimasks, + ious, + low_res_masks, + high_res_masks, + obj_ptr, + object_score_logits, + ) + + def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs): + """ + Directly turn binary `mask_inputs` into a output mask logits without using SAM. + (same input and output shapes as in _forward_sam_heads above). + """ + # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid). + out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05 + mask_inputs_float = mask_inputs.float() + high_res_masks = mask_inputs_float * out_scale + out_bias + low_res_masks = F.interpolate( + high_res_masks, + size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), + align_corners=False, + mode="bilinear", + antialias=True, # use antialias for downsampling + ) + # a dummy IoU prediction of all 1's under mask input + ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float() + if not self.use_obj_ptrs_in_encoder: + # all zeros as a dummy object pointer (of shape [B, C]) + obj_ptr = torch.zeros( + mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device + ) + else: + # produce an object pointer using the SAM decoder from the mask input + _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads( + backbone_features=backbone_features, + mask_inputs=self.mask_downsample(mask_inputs_float), + high_res_features=high_res_features, + ) + # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem; + # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying + # on the object_scores from the SAM decoder. + is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1) + is_obj_appearing = is_obj_appearing[..., None] + lambda_is_obj_appearing = is_obj_appearing.float() + object_score_logits = out_scale * lambda_is_obj_appearing + out_bias + if self.pred_obj_scores: + if self.fixed_no_obj_ptr: + obj_ptr = lambda_is_obj_appearing * obj_ptr + obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr + + return ( + low_res_masks, + high_res_masks, + ious, + low_res_masks, + high_res_masks, + obj_ptr, + object_score_logits, + ) + + def forward_image(self, img_batch: torch.Tensor): + """Get the image feature on the input batch.""" + backbone_out = self.image_encoder(img_batch) + if self.use_high_res_features_in_sam: + # precompute projected level 0 and level 1 features in SAM decoder + # to avoid running it again on every SAM click + backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0( + backbone_out["backbone_fpn"][0] + ) + backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1( + backbone_out["backbone_fpn"][1] + ) + return backbone_out + + def _prepare_backbone_features(self, backbone_out): + """Prepare and flatten visual features.""" + backbone_out = backbone_out.copy() + assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"]) + assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels + + feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :] + vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :] + + feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds] + # flatten NxCxHxW to HWxNxC + vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps] + vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds] + + return backbone_out, vision_feats, vision_pos_embeds, feat_sizes + + def _prepare_memory_conditioned_features( + self, + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + output_dict, + num_frames, + track_in_reverse=False, # tracking in reverse time order (for demo usage) + ): + """Fuse the current frame's visual feature map with previous memory.""" + B = current_vision_feats[-1].size(1) # batch size on this frame + C = self.hidden_dim + H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size + device = current_vision_feats[-1].device + # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images. + # In this case, we skip the fusion with any memory. + if self.num_maskmem == 0: # Disable memory and skip fusion + pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) + return pix_feat + + num_obj_ptr_tokens = 0 + tpos_sign_mul = -1 if track_in_reverse else 1 + # Step 1: condition the visual features of the current frame on previous memories + if not is_init_cond_frame: + # Retrieve the memories encoded with the maskmem backbone + to_cat_memory, to_cat_memory_pos_embed = [], [] + # Add conditioning frames's output first (all cond frames have t_pos=0 for + # when getting temporal positional embedding below) + assert len(output_dict["cond_frame_outputs"]) > 0 + # Select a maximum number of temporally closest cond frames for cross attention + cond_outputs = output_dict["cond_frame_outputs"] + selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames( + frame_idx, cond_outputs, self.max_cond_frames_in_attn + ) + t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()] + # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory + # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1 + # We also allow taking the memory frame non-consecutively (with stride>1), in which case + # we take (self.num_maskmem - 2) frames among every stride-th frames plus the last frame. + stride = 1 if self.training else self.memory_temporal_stride_for_eval + for t_pos in range(1, self.num_maskmem): + t_rel = self.num_maskmem - t_pos # how many frames before current frame + if t_rel == 1: + # for t_rel == 1, we take the last frame (regardless of r) + if not track_in_reverse: + # the frame immediately before this frame (i.e. frame_idx - 1) + prev_frame_idx = frame_idx - t_rel + else: + # the frame immediately after this frame (i.e. frame_idx + 1) + prev_frame_idx = frame_idx + t_rel + else: + # for t_rel >= 2, we take the memory frame from every r-th frames + if not track_in_reverse: + # first find the nearest frame among every r-th frames before this frame + # for r=1, this would be (frame_idx - 2) + prev_frame_idx = ((frame_idx - 2) // stride) * stride + # then seek further among every r-th frames + prev_frame_idx = prev_frame_idx - (t_rel - 2) * stride + else: + # first find the nearest frame among every r-th frames after this frame + # for r=1, this would be (frame_idx + 2) + prev_frame_idx = -(-(frame_idx + 2) // stride) * stride + # then seek further among every r-th frames + prev_frame_idx = prev_frame_idx + (t_rel - 2) * stride + out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None) + if out is None: + # If an unselected conditioning frame is among the last (self.num_maskmem - 1) + # frames, we still attend to it as if it's a non-conditioning frame. + out = unselected_cond_outputs.get(prev_frame_idx, None) + t_pos_and_prevs.append((t_pos, out)) + + for t_pos, prev in t_pos_and_prevs: + if prev is None: + continue # skip padding frames + # "maskmem_features" might have been offloaded to CPU in demo use cases, + # so we load it back to GPU (it's a no-op if it's already on GPU). + feats = prev["maskmem_features"].to(device, non_blocking=True) + to_cat_memory.append(feats.flatten(2).permute(2, 0, 1)) + # Spatial positional encoding (it might have been offloaded to CPU in eval) + maskmem_enc = prev["maskmem_pos_enc"][-1].to(device) + maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1) + # Temporal positional encoding + maskmem_enc = ( + maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1] + ) + to_cat_memory_pos_embed.append(maskmem_enc) + + # Construct the list of past object pointers + if self.use_obj_ptrs_in_encoder: + max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder) + # First add those object pointers from selected conditioning frames + # (optionally, only include object pointers in the past during evaluation) + if not self.training and self.only_obj_ptrs_in_the_past_for_eval: + ptr_cond_outputs = { + t: out + for t, out in selected_cond_outputs.items() + if (t >= frame_idx if track_in_reverse else t <= frame_idx) + } + else: + ptr_cond_outputs = selected_cond_outputs + pos_and_ptrs = [ + # Temporal pos encoding contains how far away each pointer is from current frame + ( + ( + (frame_idx - t) * tpos_sign_mul + if self.use_signed_tpos_enc_to_obj_ptrs + else abs(frame_idx - t) + ), + out["obj_ptr"], + ) + for t, out in ptr_cond_outputs.items() + ] + # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame + for t_diff in range(1, max_obj_ptrs_in_encoder): + t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff + if t < 0 or (num_frames is not None and t >= num_frames): + break + out = output_dict["non_cond_frame_outputs"].get( + t, unselected_cond_outputs.get(t, None) + ) + if out is not None: + pos_and_ptrs.append((t_diff, out["obj_ptr"])) + # If we have at least one object pointer, add them to the across attention + if len(pos_and_ptrs) > 0: + pos_list, ptrs_list = zip(*pos_and_ptrs) + # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape + obj_ptrs = torch.stack(ptrs_list, dim=0) + # a temporal positional embedding based on how far each object pointer is from + # the current frame (sine embedding normalized by the max pointer num). + if self.add_tpos_enc_to_obj_ptrs: + t_diff_max = max_obj_ptrs_in_encoder - 1 + tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim + obj_pos = torch.tensor(pos_list, device=device) + obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim) + obj_pos = self.obj_ptr_tpos_proj(obj_pos) + obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim) + else: + obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim) + if self.mem_dim < C: + # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C + obj_ptrs = obj_ptrs.reshape( + -1, B, C // self.mem_dim, self.mem_dim + ) + obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1) + obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0) + to_cat_memory.append(obj_ptrs) + to_cat_memory_pos_embed.append(obj_pos) + num_obj_ptr_tokens = obj_ptrs.shape[0] + else: + num_obj_ptr_tokens = 0 + else: + # for initial conditioning frames, encode them without using any previous memory + if self.directly_add_no_mem_embed: + # directly add no-mem embedding (instead of using the transformer encoder) + pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed + pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) + return pix_feat_with_mem + + # Use a dummy token on the first frame (to avoid empty memory input to tranformer encoder) + to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)] + to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)] + + # Step 2: Concatenate the memories and forward through the transformer encoder + memory = torch.cat(to_cat_memory, dim=0) + memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0) + + pix_feat_with_mem = self.memory_attention( + curr=current_vision_feats, + curr_pos=current_vision_pos_embeds, + memory=memory, + memory_pos=memory_pos_embed, + num_obj_ptr_tokens=num_obj_ptr_tokens, + ) + # reshape the output (HW)BC => BCHW + pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) + return pix_feat_with_mem + + def _encode_new_memory( + self, + current_vision_feats, + feat_sizes, + pred_masks_high_res, + object_score_logits, + is_mask_from_pts, + ): + """Encode the current image and its prediction into a memory feature.""" + B = current_vision_feats[-1].size(1) # batch size on this frame + C = self.hidden_dim + H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size + # top-level feature, (HW)BC => BCHW + pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) + if self.non_overlap_masks_for_mem_enc and not self.training: + # optionally, apply non-overlapping constraints to the masks (it's applied + # in the batch dimension and should only be used during eval, where all + # the objects come from the same video under batch size 1). + pred_masks_high_res = self._apply_non_overlapping_constraints( + pred_masks_high_res + ) + # scale the raw mask logits with a temperature before applying sigmoid + binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts + if binarize and not self.training: + mask_for_mem = (pred_masks_high_res > 0).float() + else: + # apply sigmoid on the raw mask logits to turn them into range (0, 1) + mask_for_mem = torch.sigmoid(pred_masks_high_res) + # apply scale and bias terms to the sigmoid probabilities + if self.sigmoid_scale_for_mem_enc != 1.0: + mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc + if self.sigmoid_bias_for_mem_enc != 0.0: + mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc + maskmem_out = self.memory_encoder( + pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied + ) + maskmem_features = maskmem_out["vision_features"] + maskmem_pos_enc = maskmem_out["vision_pos_enc"] + # add a no-object embedding to the spatial memory to indicate that the frame + # is predicted to be occluded (i.e. no object is appearing in the frame) + if self.no_obj_embed_spatial is not None: + is_obj_appearing = (object_score_logits > 0).float() + maskmem_features += ( + 1 - is_obj_appearing[..., None, None] + ) * self.no_obj_embed_spatial[..., None, None].expand( + *maskmem_features.shape + ) + + return maskmem_features, maskmem_pos_enc + + def _track_step( + self, + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + point_inputs, + mask_inputs, + output_dict, + num_frames, + track_in_reverse, + prev_sam_mask_logits, + ): + current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} + # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW + if len(current_vision_feats) > 1: + high_res_features = [ + x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) + for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1]) + ] + else: + high_res_features = None + if mask_inputs is not None and self.use_mask_input_as_output_without_sam: + # When use_mask_input_as_output_without_sam=True, we directly output the mask input + # (see it as a GT mask) without using a SAM prompt encoder + mask decoder. + pix_feat = current_vision_feats[-1].permute(1, 2, 0) + pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) + sam_outputs = self._use_mask_as_output( + pix_feat, high_res_features, mask_inputs + ) + else: + # fused the visual feature with previous memory features in the memory bank + pix_feat = self._prepare_memory_conditioned_features( + frame_idx=frame_idx, + is_init_cond_frame=is_init_cond_frame, + current_vision_feats=current_vision_feats[-1:], + current_vision_pos_embeds=current_vision_pos_embeds[-1:], + feat_sizes=feat_sizes[-1:], + output_dict=output_dict, + num_frames=num_frames, + track_in_reverse=track_in_reverse, + ) + # apply SAM-style segmentation head + # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder, + # e.g. in demo where such logits come from earlier interaction instead of correction sampling + # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead) + if prev_sam_mask_logits is not None: + assert point_inputs is not None and mask_inputs is None + mask_inputs = prev_sam_mask_logits + multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) + sam_outputs = self._forward_sam_heads( + backbone_features=pix_feat, + point_inputs=point_inputs, + mask_inputs=mask_inputs, + high_res_features=high_res_features, + multimask_output=multimask_output, + ) + + return current_out, sam_outputs, high_res_features, pix_feat + + def _encode_memory_in_output( + self, + current_vision_feats, + feat_sizes, + point_inputs, + run_mem_encoder, + high_res_masks, + object_score_logits, + current_out, + ): + if run_mem_encoder and self.num_maskmem > 0: + high_res_masks_for_mem_enc = high_res_masks + maskmem_features, maskmem_pos_enc = self._encode_new_memory( + current_vision_feats=current_vision_feats, + feat_sizes=feat_sizes, + pred_masks_high_res=high_res_masks_for_mem_enc, + object_score_logits=object_score_logits, + is_mask_from_pts=(point_inputs is not None), + ) + current_out["maskmem_features"] = maskmem_features + current_out["maskmem_pos_enc"] = maskmem_pos_enc + else: + current_out["maskmem_features"] = None + current_out["maskmem_pos_enc"] = None + + def track_step( + self, + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + point_inputs, + mask_inputs, + output_dict, + num_frames, + track_in_reverse=False, # tracking in reverse time order (for demo usage) + # Whether to run the memory encoder on the predicted masks. Sometimes we might want + # to skip the memory encoder with `run_mem_encoder=False`. For example, + # in demo we might call `track_step` multiple times for each user click, + # and only encode the memory when the user finalizes their clicks. And in ablation + # settings like SAM training on static images, we don't need the memory encoder. + run_mem_encoder=True, + # The previously predicted SAM mask logits (which can be fed together with new clicks in demo). + prev_sam_mask_logits=None, + ): + current_out, sam_outputs, _, _ = self._track_step( + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + point_inputs, + mask_inputs, + output_dict, + num_frames, + track_in_reverse, + prev_sam_mask_logits, + ) + + ( + _, + _, + _, + low_res_masks, + high_res_masks, + obj_ptr, + object_score_logits, + ) = sam_outputs + + current_out["pred_masks"] = low_res_masks + current_out["pred_masks_high_res"] = high_res_masks + current_out["obj_ptr"] = obj_ptr + if not self.training: + # Only add this in inference (to avoid unused param in activation checkpointing; + # it's mainly used in the demo to encode spatial memories w/ consolidated masks) + current_out["object_score_logits"] = object_score_logits + + # Finally run the memory encoder on the predicted mask to encode + # it into a new memory feature (that can be used in future frames) + self._encode_memory_in_output( + current_vision_feats, + feat_sizes, + point_inputs, + run_mem_encoder, + high_res_masks, + object_score_logits, + current_out, + ) + + return current_out + + def _use_multimask(self, is_init_cond_frame, point_inputs): + """Whether to use multimask output in the SAM head.""" + num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1) + multimask_output = ( + self.multimask_output_in_sam + and (is_init_cond_frame or self.multimask_output_for_tracking) + and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num) + ) + return multimask_output + + def _apply_non_overlapping_constraints(self, pred_masks): + """ + Apply non-overlapping constraints to the object scores in pred_masks. Here we + keep only the highest scoring object at each spatial location in pred_masks. + """ + batch_size = pred_masks.size(0) + if batch_size == 1: + return pred_masks + + device = pred_masks.device + # "max_obj_inds": object index of the object with the highest score at each location + max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True) + # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks` + batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None] + keep = max_obj_inds == batch_obj_inds + # suppress overlapping regions' scores below -10.0 so that the foreground regions + # don't overlap (here sigmoid(-10.0)=4.5398e-05) + pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0)) + return pred_masks diff --git a/modules/sam2/modeling/sam2_utils.py b/modules/sam2/modeling/sam2_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..e16caae3a9a49e451b2d03d1ee60c47f8e9ed23c --- /dev/null +++ b/modules/sam2/modeling/sam2_utils.py @@ -0,0 +1,323 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + + +import copy +from typing import Tuple + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +from sam2.utils.misc import mask_to_box + + +def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): + """ + Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs` + that are temporally closest to the current frame at `frame_idx`. Here, we take + - a) the closest conditioning frame before `frame_idx` (if any); + - b) the closest conditioning frame after `frame_idx` (if any); + - c) any other temporally closest conditioning frames until reaching a total + of `max_cond_frame_num` conditioning frames. + + Outputs: + - selected_outputs: selected items (keys & values) from `cond_frame_outputs`. + - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`. + """ + if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: + selected_outputs = cond_frame_outputs + unselected_outputs = {} + else: + assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames" + selected_outputs = {} + + # the closest conditioning frame before `frame_idx` (if any) + idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) + if idx_before is not None: + selected_outputs[idx_before] = cond_frame_outputs[idx_before] + + # the closest conditioning frame after `frame_idx` (if any) + idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) + if idx_after is not None: + selected_outputs[idx_after] = cond_frame_outputs[idx_after] + + # add other temporally closest conditioning frames until reaching a total + # of `max_cond_frame_num` conditioning frames. + num_remain = max_cond_frame_num - len(selected_outputs) + inds_remain = sorted( + (t for t in cond_frame_outputs if t not in selected_outputs), + key=lambda x: abs(x - frame_idx), + )[:num_remain] + selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain) + unselected_outputs = { + t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs + } + + return selected_outputs, unselected_outputs + + +def get_1d_sine_pe(pos_inds, dim, temperature=10000): + """ + Get 1D sine positional embedding as in the original Transformer paper. + """ + pe_dim = dim // 2 + dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) + dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) + + pos_embed = pos_inds.unsqueeze(-1) / dim_t + pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) + return pos_embed + + +def get_activation_fn(activation): + """Return an activation function given a string""" + if activation == "relu": + return F.relu + if activation == "gelu": + return F.gelu + if activation == "glu": + return F.glu + raise RuntimeError(f"activation should be relu/gelu, not {activation}.") + + +def get_clones(module, N): + return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) + + +class DropPath(nn.Module): + # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py + def __init__(self, drop_prob=0.0, scale_by_keep=True): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + self.scale_by_keep = scale_by_keep + + def forward(self, x): + if self.drop_prob == 0.0 or not self.training: + return x + keep_prob = 1 - self.drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and self.scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + + +# Lightly adapted from +# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa +class MLP(nn.Module): + def __init__( + self, + input_dim: int, + hidden_dim: int, + output_dim: int, + num_layers: int, + activation: nn.Module = nn.ReLU, + sigmoid_output: bool = False, + ) -> None: + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList( + nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) + ) + self.sigmoid_output = sigmoid_output + self.act = activation() + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) + if self.sigmoid_output: + x = F.sigmoid(x) + return x + + +# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa +# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa +class LayerNorm2d(nn.Module): + def __init__(self, num_channels: int, eps: float = 1e-6) -> None: + super().__init__() + self.weight = nn.Parameter(torch.ones(num_channels)) + self.bias = nn.Parameter(torch.zeros(num_channels)) + self.eps = eps + + def forward(self, x: torch.Tensor) -> torch.Tensor: + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x + + +def sample_box_points( + masks: torch.Tensor, + noise: float = 0.1, # SAM default + noise_bound: int = 20, # SAM default + top_left_label: int = 2, + bottom_right_label: int = 3, +) -> Tuple[np.array, np.array]: + """ + Sample a noised version of the top left and bottom right corners of a given `bbox` + + Inputs: + - masks: [B, 1, H,W] boxes, dtype=torch.Tensor + - noise: noise as a fraction of box width and height, dtype=float + - noise_bound: maximum amount of noise (in pure pixesl), dtype=int + + Returns: + - box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float + - box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32 + """ + device = masks.device + box_coords = mask_to_box(masks) + B, _, H, W = masks.shape + box_labels = torch.tensor( + [top_left_label, bottom_right_label], dtype=torch.int, device=device + ).repeat(B) + if noise > 0.0: + if not isinstance(noise_bound, torch.Tensor): + noise_bound = torch.tensor(noise_bound, device=device) + bbox_w = box_coords[..., 2] - box_coords[..., 0] + bbox_h = box_coords[..., 3] - box_coords[..., 1] + max_dx = torch.min(bbox_w * noise, noise_bound) + max_dy = torch.min(bbox_h * noise, noise_bound) + box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1 + box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1) + + box_coords = box_coords + box_noise + img_bounds = ( + torch.tensor([W, H, W, H], device=device) - 1 + ) # uncentered pixel coords + box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds) # In place clamping + + box_coords = box_coords.reshape(-1, 2, 2) # always 2 points + box_labels = box_labels.reshape(-1, 2) + return box_coords, box_labels + + +def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1): + """ + Sample `num_pt` random points (along with their labels) independently from the error regions. + + Inputs: + - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool + - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None + - num_pt: int, number of points to sample independently for each of the B error maps + + Outputs: + - points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point + - labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means + negative clicks + """ + if pred_masks is None: # if pred_masks is not provided, treat it as empty + pred_masks = torch.zeros_like(gt_masks) + assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1 + assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape + assert num_pt >= 0 + + B, _, H_im, W_im = gt_masks.shape + device = gt_masks.device + + # false positive region, a new point sampled in this region should have + # negative label to correct the FP error + fp_masks = ~gt_masks & pred_masks + # false negative region, a new point sampled in this region should have + # positive label to correct the FN error + fn_masks = gt_masks & ~pred_masks + # whether the prediction completely match the ground-truth on each mask + all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2) + all_correct = all_correct[..., None, None] + + # channel 0 is FP map, while channel 1 is FN map + pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device) + # sample a negative new click from FP region or a positive new click + # from FN region, depend on where the maximum falls, + # and in case the predictions are all correct (no FP or FN), we just + # sample a negative click from the background region + pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks) + pts_noise[..., 1] *= fn_masks + pts_idx = pts_noise.flatten(2).argmax(dim=2) + labels = (pts_idx % 2).to(torch.int32) + pts_idx = pts_idx // 2 + pts_x = pts_idx % W_im + pts_y = pts_idx // W_im + points = torch.stack([pts_x, pts_y], dim=2).to(torch.float) + return points, labels + + +def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True): + """ + Sample 1 random point (along with its label) from the center of each error region, + that is, the point with the largest distance to the boundary of each error region. + This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py + + Inputs: + - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool + - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None + - padding: if True, pad with boundary of 1 px for distance transform + + Outputs: + - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point + - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks + """ + import cv2 + + if pred_masks is None: + pred_masks = torch.zeros_like(gt_masks) + assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1 + assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape + + B, _, _, W_im = gt_masks.shape + device = gt_masks.device + + # false positive region, a new point sampled in this region should have + # negative label to correct the FP error + fp_masks = ~gt_masks & pred_masks + # false negative region, a new point sampled in this region should have + # positive label to correct the FN error + fn_masks = gt_masks & ~pred_masks + + fp_masks = fp_masks.cpu().numpy() + fn_masks = fn_masks.cpu().numpy() + points = torch.zeros(B, 1, 2, dtype=torch.float) + labels = torch.ones(B, 1, dtype=torch.int32) + for b in range(B): + fn_mask = fn_masks[b, 0] + fp_mask = fp_masks[b, 0] + if padding: + fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant") + fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant") + # compute the distance of each point in FN/FP region to its boundary + fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0) + fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0) + if padding: + fn_mask_dt = fn_mask_dt[1:-1, 1:-1] + fp_mask_dt = fp_mask_dt[1:-1, 1:-1] + + # take the point in FN/FP region with the largest distance to its boundary + fn_mask_dt_flat = fn_mask_dt.reshape(-1) + fp_mask_dt_flat = fp_mask_dt.reshape(-1) + fn_argmax = np.argmax(fn_mask_dt_flat) + fp_argmax = np.argmax(fp_mask_dt_flat) + is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax] + pt_idx = fn_argmax if is_positive else fp_argmax + points[b, 0, 0] = pt_idx % W_im # x + points[b, 0, 1] = pt_idx // W_im # y + labels[b, 0] = int(is_positive) + + points = points.to(device) + labels = labels.to(device) + return points, labels + + +def get_next_point(gt_masks, pred_masks, method): + if method == "uniform": + return sample_random_points_from_errors(gt_masks, pred_masks) + elif method == "center": + return sample_one_point_from_error_center(gt_masks, pred_masks) + else: + raise ValueError(f"unknown sampling method {method}") diff --git a/modules/sam2/sam2_image_predictor.py b/modules/sam2/sam2_image_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..41ce53af5924504c07216df52b2d2eefaeec7ae9 --- /dev/null +++ b/modules/sam2/sam2_image_predictor.py @@ -0,0 +1,466 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging + +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch +from PIL.Image import Image + +from sam2.modeling.sam2_base import SAM2Base + +from sam2.utils.transforms import SAM2Transforms + + +class SAM2ImagePredictor: + def __init__( + self, + sam_model: SAM2Base, + mask_threshold=0.0, + max_hole_area=0.0, + max_sprinkle_area=0.0, + **kwargs, + ) -> None: + """ + Uses SAM-2 to calculate the image embedding for an image, and then + allow repeated, efficient mask prediction given prompts. + + Arguments: + sam_model (Sam-2): The model to use for mask prediction. + mask_threshold (float): The threshold to use when converting mask logits + to binary masks. Masks are thresholded at 0 by default. + max_hole_area (int): If max_hole_area > 0, we fill small holes in up to + the maximum area of max_hole_area in low_res_masks. + max_sprinkle_area (int): If max_sprinkle_area > 0, we remove small sprinkles up to + the maximum area of max_sprinkle_area in low_res_masks. + """ + super().__init__() + self.model = sam_model + self._transforms = SAM2Transforms( + resolution=self.model.image_size, + mask_threshold=mask_threshold, + max_hole_area=max_hole_area, + max_sprinkle_area=max_sprinkle_area, + ) + + # Predictor state + self._is_image_set = False + self._features = None + self._orig_hw = None + # Whether the predictor is set for single image or a batch of images + self._is_batch = False + + # Predictor config + self.mask_threshold = mask_threshold + + # Spatial dim for backbone feature maps + self._bb_feat_sizes = [ + (256, 256), + (128, 128), + (64, 64), + ] + + @classmethod + def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor": + """ + Load a pretrained model from the Hugging Face hub. + + Arguments: + model_id (str): The Hugging Face repository ID. + **kwargs: Additional arguments to pass to the model constructor. + + Returns: + (SAM2ImagePredictor): The loaded model. + """ + from sam2.build_sam import build_sam2_hf + + sam_model = build_sam2_hf(model_id, **kwargs) + return cls(sam_model, **kwargs) + + @torch.no_grad() + def set_image( + self, + image: Union[np.ndarray, Image], + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + + Arguments: + image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image + with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + self.reset_predictor() + # Transform the image to the form expected by the model + if isinstance(image, np.ndarray): + logging.info("For numpy array image, we assume (HxWxC) format") + self._orig_hw = [image.shape[:2]] + elif isinstance(image, Image): + w, h = image.size + self._orig_hw = [(h, w)] + else: + raise NotImplementedError("Image format not supported") + + input_image = self._transforms(image) + input_image = input_image[None, ...].to(self.device) + + assert ( + len(input_image.shape) == 4 and input_image.shape[1] == 3 + ), f"input_image must be of size 1x3xHxW, got {input_image.shape}" + logging.info("Computing image embeddings for the provided image...") + backbone_out = self.model.forward_image(input_image) + _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out) + # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos + if self.model.directly_add_no_mem_embed: + vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed + + feats = [ + feat.permute(1, 2, 0).view(1, -1, *feat_size) + for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1]) + ][::-1] + self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]} + self._is_image_set = True + logging.info("Image embeddings computed.") + + @torch.no_grad() + def set_image_batch( + self, + image_list: List[Union[np.ndarray]], + ) -> None: + """ + Calculates the image embeddings for the provided image batch, allowing + masks to be predicted with the 'predict_batch' method. + + Arguments: + image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray + with pixel values in [0, 255]. + """ + self.reset_predictor() + assert isinstance(image_list, list) + self._orig_hw = [] + for image in image_list: + assert isinstance( + image, np.ndarray + ), "Images are expected to be an np.ndarray in RGB format, and of shape HWC" + self._orig_hw.append(image.shape[:2]) + # Transform the image to the form expected by the model + img_batch = self._transforms.forward_batch(image_list) + img_batch = img_batch.to(self.device) + batch_size = img_batch.shape[0] + assert ( + len(img_batch.shape) == 4 and img_batch.shape[1] == 3 + ), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}" + logging.info("Computing image embeddings for the provided images...") + backbone_out = self.model.forward_image(img_batch) + _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out) + # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos + if self.model.directly_add_no_mem_embed: + vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed + + feats = [ + feat.permute(1, 2, 0).view(batch_size, -1, *feat_size) + for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1]) + ][::-1] + self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]} + self._is_image_set = True + self._is_batch = True + logging.info("Image embeddings computed.") + + def predict_batch( + self, + point_coords_batch: List[np.ndarray] = None, + point_labels_batch: List[np.ndarray] = None, + box_batch: List[np.ndarray] = None, + mask_input_batch: List[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + normalize_coords=True, + ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]: + """This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images. + It returns a tuple of lists of masks, ious, and low_res_masks_logits. + """ + assert self._is_batch, "This function should only be used when in batched mode" + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image_batch(...) before mask prediction." + ) + num_images = len(self._features["image_embed"]) + all_masks = [] + all_ious = [] + all_low_res_masks = [] + for img_idx in range(num_images): + # Transform input prompts + point_coords = ( + point_coords_batch[img_idx] if point_coords_batch is not None else None + ) + point_labels = ( + point_labels_batch[img_idx] if point_labels_batch is not None else None + ) + box = box_batch[img_idx] if box_batch is not None else None + mask_input = ( + mask_input_batch[img_idx] if mask_input_batch is not None else None + ) + mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts( + point_coords, + point_labels, + box, + mask_input, + normalize_coords, + img_idx=img_idx, + ) + masks, iou_predictions, low_res_masks = self._predict( + unnorm_coords, + labels, + unnorm_box, + mask_input, + multimask_output, + return_logits=return_logits, + img_idx=img_idx, + ) + masks_np = masks.squeeze(0).float().detach().cpu().numpy() + iou_predictions_np = ( + iou_predictions.squeeze(0).float().detach().cpu().numpy() + ) + low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() + all_masks.append(masks_np) + all_ious.append(iou_predictions_np) + all_low_res_masks.append(low_res_masks_np) + + return all_masks, all_ious, all_low_res_masks + + def predict( + self, + point_coords: Optional[np.ndarray] = None, + point_labels: Optional[np.ndarray] = None, + box: Optional[np.ndarray] = None, + mask_input: Optional[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + normalize_coords=True, + ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """ + Predict masks for the given input prompts, using the currently set image. + + Arguments: + point_coords (np.ndarray or None): A Nx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (np.ndarray or None): A length N array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A length 4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form 1xHxW, where + for SAM, H=W=256. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions. + + Returns: + (np.ndarray): The output masks in CxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (np.ndarray): An array of length C containing the model's + predictions for the quality of each mask. + (np.ndarray): An array of shape CxHxW, where C is the number + of masks and H=W=256. These low resolution logits can be passed to + a subsequent iteration as mask input. + """ + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) before mask prediction." + ) + + # Transform input prompts + + mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts( + point_coords, point_labels, box, mask_input, normalize_coords + ) + + masks, iou_predictions, low_res_masks = self._predict( + unnorm_coords, + labels, + unnorm_box, + mask_input, + multimask_output, + return_logits=return_logits, + ) + + masks_np = masks.squeeze(0).float().detach().cpu().numpy() + iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy() + low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() + return masks_np, iou_predictions_np, low_res_masks_np + + def _prep_prompts( + self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1 + ): + + unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None + if point_coords is not None: + assert ( + point_labels is not None + ), "point_labels must be supplied if point_coords is supplied." + point_coords = torch.as_tensor( + point_coords, dtype=torch.float, device=self.device + ) + unnorm_coords = self._transforms.transform_coords( + point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx] + ) + labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) + if len(unnorm_coords.shape) == 2: + unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...] + if box is not None: + box = torch.as_tensor(box, dtype=torch.float, device=self.device) + unnorm_box = self._transforms.transform_boxes( + box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx] + ) # Bx2x2 + if mask_logits is not None: + mask_input = torch.as_tensor( + mask_logits, dtype=torch.float, device=self.device + ) + if len(mask_input.shape) == 3: + mask_input = mask_input[None, :, :, :] + return mask_input, unnorm_coords, labels, unnorm_box + + @torch.no_grad() + def _predict( + self, + point_coords: Optional[torch.Tensor], + point_labels: Optional[torch.Tensor], + boxes: Optional[torch.Tensor] = None, + mask_input: Optional[torch.Tensor] = None, + multimask_output: bool = True, + return_logits: bool = False, + img_idx: int = -1, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + Input prompts are batched torch tensors and are expected to already be + transformed to the input frame using SAM2Transforms. + + Arguments: + point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (torch.Tensor or None): A BxN array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + boxes (np.ndarray or None): A Bx4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form Bx1xHxW, where + for SAM, H=W=256. Masks returned by a previous iteration of the + predict method do not need further transformation. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (torch.Tensor): The output masks in BxCxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (torch.Tensor): An array of shape BxC containing the model's + predictions for the quality of each mask. + (torch.Tensor): An array of shape BxCxHxW, where C is the number + of masks and H=W=256. These low res logits can be passed to + a subsequent iteration as mask input. + """ + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) before mask prediction." + ) + + if point_coords is not None: + concat_points = (point_coords, point_labels) + else: + concat_points = None + + # Embed prompts + if boxes is not None: + box_coords = boxes.reshape(-1, 2, 2) + box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device) + box_labels = box_labels.repeat(boxes.size(0), 1) + # we merge "boxes" and "points" into a single "concat_points" input (where + # boxes are added at the beginning) to sam_prompt_encoder + if concat_points is not None: + concat_coords = torch.cat([box_coords, concat_points[0]], dim=1) + concat_labels = torch.cat([box_labels, concat_points[1]], dim=1) + concat_points = (concat_coords, concat_labels) + else: + concat_points = (box_coords, box_labels) + + sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder( + points=concat_points, + boxes=None, + masks=mask_input, + ) + + # Predict masks + batched_mode = ( + concat_points is not None and concat_points[0].shape[0] > 1 + ) # multi object prediction + high_res_features = [ + feat_level[img_idx].unsqueeze(0) + for feat_level in self._features["high_res_feats"] + ] + low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder( + image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0), + image_pe=self.model.sam_prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + repeat_image=batched_mode, + high_res_features=high_res_features, + ) + + # Upscale the masks to the original image resolution + masks = self._transforms.postprocess_masks( + low_res_masks, self._orig_hw[img_idx] + ) + low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0) + if not return_logits: + masks = masks > self.mask_threshold + + return masks, iou_predictions, low_res_masks + + def get_image_embedding(self) -> torch.Tensor: + """ + Returns the image embeddings for the currently set image, with + shape 1xCxHxW, where C is the embedding dimension and (H,W) are + the embedding spatial dimension of SAM (typically C=256, H=W=64). + """ + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) to generate an embedding." + ) + assert ( + self._features is not None + ), "Features must exist if an image has been set." + return self._features["image_embed"] + + @property + def device(self) -> torch.device: + return self.model.device + + def reset_predictor(self) -> None: + """ + Resets the image embeddings and other state variables. + """ + self._is_image_set = False + self._features = None + self._orig_hw = None + self._is_batch = False diff --git a/modules/sam2/sam2_video_predictor.py b/modules/sam2/sam2_video_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..44824b4982a8d7a544a75c8c8012fd0a07c5530d --- /dev/null +++ b/modules/sam2/sam2_video_predictor.py @@ -0,0 +1,1174 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import warnings +from collections import OrderedDict + +import torch + +from tqdm import tqdm + +from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base +from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames + + +class SAM2VideoPredictor(SAM2Base): + """The predictor class to handle user interactions and manage inference states.""" + + def __init__( + self, + fill_hole_area=0, + # whether to apply non-overlapping constraints on the output object masks + non_overlap_masks=False, + # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks; + # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True) + clear_non_cond_mem_around_input=False, + # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True). + clear_non_cond_mem_for_multi_obj=False, + # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click + # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames + add_all_frames_to_correct_as_cond=False, + **kwargs, + ): + super().__init__(**kwargs) + self.fill_hole_area = fill_hole_area + self.non_overlap_masks = non_overlap_masks + self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input + self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj + self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond + + @torch.inference_mode() + def init_state( + self, + images, + video_height, + video_width, + offload_video_to_cpu=False, + offload_state_to_cpu=False, + async_loading_frames=False, + ): + """Initialize an inference state.""" + compute_device = self.device # device of the model + # ori_images, images, video_height, video_width = load_video_frames( + # video_path=video_path, + # image_size=self.image_size, + # offload_video_to_cpu=offload_video_to_cpu, + # async_loading_frames=async_loading_frames, + # compute_device=compute_device, + # ) + inference_state = {} + inference_state["images"] = images + inference_state["num_frames"] = len(images) + # whether to offload the video frames to CPU memory + # turning on this option saves the GPU memory with only a very small overhead + inference_state["offload_video_to_cpu"] = offload_video_to_cpu + # whether to offload the inference state to CPU memory + # turning on this option saves the GPU memory at the cost of a lower tracking fps + # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object + # and from 24 to 21 when tracking two objects) + inference_state["offload_state_to_cpu"] = offload_state_to_cpu + # the original video height and width, used for resizing final output scores + inference_state["video_height"] = video_height + inference_state["video_width"] = video_width + inference_state["device"] = compute_device + if offload_state_to_cpu: + inference_state["storage_device"] = torch.device("cpu") + else: + inference_state["storage_device"] = compute_device + # inputs on each frame + inference_state["point_inputs_per_obj"] = {} + inference_state["mask_inputs_per_obj"] = {} + # visual features on a small number of recently visited frames for quick interactions + inference_state["cached_features"] = {} + # values that don't change across frames (so we only need to hold one copy of them) + inference_state["constants"] = {} + # mapping between client-side object id and model-side object index + inference_state["obj_id_to_idx"] = OrderedDict() + inference_state["obj_idx_to_id"] = OrderedDict() + inference_state["obj_ids"] = [] + # A storage to hold the model's tracking results and states on each frame + inference_state["output_dict"] = { + "cond_frame_outputs": {}, # dict containing {frame_idx: } + "non_cond_frame_outputs": {}, # dict containing {frame_idx: } + } + # Slice (view) of each object tracking results, sharing the same memory with "output_dict" + inference_state["output_dict_per_obj"] = {} + # A temporary storage to hold new outputs when user interact with a frame + # to add clicks or mask (it's merged into "output_dict" before propagation starts) + inference_state["temp_output_dict_per_obj"] = {} + # Frames that already holds consolidated outputs from click or mask inputs + # (we directly use their consolidated outputs during tracking) + inference_state["consolidated_frame_inds"] = { + "cond_frame_outputs": set(), # set containing frame indices + "non_cond_frame_outputs": set(), # set containing frame indices + } + # metadata for each tracking frame (e.g. which direction it's tracked) + inference_state["tracking_has_started"] = False + inference_state["frames_already_tracked"] = {} + # Warm up the visual backbone and cache the image feature on frame 0 + self._get_image_feature(inference_state, frame_idx=0, batch_size=1) + return inference_state + + @classmethod + def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor": + """ + Load a pretrained model from the Hugging Face hub. + + Arguments: + model_id (str): The Hugging Face repository ID. + **kwargs: Additional arguments to pass to the model constructor. + + Returns: + (SAM2VideoPredictor): The loaded model. + """ + from sam2.build_sam import build_sam2_video_predictor_hf + + sam_model = build_sam2_video_predictor_hf(model_id, **kwargs) + return sam_model + + def _obj_id_to_idx(self, inference_state, obj_id): + """Map client-side object id to model-side object index.""" + obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None) + if obj_idx is not None: + return obj_idx + + # This is a new object id not sent to the server before. We only allow adding + # new objects *before* the tracking starts. + allow_new_object = not inference_state["tracking_has_started"] + if allow_new_object: + # get the next object slot + obj_idx = len(inference_state["obj_id_to_idx"]) + inference_state["obj_id_to_idx"][obj_id] = obj_idx + inference_state["obj_idx_to_id"][obj_idx] = obj_id + inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"]) + # set up input and output structures for this object + inference_state["point_inputs_per_obj"][obj_idx] = {} + inference_state["mask_inputs_per_obj"][obj_idx] = {} + inference_state["output_dict_per_obj"][obj_idx] = { + "cond_frame_outputs": {}, # dict containing {frame_idx: } + "non_cond_frame_outputs": {}, # dict containing {frame_idx: } + } + inference_state["temp_output_dict_per_obj"][obj_idx] = { + "cond_frame_outputs": {}, # dict containing {frame_idx: } + "non_cond_frame_outputs": {}, # dict containing {frame_idx: } + } + return obj_idx + else: + raise RuntimeError( + f"Cannot add new object id {obj_id} after tracking starts. " + f"All existing object ids: {inference_state['obj_ids']}. " + f"Please call 'reset_state' to restart from scratch." + ) + + def _obj_idx_to_id(self, inference_state, obj_idx): + """Map model-side object index to client-side object id.""" + return inference_state["obj_idx_to_id"][obj_idx] + + def _get_obj_num(self, inference_state): + """Get the total number of unique object ids received so far in this session.""" + return len(inference_state["obj_idx_to_id"]) + + @torch.inference_mode() + def add_new_points_or_box( + self, + inference_state, + frame_idx, + obj_id, + points=None, + labels=None, + clear_old_points=True, + normalize_coords=True, + box=None, + ): + """Add new points to a frame.""" + obj_idx = self._obj_id_to_idx(inference_state, obj_id) + point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] + mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] + + if (points is not None) != (labels is not None): + raise ValueError("points and labels must be provided together") + if points is None and box is None: + raise ValueError("at least one of points or box must be provided as input") + + if points is None: + points = torch.zeros(0, 2, dtype=torch.float32) + elif not isinstance(points, torch.Tensor): + points = torch.tensor(points, dtype=torch.float32) + if labels is None: + labels = torch.zeros(0, dtype=torch.int32) + elif not isinstance(labels, torch.Tensor): + labels = torch.tensor(labels, dtype=torch.int32) + if points.dim() == 2: + points = points.unsqueeze(0) # add batch dimension + if labels.dim() == 1: + labels = labels.unsqueeze(0) # add batch dimension + + # If `box` is provided, we add it as the first two points with labels 2 and 3 + # along with the user-provided points (consistent with how SAM 2 is trained). + if box is not None: + if not clear_old_points: + raise ValueError( + "cannot add box without clearing old points, since " + "box prompt must be provided before any point prompt " + "(please use clear_old_points=True instead)" + ) + if inference_state["tracking_has_started"]: + warnings.warn( + "You are adding a box after tracking starts. SAM 2 may not always be " + "able to incorporate a box prompt for *refinement*. If you intend to " + "use box prompt as an *initial* input before tracking, please call " + "'reset_state' on the inference state to restart from scratch.", + category=UserWarning, + stacklevel=2, + ) + if not isinstance(box, torch.Tensor): + box = torch.tensor(box, dtype=torch.float32, device=points.device) + box_coords = box.reshape(1, 2, 2) + box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device) + box_labels = box_labels.reshape(1, 2) + points = torch.cat([box_coords, points], dim=1) + labels = torch.cat([box_labels, labels], dim=1) + + if normalize_coords: + video_H = inference_state["video_height"] + video_W = inference_state["video_width"] + points = points / torch.tensor([video_W, video_H]).to(points.device) + # scale the (normalized) coordinates by the model's internal image size + points = points * self.image_size + points = points.to(inference_state["device"]) + labels = labels.to(inference_state["device"]) + + if not clear_old_points: + point_inputs = point_inputs_per_frame.get(frame_idx, None) + else: + point_inputs = None + point_inputs = concat_points(point_inputs, points, labels) + + point_inputs_per_frame[frame_idx] = point_inputs + mask_inputs_per_frame.pop(frame_idx, None) + # If this frame hasn't been tracked before, we treat it as an initial conditioning + # frame, meaning that the inputs points are to generate segments on this frame without + # using any memory from other frames, like in SAM. Otherwise (if it has been tracked), + # the input points will be used to correct the already tracked masks. + is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] + # whether to track in reverse time order + if is_init_cond_frame: + reverse = False + else: + reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] + obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] + # Add a frame to conditioning output if it's an initial conditioning frame or + # if the model sees all frames receiving clicks/mask as conditioning frames. + is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + + # Get any previously predicted mask logits on this object and feed it along with + # the new clicks into the SAM mask decoder. + prev_sam_mask_logits = None + # lookup temporary output dict first, which contains the most recent output + # (if not found, then lookup conditioning and non-conditioning frame output) + prev_out = obj_temp_output_dict[storage_key].get(frame_idx) + if prev_out is None: + prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) + if prev_out is None: + prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) + + if prev_out is not None and prev_out["pred_masks"] is not None: + device = inference_state["device"] + prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True) + # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues. + prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) + current_out, _ = self._run_single_frame_inference( + inference_state=inference_state, + output_dict=obj_output_dict, # run on the slice of a single object + frame_idx=frame_idx, + batch_size=1, # run on the slice of a single object + is_init_cond_frame=is_init_cond_frame, + point_inputs=point_inputs, + mask_inputs=None, + reverse=reverse, + # Skip the memory encoder when adding clicks or mask. We execute the memory encoder + # at the beginning of `propagate_in_video` (after user finalize their clicks). This + # allows us to enforce non-overlapping constraints on all objects before encoding + # them into memory. + run_mem_encoder=False, + prev_sam_mask_logits=prev_sam_mask_logits, + ) + # Add the output to the output dict (to be used as future memory) + obj_temp_output_dict[storage_key][frame_idx] = current_out + + # Resize the output mask to the original video resolution + obj_ids = inference_state["obj_ids"] + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, + frame_idx, + is_cond=is_cond, + run_mem_encoder=False, + consolidate_at_video_res=True, + ) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, consolidated_out["pred_masks_video_res"] + ) + return frame_idx, obj_ids, video_res_masks + + def add_new_points(self, *args, **kwargs): + """Deprecated method. Please use `add_new_points_or_box` instead.""" + return self.add_new_points_or_box(*args, **kwargs) + + @torch.inference_mode() + def add_new_mask( + self, + inference_state, + frame_idx, + obj_id, + mask, + ): + """Add new mask to a frame.""" + obj_idx = self._obj_id_to_idx(inference_state, obj_id) + point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] + mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] + + if not isinstance(mask, torch.Tensor): + mask = torch.tensor(mask, dtype=torch.bool) + assert mask.dim() == 2 + mask_H, mask_W = mask.shape + mask_inputs_orig = mask[None, None] # add batch and channel dimension + mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"]) + + # resize the mask if it doesn't match the model's image size + if mask_H != self.image_size or mask_W != self.image_size: + mask_inputs = torch.nn.functional.interpolate( + mask_inputs_orig, + size=(self.image_size, self.image_size), + align_corners=False, + mode="bilinear", + antialias=True, # use antialias for downsampling + ) + mask_inputs = (mask_inputs >= 0.5).float() + else: + mask_inputs = mask_inputs_orig + + mask_inputs_per_frame[frame_idx] = mask_inputs + point_inputs_per_frame.pop(frame_idx, None) + # If this frame hasn't been tracked before, we treat it as an initial conditioning + # frame, meaning that the inputs points are to generate segments on this frame without + # using any memory from other frames, like in SAM. Otherwise (if it has been tracked), + # the input points will be used to correct the already tracked masks. + is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] + # whether to track in reverse time order + if is_init_cond_frame: + reverse = False + else: + reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] + obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] + # Add a frame to conditioning output if it's an initial conditioning frame or + # if the model sees all frames receiving clicks/mask as conditioning frames. + is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + + current_out, _ = self._run_single_frame_inference( + inference_state=inference_state, + output_dict=obj_output_dict, # run on the slice of a single object + frame_idx=frame_idx, + batch_size=1, # run on the slice of a single object + is_init_cond_frame=is_init_cond_frame, + point_inputs=None, + mask_inputs=mask_inputs, + reverse=reverse, + # Skip the memory encoder when adding clicks or mask. We execute the memory encoder + # at the beginning of `propagate_in_video` (after user finalize their clicks). This + # allows us to enforce non-overlapping constraints on all objects before encoding + # them into memory. + run_mem_encoder=False, + ) + # Add the output to the output dict (to be used as future memory) + obj_temp_output_dict[storage_key][frame_idx] = current_out + + # Resize the output mask to the original video resolution + obj_ids = inference_state["obj_ids"] + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, + frame_idx, + is_cond=is_cond, + run_mem_encoder=False, + consolidate_at_video_res=True, + ) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, consolidated_out["pred_masks_video_res"] + ) + return frame_idx, obj_ids, video_res_masks + + def _get_orig_video_res_output(self, inference_state, any_res_masks): + """ + Resize the object scores to the original video resolution (video_res_masks) + and apply non-overlapping constraints for final output. + """ + device = inference_state["device"] + video_H = inference_state["video_height"] + video_W = inference_state["video_width"] + any_res_masks = any_res_masks.to(device, non_blocking=True) + if any_res_masks.shape[-2:] == (video_H, video_W): + video_res_masks = any_res_masks + else: + video_res_masks = torch.nn.functional.interpolate( + any_res_masks, + size=(video_H, video_W), + mode="bilinear", + align_corners=False, + ) + if self.non_overlap_masks: + video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) + return any_res_masks, video_res_masks + + def _consolidate_temp_output_across_obj( + self, + inference_state, + frame_idx, + is_cond, + run_mem_encoder, + consolidate_at_video_res=False, + ): + """ + Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on + a frame into a single output for all objects, including + 1) fill any missing objects either from `output_dict_per_obj` (if they exist in + `output_dict_per_obj` for this frame) or leave them as placeholder values + (if they don't exist in `output_dict_per_obj` for this frame); + 2) if specified, rerun memory encoder after apply non-overlapping constraints + on the object scores. + """ + batch_size = self._get_obj_num(inference_state) + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + # Optionally, we allow consolidating the temporary outputs at the original + # video resolution (to provide a better editing experience for mask prompts). + if consolidate_at_video_res: + assert not run_mem_encoder, "memory encoder cannot run at video resolution" + consolidated_H = inference_state["video_height"] + consolidated_W = inference_state["video_width"] + consolidated_mask_key = "pred_masks_video_res" + else: + consolidated_H = consolidated_W = self.image_size // 4 + consolidated_mask_key = "pred_masks" + + # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc" + # will be added when rerunning the memory encoder after applying non-overlapping + # constraints to object scores. Its "pred_masks" are prefilled with a large + # negative value (NO_OBJ_SCORE) to represent missing objects. + consolidated_out = { + "maskmem_features": None, + "maskmem_pos_enc": None, + consolidated_mask_key: torch.full( + size=(batch_size, 1, consolidated_H, consolidated_W), + fill_value=NO_OBJ_SCORE, + dtype=torch.float32, + device=inference_state["storage_device"], + ), + "obj_ptr": torch.full( + size=(batch_size, self.hidden_dim), + fill_value=NO_OBJ_SCORE, + dtype=torch.float32, + device=inference_state["device"], + ), + "object_score_logits": torch.full( + size=(batch_size, 1), + # default to 10.0 for object_score_logits, i.e. assuming the object is + # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder` + fill_value=10.0, + dtype=torch.float32, + device=inference_state["device"], + ), + } + empty_mask_ptr = None + for obj_idx in range(batch_size): + obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] + out = obj_temp_output_dict[storage_key].get(frame_idx, None) + # If the object doesn't appear in "temp_output_dict_per_obj" on this frame, + # we fall back and look up its previous output in "output_dict_per_obj". + # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in + # "output_dict_per_obj" to find a previous output for this object. + if out is None: + out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None) + if out is None: + out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None) + # If the object doesn't appear in "output_dict_per_obj" either, we skip it + # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE + # placeholder above) and set its object pointer to be a dummy pointer. + if out is None: + # Fill in dummy object pointers for those objects without any inputs or + # tracking outcomes on this frame (only do it under `run_mem_encoder=True`, + # i.e. when we need to build the memory for tracking). + if run_mem_encoder: + if empty_mask_ptr is None: + empty_mask_ptr = self._get_empty_mask_ptr( + inference_state, frame_idx + ) + # fill object pointer with a dummy pointer (based on an empty mask) + consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr + continue + # Add the temporary object output mask to consolidated output mask + obj_mask = out["pred_masks"] + consolidated_pred_masks = consolidated_out[consolidated_mask_key] + if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: + consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask + else: + # Resize first if temporary object mask has a different resolution + resized_obj_mask = torch.nn.functional.interpolate( + obj_mask, + size=consolidated_pred_masks.shape[-2:], + mode="bilinear", + align_corners=False, + ) + consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask + consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"] + consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out[ + "object_score_logits" + ] + + # Optionally, apply non-overlapping constraints on the consolidated scores + # and rerun the memory encoder + if run_mem_encoder: + device = inference_state["device"] + high_res_masks = torch.nn.functional.interpolate( + consolidated_out["pred_masks"].to(device, non_blocking=True), + size=(self.image_size, self.image_size), + mode="bilinear", + align_corners=False, + ) + if self.non_overlap_masks_for_mem_enc: + high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) + maskmem_features, maskmem_pos_enc = self._run_memory_encoder( + inference_state=inference_state, + frame_idx=frame_idx, + batch_size=batch_size, + high_res_masks=high_res_masks, + object_score_logits=consolidated_out["object_score_logits"], + is_mask_from_pts=True, # these frames are what the user interacted with + ) + consolidated_out["maskmem_features"] = maskmem_features + consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc + + return consolidated_out + + def _get_empty_mask_ptr(self, inference_state, frame_idx): + """Get a dummy object pointer based on an empty mask on the current frame.""" + # A dummy (empty) mask with a single object + batch_size = 1 + mask_inputs = torch.zeros( + (batch_size, 1, self.image_size, self.image_size), + dtype=torch.float32, + device=inference_state["device"], + ) + + # Retrieve correct image features + ( + _, + _, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + ) = self._get_image_feature(inference_state, frame_idx, batch_size) + + # Feed the empty mask and image feature above to get a dummy object pointer + current_out = self.track_step( + frame_idx=frame_idx, + is_init_cond_frame=True, + current_vision_feats=current_vision_feats, + current_vision_pos_embeds=current_vision_pos_embeds, + feat_sizes=feat_sizes, + point_inputs=None, + mask_inputs=mask_inputs, + output_dict={}, + num_frames=inference_state["num_frames"], + track_in_reverse=False, + run_mem_encoder=False, + prev_sam_mask_logits=None, + ) + return current_out["obj_ptr"] + + @torch.inference_mode() + def propagate_in_video_preflight(self, inference_state): + """Prepare inference_state and consolidate temporary outputs before tracking.""" + # Tracking has started and we don't allow adding new objects until session is reset. + inference_state["tracking_has_started"] = True + batch_size = self._get_obj_num(inference_state) + + # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and + # add them into "output_dict". + temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] + output_dict = inference_state["output_dict"] + # "consolidated_frame_inds" contains indices of those frames where consolidated + # temporary outputs have been added (either in this call or any previous calls + # to `propagate_in_video_preflight`). + consolidated_frame_inds = inference_state["consolidated_frame_inds"] + for is_cond in [False, True]: + # Separately consolidate conditioning and non-conditioning temp outputs + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + # Find all the frames that contain temporary outputs for any objects + # (these should be the frames that have just received clicks for mask inputs + # via `add_new_points_or_box` or `add_new_mask`) + temp_frame_inds = set() + for obj_temp_output_dict in temp_output_dict_per_obj.values(): + temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) + consolidated_frame_inds[storage_key].update(temp_frame_inds) + # consolidate the temporary output across all objects on this frame + for frame_idx in temp_frame_inds: + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True + ) + # merge them into "output_dict" and also create per-object slices + output_dict[storage_key][frame_idx] = consolidated_out + self._add_output_per_object( + inference_state, frame_idx, consolidated_out, storage_key + ) + clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( + self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 + ) + if clear_non_cond_mem: + # clear non-conditioning memory of the surrounding frames + self._clear_non_cond_mem_around_input(inference_state, frame_idx) + + # clear temporary outputs in `temp_output_dict_per_obj` + for obj_temp_output_dict in temp_output_dict_per_obj.values(): + obj_temp_output_dict[storage_key].clear() + + # edge case: if an output is added to "cond_frame_outputs", we remove any prior + # output on the same frame in "non_cond_frame_outputs" + for frame_idx in output_dict["cond_frame_outputs"]: + output_dict["non_cond_frame_outputs"].pop(frame_idx, None) + for obj_output_dict in inference_state["output_dict_per_obj"].values(): + for frame_idx in obj_output_dict["cond_frame_outputs"]: + obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None) + for frame_idx in consolidated_frame_inds["cond_frame_outputs"]: + assert frame_idx in output_dict["cond_frame_outputs"] + consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) + + # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames + # with either points or mask inputs (which should be true under a correct workflow). + all_consolidated_frame_inds = ( + consolidated_frame_inds["cond_frame_outputs"] + | consolidated_frame_inds["non_cond_frame_outputs"] + ) + input_frames_inds = set() + for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values(): + input_frames_inds.update(point_inputs_per_frame.keys()) + for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values(): + input_frames_inds.update(mask_inputs_per_frame.keys()) + assert all_consolidated_frame_inds == input_frames_inds + + @torch.inference_mode() + def propagate_in_video( + self, + inference_state, + start_frame_idx=None, + max_frame_num_to_track=None, + reverse=False, + ): + """Propagate the input points across frames to track in the entire video.""" + self.propagate_in_video_preflight(inference_state) + + output_dict = inference_state["output_dict"] + consolidated_frame_inds = inference_state["consolidated_frame_inds"] + obj_ids = inference_state["obj_ids"] + num_frames = inference_state["num_frames"] + batch_size = self._get_obj_num(inference_state) + if len(output_dict["cond_frame_outputs"]) == 0: + raise RuntimeError("No points are provided; please add points first") + clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( + self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 + ) + + # set start index, end index, and processing order + if start_frame_idx is None: + # default: start from the earliest frame with input points + start_frame_idx = min(output_dict["cond_frame_outputs"]) + if max_frame_num_to_track is None: + # default: track all the frames in the video + max_frame_num_to_track = num_frames + if reverse: + end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) + if start_frame_idx > 0: + processing_order = range(start_frame_idx, end_frame_idx - 1, -1) + else: + processing_order = [] # skip reverse tracking if starting from frame 0 + else: + end_frame_idx = min( + start_frame_idx + max_frame_num_to_track, num_frames - 1 + ) + processing_order = range(start_frame_idx, end_frame_idx + 1) + + for frame_idx in tqdm(processing_order, desc="propagate in video"): + # We skip those frames already in consolidated outputs (these are frames + # that received input clicks or mask). Note that we cannot directly run + # batched forward on them via `_run_single_frame_inference` because the + # number of clicks on each object might be different. + if frame_idx in consolidated_frame_inds["cond_frame_outputs"]: + storage_key = "cond_frame_outputs" + current_out = output_dict[storage_key][frame_idx] + pred_masks = current_out["pred_masks"] + if clear_non_cond_mem: + # clear non-conditioning memory of the surrounding frames + self._clear_non_cond_mem_around_input(inference_state, frame_idx) + elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]: + storage_key = "non_cond_frame_outputs" + current_out = output_dict[storage_key][frame_idx] + pred_masks = current_out["pred_masks"] + else: + storage_key = "non_cond_frame_outputs" + current_out, pred_masks = self._run_single_frame_inference( + inference_state=inference_state, + output_dict=output_dict, + frame_idx=frame_idx, + batch_size=batch_size, + is_init_cond_frame=False, + point_inputs=None, + mask_inputs=None, + reverse=reverse, + run_mem_encoder=True, + ) + output_dict[storage_key][frame_idx] = current_out + # Create slices of per-object outputs for subsequent interaction with each + # individual object after tracking. + self._add_output_per_object( + inference_state, frame_idx, current_out, storage_key + ) + inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse} + + # Resize the output mask to the original video resolution (we directly use + # the mask scores on GPU for output to avoid any CPU conversion in between) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, pred_masks + ) + yield frame_idx, obj_ids, video_res_masks + + def _add_output_per_object( + self, inference_state, frame_idx, current_out, storage_key + ): + """ + Split a multi-object output into per-object output slices and add them into + `output_dict_per_obj`. The resulting slices share the same tensor storage. + """ + maskmem_features = current_out["maskmem_features"] + assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) + + maskmem_pos_enc = current_out["maskmem_pos_enc"] + assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) + + output_dict_per_obj = inference_state["output_dict_per_obj"] + for obj_idx, obj_output_dict in output_dict_per_obj.items(): + obj_slice = slice(obj_idx, obj_idx + 1) + obj_out = { + "maskmem_features": None, + "maskmem_pos_enc": None, + "pred_masks": current_out["pred_masks"][obj_slice], + "obj_ptr": current_out["obj_ptr"][obj_slice], + "object_score_logits": current_out["object_score_logits"][obj_slice], + } + if maskmem_features is not None: + obj_out["maskmem_features"] = maskmem_features[obj_slice] + if maskmem_pos_enc is not None: + obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc] + obj_output_dict[storage_key][frame_idx] = obj_out + + @torch.inference_mode() + def clear_all_prompts_in_frame( + self, inference_state, frame_idx, obj_id, need_output=True + ): + """Remove all input points or mask in a specific frame for a given object.""" + obj_idx = self._obj_id_to_idx(inference_state, obj_id) + + # Clear the conditioning information on the given frame + inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None) + inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None) + + temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] + temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None) + temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None) + + # Check and see if there are still any inputs left on this frame + batch_size = self._get_obj_num(inference_state) + frame_has_input = False + for obj_idx2 in range(batch_size): + if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]: + frame_has_input = True + break + if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]: + frame_has_input = True + break + + # If this frame has no remaining inputs for any objects, we further clear its + # conditioning frame status + if not frame_has_input: + output_dict = inference_state["output_dict"] + consolidated_frame_inds = inference_state["consolidated_frame_inds"] + consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx) + consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) + # Remove the frame's conditioning output (possibly downgrading it to non-conditioning) + out = output_dict["cond_frame_outputs"].pop(frame_idx, None) + if out is not None: + # The frame is not a conditioning frame anymore since it's not receiving inputs, + # so we "downgrade" its output (if exists) to a non-conditioning frame output. + output_dict["non_cond_frame_outputs"][frame_idx] = out + inference_state["frames_already_tracked"].pop(frame_idx, None) + # Similarly, do it for the sliced output on each object. + for obj_idx2 in range(batch_size): + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2] + obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None) + if obj_out is not None: + obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out + + # If all the conditioning frames have been removed, we also clear the tracking outputs + if len(output_dict["cond_frame_outputs"]) == 0: + self._reset_tracking_results(inference_state) + + if not need_output: + return + # Finally, output updated masks per object (after removing the inputs above) + obj_ids = inference_state["obj_ids"] + is_cond = any( + frame_idx in obj_temp_output_dict["cond_frame_outputs"] + for obj_temp_output_dict in temp_output_dict_per_obj.values() + ) + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, + frame_idx, + is_cond=is_cond, + run_mem_encoder=False, + consolidate_at_video_res=True, + ) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, consolidated_out["pred_masks_video_res"] + ) + return frame_idx, obj_ids, video_res_masks + + @torch.inference_mode() + def reset_state(self, inference_state): + """Remove all input points or mask in all frames throughout the video.""" + self._reset_tracking_results(inference_state) + # Remove all object ids + inference_state["obj_id_to_idx"].clear() + inference_state["obj_idx_to_id"].clear() + inference_state["obj_ids"].clear() + inference_state["point_inputs_per_obj"].clear() + inference_state["mask_inputs_per_obj"].clear() + inference_state["output_dict_per_obj"].clear() + inference_state["temp_output_dict_per_obj"].clear() + + def _reset_tracking_results(self, inference_state): + """Reset all tracking inputs and results across the videos.""" + for v in inference_state["point_inputs_per_obj"].values(): + v.clear() + for v in inference_state["mask_inputs_per_obj"].values(): + v.clear() + for v in inference_state["output_dict_per_obj"].values(): + v["cond_frame_outputs"].clear() + v["non_cond_frame_outputs"].clear() + for v in inference_state["temp_output_dict_per_obj"].values(): + v["cond_frame_outputs"].clear() + v["non_cond_frame_outputs"].clear() + inference_state["output_dict"]["cond_frame_outputs"].clear() + inference_state["output_dict"]["non_cond_frame_outputs"].clear() + inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear() + inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear() + inference_state["tracking_has_started"] = False + inference_state["frames_already_tracked"].clear() + + def _get_image_feature(self, inference_state, frame_idx, batch_size): + """Compute the image features on a given frame.""" + # Look up in the cache first + image, backbone_out = inference_state["cached_features"].get( + frame_idx, (None, None) + ) + if backbone_out is None: + # Cache miss -- we will run inference on a single image + device = inference_state["device"] + image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0) + backbone_out = self.forward_image(image) + # Cache the most recent frame's feature (for repeated interactions with + # a frame; we can use an LRU cache for more frames in the future). + inference_state["cached_features"] = {frame_idx: (image, backbone_out)} + + # expand the features to have the same dimension as the number of objects + expanded_image = image.expand(batch_size, -1, -1, -1) + expanded_backbone_out = { + "backbone_fpn": backbone_out["backbone_fpn"].copy(), + "vision_pos_enc": backbone_out["vision_pos_enc"].copy(), + } + for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]): + expanded_backbone_out["backbone_fpn"][i] = feat.expand( + batch_size, -1, -1, -1 + ) + for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]): + pos = pos.expand(batch_size, -1, -1, -1) + expanded_backbone_out["vision_pos_enc"][i] = pos + + features = self._prepare_backbone_features(expanded_backbone_out) + features = (expanded_image,) + features + return features + + def _run_single_frame_inference( + self, + inference_state, + output_dict, + frame_idx, + batch_size, + is_init_cond_frame, + point_inputs, + mask_inputs, + reverse, + run_mem_encoder, + prev_sam_mask_logits=None, + ): + """Run tracking on a single frame based on current inputs and previous memory.""" + # Retrieve correct image features + ( + _, + _, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + ) = self._get_image_feature(inference_state, frame_idx, batch_size) + + # point and mask should not appear as input simultaneously on the same frame + assert point_inputs is None or mask_inputs is None + current_out = self.track_step( + frame_idx=frame_idx, + is_init_cond_frame=is_init_cond_frame, + current_vision_feats=current_vision_feats, + current_vision_pos_embeds=current_vision_pos_embeds, + feat_sizes=feat_sizes, + point_inputs=point_inputs, + mask_inputs=mask_inputs, + output_dict=output_dict, + num_frames=inference_state["num_frames"], + track_in_reverse=reverse, + run_mem_encoder=run_mem_encoder, + prev_sam_mask_logits=prev_sam_mask_logits, + ) + + # optionally offload the output to CPU memory to save GPU space + storage_device = inference_state["storage_device"] + maskmem_features = current_out["maskmem_features"] + if maskmem_features is not None: + maskmem_features = maskmem_features.to(torch.bfloat16) + maskmem_features = maskmem_features.to(storage_device, non_blocking=True) + pred_masks_gpu = current_out["pred_masks"] + # potentially fill holes in the predicted masks + if self.fill_hole_area > 0: + pred_masks_gpu = fill_holes_in_mask_scores( + pred_masks_gpu, self.fill_hole_area + ) + pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) + # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it + maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out) + # object pointer is a small tensor, so we always keep it on GPU memory for fast access + obj_ptr = current_out["obj_ptr"] + object_score_logits = current_out["object_score_logits"] + # make a compact version of this frame's output to reduce the state size + compact_current_out = { + "maskmem_features": maskmem_features, + "maskmem_pos_enc": maskmem_pos_enc, + "pred_masks": pred_masks, + "obj_ptr": obj_ptr, + "object_score_logits": object_score_logits, + } + return compact_current_out, pred_masks_gpu + + def _run_memory_encoder( + self, + inference_state, + frame_idx, + batch_size, + high_res_masks, + object_score_logits, + is_mask_from_pts, + ): + """ + Run the memory encoder on `high_res_masks`. This is usually after applying + non-overlapping constraints to object scores. Since their scores changed, their + memory also need to be computed again with the memory encoder. + """ + # Retrieve correct image features + _, _, current_vision_feats, _, feat_sizes = self._get_image_feature( + inference_state, frame_idx, batch_size + ) + maskmem_features, maskmem_pos_enc = self._encode_new_memory( + current_vision_feats=current_vision_feats, + feat_sizes=feat_sizes, + pred_masks_high_res=high_res_masks, + object_score_logits=object_score_logits, + is_mask_from_pts=is_mask_from_pts, + ) + + # optionally offload the output to CPU memory to save GPU space + storage_device = inference_state["storage_device"] + maskmem_features = maskmem_features.to(torch.bfloat16) + maskmem_features = maskmem_features.to(storage_device, non_blocking=True) + # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it + maskmem_pos_enc = self._get_maskmem_pos_enc( + inference_state, {"maskmem_pos_enc": maskmem_pos_enc} + ) + return maskmem_features, maskmem_pos_enc + + def _get_maskmem_pos_enc(self, inference_state, current_out): + """ + `maskmem_pos_enc` is the same across frames and objects, so we cache it as + a constant in the inference session to reduce session storage size. + """ + model_constants = inference_state["constants"] + # "out_maskmem_pos_enc" should be either a list of tensors or None + out_maskmem_pos_enc = current_out["maskmem_pos_enc"] + if out_maskmem_pos_enc is not None: + if "maskmem_pos_enc" not in model_constants: + assert isinstance(out_maskmem_pos_enc, list) + # only take the slice for one object, since it's same across objects + maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] + model_constants["maskmem_pos_enc"] = maskmem_pos_enc + else: + maskmem_pos_enc = model_constants["maskmem_pos_enc"] + # expand the cached maskmem_pos_enc to the actual batch size + batch_size = out_maskmem_pos_enc[0].size(0) + expanded_maskmem_pos_enc = [ + x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc + ] + else: + expanded_maskmem_pos_enc = None + return expanded_maskmem_pos_enc + + @torch.inference_mode() + def remove_object(self, inference_state, obj_id, strict=False, need_output=True): + """ + Remove an object id from the tracking state. If strict is True, we check whether + the object id actually exists and raise an error if it doesn't exist. + """ + old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None) + updated_frames = [] + # Check whether this object_id to remove actually exists and possibly raise an error. + if old_obj_idx_to_rm is None: + if not strict: + return inference_state["obj_ids"], updated_frames + raise RuntimeError( + f"Cannot remove object id {obj_id} as it doesn't exist. " + f"All existing object ids: {inference_state['obj_ids']}." + ) + + # If this is the only remaining object id, we simply reset the state. + if len(inference_state["obj_id_to_idx"]) == 1: + self.reset_state(inference_state) + return inference_state["obj_ids"], updated_frames + + # There are still remaining objects after removing this object id. In this case, + # we need to delete the object storage from inference state tensors. + # Step 0: clear the input on those frames where this object id has point or mask input + # (note that this step is required as it might downgrade conditioning frames to + # non-conditioning ones) + obj_input_frames_inds = set() + obj_input_frames_inds.update( + inference_state["point_inputs_per_obj"][old_obj_idx_to_rm] + ) + obj_input_frames_inds.update( + inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm] + ) + for frame_idx in obj_input_frames_inds: + self.clear_all_prompts_in_frame( + inference_state, frame_idx, obj_id, need_output=False + ) + + # Step 1: Update the object id mapping (note that it must be done after Step 0, + # since Step 0 still requires the old object id mappings in inference_state) + old_obj_ids = inference_state["obj_ids"] + old_obj_inds = list(range(len(old_obj_ids))) + remain_old_obj_inds = old_obj_inds.copy() + remain_old_obj_inds.remove(old_obj_idx_to_rm) + new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds] + new_obj_inds = list(range(len(new_obj_ids))) + # build new mappings + old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds)) + inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds)) + inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids)) + inference_state["obj_ids"] = new_obj_ids + + # Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys. + # (note that "consolidated_frame_inds" doesn't need to be updated in this step as + # it's already handled in Step 0) + def _map_keys(container): + new_kvs = [] + for k in old_obj_inds: + v = container.pop(k) + if k in old_idx_to_new_idx: + new_kvs.append((old_idx_to_new_idx[k], v)) + container.update(new_kvs) + + _map_keys(inference_state["point_inputs_per_obj"]) + _map_keys(inference_state["mask_inputs_per_obj"]) + _map_keys(inference_state["output_dict_per_obj"]) + _map_keys(inference_state["temp_output_dict_per_obj"]) + + # Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices. + def _slice_state(output_dict, storage_key): + for frame_idx, out in output_dict[storage_key].items(): + out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds] + out["maskmem_pos_enc"] = [ + x[remain_old_obj_inds] for x in out["maskmem_pos_enc"] + ] + # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it + out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(inference_state, out) + out["pred_masks"] = out["pred_masks"][remain_old_obj_inds] + out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds] + out["object_score_logits"] = out["object_score_logits"][ + remain_old_obj_inds + ] + # also update the per-object slices + self._add_output_per_object( + inference_state, frame_idx, out, storage_key + ) + + _slice_state(inference_state["output_dict"], "cond_frame_outputs") + _slice_state(inference_state["output_dict"], "non_cond_frame_outputs") + + # Step 4: Further collect the outputs on those frames in `obj_input_frames_inds`, which + # could show an updated mask for objects previously occluded by the object being removed + if need_output: + temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] + for frame_idx in obj_input_frames_inds: + is_cond = any( + frame_idx in obj_temp_output_dict["cond_frame_outputs"] + for obj_temp_output_dict in temp_output_dict_per_obj.values() + ) + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, + frame_idx, + is_cond=is_cond, + run_mem_encoder=False, + consolidate_at_video_res=True, + ) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, consolidated_out["pred_masks_video_res"] + ) + updated_frames.append((frame_idx, video_res_masks)) + + return inference_state["obj_ids"], updated_frames + + def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): + """ + Remove the non-conditioning memory around the input frame. When users provide + correction clicks, the surrounding frames' non-conditioning memories can still + contain outdated object appearance information and could confuse the model. + + This method clears those non-conditioning memories surrounding the interacted + frame to avoid giving the model both old and new information about the object. + """ + r = self.memory_temporal_stride_for_eval + frame_idx_begin = frame_idx - r * self.num_maskmem + frame_idx_end = frame_idx + r * self.num_maskmem + output_dict = inference_state["output_dict"] + non_cond_frame_outputs = output_dict["non_cond_frame_outputs"] + for t in range(frame_idx_begin, frame_idx_end + 1): + non_cond_frame_outputs.pop(t, None) + for obj_output_dict in inference_state["output_dict_per_obj"].values(): + obj_output_dict["non_cond_frame_outputs"].pop(t, None) diff --git a/modules/sam2/utils/__init__.py b/modules/sam2/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/modules/sam2/utils/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/modules/sam2/utils/__pycache__/__init__.cpython-312.pyc b/modules/sam2/utils/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28aa6e429a806b6311ba70854c228c4c68c7a701 Binary files /dev/null and b/modules/sam2/utils/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/sam2/utils/__pycache__/amg.cpython-312.pyc b/modules/sam2/utils/__pycache__/amg.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2ed06f9ba8507325818639ac5f73c738b9d7c60a Binary files /dev/null and b/modules/sam2/utils/__pycache__/amg.cpython-312.pyc differ diff --git a/modules/sam2/utils/__pycache__/misc.cpython-312.pyc b/modules/sam2/utils/__pycache__/misc.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6733adaf3f0448dfe2f643be456109e6a7eccbff Binary files /dev/null and b/modules/sam2/utils/__pycache__/misc.cpython-312.pyc differ diff --git a/modules/sam2/utils/__pycache__/transforms.cpython-312.pyc b/modules/sam2/utils/__pycache__/transforms.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0a87edfcb0109b361b00dcc2836b6b8144b2dfca Binary files /dev/null and b/modules/sam2/utils/__pycache__/transforms.cpython-312.pyc differ diff --git a/modules/sam2/utils/amg.py b/modules/sam2/utils/amg.py new file mode 100644 index 0000000000000000000000000000000000000000..986842960cf5deca00614b7b1cde1ab77dad7e6e --- /dev/null +++ b/modules/sam2/utils/amg.py @@ -0,0 +1,348 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from copy import deepcopy +from itertools import product +from typing import Any, Dict, Generator, ItemsView, List, Tuple + +import numpy as np +import torch + +# Very lightly adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/utils/amg.py + + +class MaskData: + """ + A structure for storing masks and their related data in batched format. + Implements basic filtering and concatenation. + """ + + def __init__(self, **kwargs) -> None: + for v in kwargs.values(): + assert isinstance( + v, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats = dict(**kwargs) + + def __setitem__(self, key: str, item: Any) -> None: + assert isinstance( + item, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats[key] = item + + def __delitem__(self, key: str) -> None: + del self._stats[key] + + def __getitem__(self, key: str) -> Any: + return self._stats[key] + + def items(self) -> ItemsView[str, Any]: + return self._stats.items() + + def filter(self, keep: torch.Tensor) -> None: + for k, v in self._stats.items(): + if v is None: + self._stats[k] = None + elif isinstance(v, torch.Tensor): + self._stats[k] = v[torch.as_tensor(keep, device=v.device)] + elif isinstance(v, np.ndarray): + self._stats[k] = v[keep.detach().cpu().numpy()] + elif isinstance(v, list) and keep.dtype == torch.bool: + self._stats[k] = [a for i, a in enumerate(v) if keep[i]] + elif isinstance(v, list): + self._stats[k] = [v[i] for i in keep] + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def cat(self, new_stats: "MaskData") -> None: + for k, v in new_stats.items(): + if k not in self._stats or self._stats[k] is None: + self._stats[k] = deepcopy(v) + elif isinstance(v, torch.Tensor): + self._stats[k] = torch.cat([self._stats[k], v], dim=0) + elif isinstance(v, np.ndarray): + self._stats[k] = np.concatenate([self._stats[k], v], axis=0) + elif isinstance(v, list): + self._stats[k] = self._stats[k] + deepcopy(v) + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def to_numpy(self) -> None: + for k, v in self._stats.items(): + if isinstance(v, torch.Tensor): + self._stats[k] = v.float().detach().cpu().numpy() + + +def is_box_near_crop_edge( + boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0 +) -> torch.Tensor: + """Filter masks at the edge of a crop, but not at the edge of the original image.""" + crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) + orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) + boxes = uncrop_boxes_xyxy(boxes, crop_box).float() + near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) + near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) + near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) + return torch.any(near_crop_edge, dim=1) + + +def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: + box_xywh = deepcopy(box_xyxy) + box_xywh[2] = box_xywh[2] - box_xywh[0] + box_xywh[3] = box_xywh[3] - box_xywh[1] + return box_xywh + + +def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: + assert len(args) > 0 and all( + len(a) == len(args[0]) for a in args + ), "Batched iteration must have inputs of all the same size." + n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) + for b in range(n_batches): + yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] + + +def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: + """ + Encodes masks to an uncompressed RLE, in the format expected by + pycoco tools. + """ + # Put in fortran order and flatten h,w + b, h, w = tensor.shape + tensor = tensor.permute(0, 2, 1).flatten(1) + + # Compute change indices + diff = tensor[:, 1:] ^ tensor[:, :-1] + change_indices = diff.nonzero() + + # Encode run length + out = [] + for i in range(b): + cur_idxs = change_indices[change_indices[:, 0] == i, 1] + cur_idxs = torch.cat( + [ + torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), + cur_idxs + 1, + torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), + ] + ) + btw_idxs = cur_idxs[1:] - cur_idxs[:-1] + counts = [] if tensor[i, 0] == 0 else [0] + counts.extend(btw_idxs.detach().cpu().tolist()) + out.append({"size": [h, w], "counts": counts}) + return out + + +def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: + """Compute a binary mask from an uncompressed RLE.""" + h, w = rle["size"] + mask = np.empty(h * w, dtype=bool) + idx = 0 + parity = False + for count in rle["counts"]: + mask[idx : idx + count] = parity + idx += count + parity ^= True + mask = mask.reshape(w, h) + return mask.transpose() # Put in C order + + +def area_from_rle(rle: Dict[str, Any]) -> int: + return sum(rle["counts"][1::2]) + + +def calculate_stability_score( + masks: torch.Tensor, mask_threshold: float, threshold_offset: float +) -> torch.Tensor: + """ + Computes the stability score for a batch of masks. The stability + score is the IoU between the binary masks obtained by thresholding + the predicted mask logits at high and low values. + """ + # One mask is always contained inside the other. + # Save memory by preventing unnecessary cast to torch.int64 + intersections = ( + (masks > (mask_threshold + threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + unions = ( + (masks > (mask_threshold - threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + return intersections / unions + + +def build_point_grid(n_per_side: int) -> np.ndarray: + """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" + offset = 1 / (2 * n_per_side) + points_one_side = np.linspace(offset, 1 - offset, n_per_side) + points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) + points_y = np.tile(points_one_side[:, None], (1, n_per_side)) + points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) + return points + + +def build_all_layer_point_grids( + n_per_side: int, n_layers: int, scale_per_layer: int +) -> List[np.ndarray]: + """Generates point grids for all crop layers.""" + points_by_layer = [] + for i in range(n_layers + 1): + n_points = int(n_per_side / (scale_per_layer**i)) + points_by_layer.append(build_point_grid(n_points)) + return points_by_layer + + +def generate_crop_boxes( + im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float +) -> Tuple[List[List[int]], List[int]]: + """ + Generates a list of crop boxes of different sizes. Each layer + has (2**i)**2 boxes for the ith layer. + """ + crop_boxes, layer_idxs = [], [] + im_h, im_w = im_size + short_side = min(im_h, im_w) + + # Original image + crop_boxes.append([0, 0, im_w, im_h]) + layer_idxs.append(0) + + def crop_len(orig_len, n_crops, overlap): + return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) + + for i_layer in range(n_layers): + n_crops_per_side = 2 ** (i_layer + 1) + overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) + + crop_w = crop_len(im_w, n_crops_per_side, overlap) + crop_h = crop_len(im_h, n_crops_per_side, overlap) + + crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] + crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] + + # Crops in XYWH format + for x0, y0 in product(crop_box_x0, crop_box_y0): + box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] + crop_boxes.append(box) + layer_idxs.append(i_layer + 1) + + return crop_boxes, layer_idxs + + +def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) + # Check if boxes has a channel dimension + if len(boxes.shape) == 3: + offset = offset.unsqueeze(1) + return boxes + offset + + +def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0]], device=points.device) + # Check if points has a channel dimension + if len(points.shape) == 3: + offset = offset.unsqueeze(1) + return points + offset + + +def uncrop_masks( + masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int +) -> torch.Tensor: + x0, y0, x1, y1 = crop_box + if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: + return masks + # Coordinate transform masks + pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) + pad = (x0, pad_x - x0, y0, pad_y - y0) + return torch.nn.functional.pad(masks, pad, value=0) + + +def remove_small_regions( + mask: np.ndarray, area_thresh: float, mode: str +) -> Tuple[np.ndarray, bool]: + """ + Removes small disconnected regions and holes in a mask. Returns the + mask and an indicator of if the mask has been modified. + """ + import cv2 # type: ignore + + assert mode in ["holes", "islands"] + correct_holes = mode == "holes" + working_mask = (correct_holes ^ mask).astype(np.uint8) + n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) + sizes = stats[:, -1][1:] # Row 0 is background label + small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] + if len(small_regions) == 0: + return mask, False + fill_labels = [0] + small_regions + if not correct_holes: + fill_labels = [i for i in range(n_labels) if i not in fill_labels] + # If every region is below threshold, keep largest + if len(fill_labels) == 0: + fill_labels = [int(np.argmax(sizes)) + 1] + mask = np.isin(regions, fill_labels) + return mask, True + + +def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: + from pycocotools import mask as mask_utils # type: ignore + + h, w = uncompressed_rle["size"] + rle = mask_utils.frPyObjects(uncompressed_rle, h, w) + rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json + return rle + + +def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: + """ + Calculates boxes in XYXY format around masks. Return [0,0,0,0] for + an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. + """ + # torch.max below raises an error on empty inputs, just skip in this case + if torch.numel(masks) == 0: + return torch.zeros(*masks.shape[:-2], 4, device=masks.device) + + # Normalize shape to CxHxW + shape = masks.shape + h, w = shape[-2:] + if len(shape) > 2: + masks = masks.flatten(0, -3) + else: + masks = masks.unsqueeze(0) + + # Get top and bottom edges + in_height, _ = torch.max(masks, dim=-1) + in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] + bottom_edges, _ = torch.max(in_height_coords, dim=-1) + in_height_coords = in_height_coords + h * (~in_height) + top_edges, _ = torch.min(in_height_coords, dim=-1) + + # Get left and right edges + in_width, _ = torch.max(masks, dim=-2) + in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] + right_edges, _ = torch.max(in_width_coords, dim=-1) + in_width_coords = in_width_coords + w * (~in_width) + left_edges, _ = torch.min(in_width_coords, dim=-1) + + # If the mask is empty the right edge will be to the left of the left edge. + # Replace these boxes with [0, 0, 0, 0] + empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) + out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) + out = out * (~empty_filter).unsqueeze(-1) + + # Return to original shape + if len(shape) > 2: + out = out.reshape(*shape[:-2], 4) + else: + out = out[0] + + return out diff --git a/modules/sam2/utils/misc.py b/modules/sam2/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..ff061ad2122815f3ee89b09c29c30f4985b386c2 --- /dev/null +++ b/modules/sam2/utils/misc.py @@ -0,0 +1,401 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import os +import warnings +from threading import Thread + +import numpy as np +import torch +from PIL import Image +from tqdm import tqdm + + +def get_sdpa_settings(): + if torch.cuda.is_available(): + old_gpu = torch.cuda.get_device_properties(0).major < 7 + # only use Flash Attention on Ampere (8.0) or newer GPUs + use_flash_attn = torch.cuda.get_device_properties(0).major >= 8 + if not use_flash_attn: + warnings.warn( + "Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.", + category=UserWarning, + stacklevel=2, + ) + # keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only + # available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases) + pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2]) + if pytorch_version < (2, 2): + warnings.warn( + f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. " + "Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).", + category=UserWarning, + stacklevel=2, + ) + math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn + else: + old_gpu = True + use_flash_attn = False + math_kernel_on = True + + return old_gpu, use_flash_attn, math_kernel_on + + +def get_connected_components(mask): + """ + Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W). + + Inputs: + - mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is + background. + + Outputs: + - labels: A tensor of shape (N, 1, H, W) containing the connected component labels + for foreground pixels and 0 for background pixels. + - counts: A tensor of shape (N, 1, H, W) containing the area of the connected + components for foreground pixels and 0 for background pixels. + """ + from sam2 import _C + + return _C.get_connected_componnets(mask.to(torch.uint8).contiguous()) + + +def mask_to_box(masks: torch.Tensor): + """ + compute bounding box given an input mask + + Inputs: + - masks: [B, 1, H, W] masks, dtype=torch.Tensor + + Returns: + - box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor + """ + B, _, h, w = masks.shape + device = masks.device + xs = torch.arange(w, device=device, dtype=torch.int32) + ys = torch.arange(h, device=device, dtype=torch.int32) + grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy") + grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w) + grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w) + min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1) + max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1) + min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1) + max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1) + bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1) + + return bbox_coords + + +def _load_img_as_tensor(img_path, image_size): + img_pil = Image.open(img_path).convert("RGB") + img_np = np.array(img_pil.resize((image_size, image_size))) + if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images + img_np = img_np / 255.0 + else: + raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}") + img = torch.from_numpy(img_np).permute(2, 0, 1) + video_width, video_height = img_pil.size # the original video size + return np.array(img_pil), img, video_height, video_width + + +class AsyncVideoFrameLoader: + """ + A list of video frames to be load asynchronously without blocking session start. + """ + + def __init__( + self, + img_paths, + image_size, + offload_video_to_cpu, + img_mean, + img_std, + compute_device, + ): + self.img_paths = img_paths + self.image_size = image_size + self.offload_video_to_cpu = offload_video_to_cpu + self.img_mean = img_mean + self.img_std = img_std + # items in `self.images` will be loaded asynchronously + self.images = [None] * len(img_paths) + # catch and raise any exceptions in the async loading thread + self.exception = None + # video_height and video_width be filled when loading the first image + self.video_height = None + self.video_width = None + self.compute_device = compute_device + + # load the first frame to fill video_height and video_width and also + # to cache it (since it's most likely where the user will click) + self.__getitem__(0) + + # load the rest of frames asynchronously without blocking the session start + def _load_frames(): + try: + for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"): + self.__getitem__(n) + except Exception as e: + self.exception = e + + self.thread = Thread(target=_load_frames, daemon=True) + self.thread.start() + + def __getitem__(self, index): + if self.exception is not None: + raise RuntimeError("Failure in frame loading thread") from self.exception + + img = self.images[index] + if img is not None: + return img + + img, video_height, video_width = _load_img_as_tensor( + self.img_paths[index], self.image_size + ) + self.video_height = video_height + self.video_width = video_width + # normalize by mean and std + img -= self.img_mean + img /= self.img_std + if not self.offload_video_to_cpu: + img = img.to(self.compute_device, non_blocking=True) + self.images[index] = img + return img + + def __len__(self): + return len(self.images) + + +def load_video_frames( + video_path, + image_size, + offload_video_to_cpu, + img_mean=(0.485, 0.456, 0.406), + img_std=(0.229, 0.224, 0.225), + async_loading_frames=False, + compute_device=torch.device("cuda"), +): + """ + Load the video frames from video_path. The frames are resized to image_size as in + the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo. + """ + is_bytes = isinstance(video_path, bytes) + is_str = isinstance(video_path, str) + is_list = isinstance(video_path, list) + is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"] + if is_bytes or is_mp4_path: + return load_video_frames_from_video_file( + video_path=video_path, + image_size=image_size, + offload_video_to_cpu=offload_video_to_cpu, + img_mean=img_mean, + img_std=img_std, + compute_device=compute_device, + ) + elif is_str and os.path.isdir(video_path): + return load_video_frames_from_jpg_images( + video_path=video_path, + image_size=image_size, + offload_video_to_cpu=offload_video_to_cpu, + img_mean=img_mean, + img_std=img_std, + async_loading_frames=async_loading_frames, + compute_device=compute_device, + ) + elif is_list: + return load_video_frames_from_file_list( + video_path=video_path, + image_size=image_size, + offload_video_to_cpu=offload_video_to_cpu, + img_mean=img_mean, + img_std=img_std, + async_loading_frames=async_loading_frames, + compute_device=compute_device, + ) + else: + raise NotImplementedError( + "Only MP4 video and JPEG folder are supported at this moment" + ) + + +def load_video_frames_from_jpg_images( + video_path, + image_size, + offload_video_to_cpu, + img_mean=(0.485, 0.456, 0.406), + img_std=(0.229, 0.224, 0.225), + async_loading_frames=False, + compute_device=torch.device("cuda"), +): + """ + Load the video frames from a directory of JPEG files (".jpg" format). + + The frames are resized to image_size x image_size and are loaded to GPU if + `offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`. + + You can load a frame asynchronously by setting `async_loading_frames` to `True`. + """ + if isinstance(video_path, str) and os.path.isdir(video_path): + jpg_folder = video_path + else: + raise NotImplementedError( + "Only JPEG frames are supported at this moment. For video files, you may use " + "ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n" + "```\n" + "ffmpeg -i .mp4 -q:v 2 -start_number 0 /'%05d.jpg'\n" + "```\n" + "where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks " + "ffmpeg to start the JPEG file from 00000.jpg." + ) + + frame_names = [ + p + for p in os.listdir(jpg_folder) + if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] + ] + frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) + num_frames = len(frame_names) + if num_frames == 0: + raise RuntimeError(f"no images found in {jpg_folder}") + img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names] + img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] + img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] + + if async_loading_frames: + lazy_images = AsyncVideoFrameLoader( + img_paths, + image_size, + offload_video_to_cpu, + img_mean, + img_std, + compute_device, + ) + return lazy_images, lazy_images.video_height, lazy_images.video_width + + images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32) + for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")): + images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size) + if not offload_video_to_cpu: + images = images.to(compute_device) + img_mean = img_mean.to(compute_device) + img_std = img_std.to(compute_device) + # normalize by mean and std + images -= img_mean + images /= img_std + return images, video_height, video_width + + +def load_video_frames_from_file_list( + video_path, + image_size, + offload_video_to_cpu, + img_mean=(0.485, 0.456, 0.406), + img_std=(0.229, 0.224, 0.225), + async_loading_frames=False, + compute_device=torch.device("cuda"), +): + + num_frames = len(video_path) + img_paths = video_path + img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] + img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] + + if async_loading_frames: + lazy_images = AsyncVideoFrameLoader( + img_paths, + image_size, + offload_video_to_cpu, + img_mean, + img_std, + compute_device, + ) + return lazy_images, lazy_images.video_height, lazy_images.video_width + + images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32) + ori_images = [] + for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")): + ori_img_pil, images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size) + ori_images.append(ori_img_pil) + if not offload_video_to_cpu: + images = images.to(compute_device) + img_mean = img_mean.to(compute_device) + img_std = img_std.to(compute_device) + # normalize by mean and std + images -= img_mean + images /= img_std + return ori_images, images, video_height, video_width + + +def load_video_frames_from_video_file( + video_path, + image_size, + offload_video_to_cpu, + img_mean=(0.485, 0.456, 0.406), + img_std=(0.229, 0.224, 0.225), + compute_device=torch.device("cuda"), +): + """Load the video frames from a video file.""" + import decord + + img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] + img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] + # Get the original video height and width + decord.bridge.set_bridge("torch") + video_height, video_width, _ = decord.VideoReader(video_path).next().shape + # Iterate over all frames in the video + images = [] + for frame in decord.VideoReader(video_path, width=image_size, height=image_size): + images.append(frame.permute(2, 0, 1)) + + images = torch.stack(images, dim=0).float() / 255.0 + if not offload_video_to_cpu: + images = images.to(compute_device) + img_mean = img_mean.to(compute_device) + img_std = img_std.to(compute_device) + # normalize by mean and std + images -= img_mean + images /= img_std + return images, video_height, video_width + + +def fill_holes_in_mask_scores(mask, max_area): + """ + A post processor to fill small holes in mask scores with area under `max_area`. + """ + # Holes are those connected components in background with area <= self.max_area + # (background regions are those with mask scores <= 0) + assert max_area > 0, "max_area must be positive" + + input_mask = mask + try: + labels, areas = get_connected_components(mask <= 0) + is_hole = (labels > 0) & (areas <= max_area) + # We fill holes with a small positive mask score (0.1) to change them to foreground. + mask = torch.where(is_hole, 0.1, mask) + except Exception as e: + # Skip the post-processing step on removing small holes if the CUDA kernel fails + warnings.warn( + f"{e}\n\nSkipping the post-processing step due to the error above. You can " + "still use SAM 2 and it's OK to ignore the error above, although some post-processing " + "functionality may be limited (which doesn't affect the results in most cases; see " + "https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).", + category=UserWarning, + stacklevel=2, + ) + mask = input_mask + + return mask + + +def concat_points(old_point_inputs, new_points, new_labels): + """Add new points and labels to previous point inputs (add at the end).""" + if old_point_inputs is None: + points, labels = new_points, new_labels + else: + points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1) + labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1) + + return {"point_coords": points, "point_labels": labels} diff --git a/modules/sam2/utils/transforms.py b/modules/sam2/utils/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..cc17bebfab104b659c5469e8434cf357ae7e24b6 --- /dev/null +++ b/modules/sam2/utils/transforms.py @@ -0,0 +1,118 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import warnings + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torchvision.transforms import Normalize, Resize, ToTensor + + +class SAM2Transforms(nn.Module): + def __init__( + self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0 + ): + """ + Transforms for SAM2. + """ + super().__init__() + self.resolution = resolution + self.mask_threshold = mask_threshold + self.max_hole_area = max_hole_area + self.max_sprinkle_area = max_sprinkle_area + self.mean = [0.485, 0.456, 0.406] + self.std = [0.229, 0.224, 0.225] + self.to_tensor = ToTensor() + self.transforms = torch.jit.script( + nn.Sequential( + Resize((self.resolution, self.resolution)), + Normalize(self.mean, self.std), + ) + ) + + def __call__(self, x): + x = self.to_tensor(x) + return self.transforms(x) + + def forward_batch(self, img_list): + img_batch = [self.transforms(self.to_tensor(img)) for img in img_list] + img_batch = torch.stack(img_batch, dim=0) + return img_batch + + def transform_coords( + self, coords: torch.Tensor, normalize=False, orig_hw=None + ) -> torch.Tensor: + """ + Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates, + If the coords are in absolute image coordinates, normalize should be set to True and original image size is required. + + Returns + Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model. + """ + if normalize: + assert orig_hw is not None + h, w = orig_hw + coords = coords.clone() + coords[..., 0] = coords[..., 0] / w + coords[..., 1] = coords[..., 1] / h + + coords = coords * self.resolution # unnormalize coords + return coords + + def transform_boxes( + self, boxes: torch.Tensor, normalize=False, orig_hw=None + ) -> torch.Tensor: + """ + Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates, + if the coords are in absolute image coordinates, normalize should be set to True and original image size is required. + """ + boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw) + return boxes + + def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor: + """ + Perform PostProcessing on output masks. + """ + from sam2.utils.misc import get_connected_components + + masks = masks.float() + input_masks = masks + mask_flat = masks.flatten(0, 1).unsqueeze(1) # flatten as 1-channel image + try: + if self.max_hole_area > 0: + # Holes are those connected components in background with area <= self.fill_hole_area + # (background regions are those with mask scores <= self.mask_threshold) + labels, areas = get_connected_components( + mask_flat <= self.mask_threshold + ) + is_hole = (labels > 0) & (areas <= self.max_hole_area) + is_hole = is_hole.reshape_as(masks) + # We fill holes with a small positive mask score (10.0) to change them to foreground. + masks = torch.where(is_hole, self.mask_threshold + 10.0, masks) + + if self.max_sprinkle_area > 0: + labels, areas = get_connected_components( + mask_flat > self.mask_threshold + ) + is_hole = (labels > 0) & (areas <= self.max_sprinkle_area) + is_hole = is_hole.reshape_as(masks) + # We fill holes with negative mask score (-10.0) to change them to background. + masks = torch.where(is_hole, self.mask_threshold - 10.0, masks) + except Exception as e: + # Skip the post-processing step if the CUDA kernel fails + warnings.warn( + f"{e}\n\nSkipping the post-processing step due to the error above. You can " + "still use SAM 2 and it's OK to ignore the error above, although some post-processing " + "functionality may be limited (which doesn't affect the results in most cases; see " + "https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).", + category=UserWarning, + stacklevel=2, + ) + masks = input_masks + + masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False) + return masks diff --git a/modules/ultralytics/__init__.py b/modules/ultralytics/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..759641f6dbbc7afd9288da9c8836c39d7df4346c --- /dev/null +++ b/modules/ultralytics/__init__.py @@ -0,0 +1,12 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +__version__ = '8.0.120' + +from ultralytics.hub import start +from ultralytics.vit.rtdetr import RTDETR +from ultralytics.vit.sam import SAM +from ultralytics.yolo.engine.model import YOLO +from ultralytics.yolo.nas import NAS +from ultralytics.yolo.utils.checks import check_yolo as checks + +__all__ = '__version__', 'YOLO', 'NAS', 'SAM', 'RTDETR', 'checks', 'start' # allow simpler import diff --git a/modules/ultralytics/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0c2de96574011982ac6758a493d732fb43edf546 Binary files /dev/null and b/modules/ultralytics/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/assets/bus.jpg b/modules/ultralytics/assets/bus.jpg new file mode 100644 index 0000000000000000000000000000000000000000..40eaaf5c330d0c498fbe1dcacf9bb8bf566797fe Binary files /dev/null and b/modules/ultralytics/assets/bus.jpg differ diff --git a/modules/ultralytics/assets/zidane.jpg b/modules/ultralytics/assets/zidane.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eeab1cdcb282b0e026a57c5bf85df36024b4e1f6 Binary files /dev/null and b/modules/ultralytics/assets/zidane.jpg differ diff --git a/modules/ultralytics/hub/__init__.py b/modules/ultralytics/hub/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6059083af3d66d55809442cf49bfc83765e204dc --- /dev/null +++ b/modules/ultralytics/hub/__init__.py @@ -0,0 +1,117 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import requests + +from ultralytics.hub.auth import Auth +from ultralytics.hub.utils import PREFIX +from ultralytics.yolo.data.utils import HUBDatasetStats +from ultralytics.yolo.utils import LOGGER, SETTINGS, USER_CONFIG_DIR, yaml_save + + +def login(api_key=''): + """ + Log in to the Ultralytics HUB API using the provided API key. + + Args: + api_key (str, optional): May be an API key or a combination API key and model ID, i.e. key_id + + Example: + from ultralytics import hub + hub.login('API_KEY') + """ + Auth(api_key, verbose=True) + + +def logout(): + """ + Log out of Ultralytics HUB by removing the API key from the settings file. To log in again, use 'yolo hub login'. + + Example: + from ultralytics import hub + hub.logout() + """ + SETTINGS['api_key'] = '' + yaml_save(USER_CONFIG_DIR / 'settings.yaml', SETTINGS) + LOGGER.info(f"{PREFIX}logged out ✅. To log in again, use 'yolo hub login'.") + + +def start(key=''): + """ + Start training models with Ultralytics HUB (DEPRECATED). + + Args: + key (str, optional): A string containing either the API key and model ID combination (apikey_modelid), + or the full model URL (https://hub.ultralytics.com/models/apikey_modelid). + """ + api_key, model_id = key.split('_') + LOGGER.warning(f""" +WARNING ⚠️ ultralytics.start() is deprecated after 8.0.60. Updated usage to train Ultralytics HUB models is: + +from ultralytics import YOLO, hub + +hub.login('{api_key}') +model = YOLO('https://hub.ultralytics.com/models/{model_id}') +model.train()""") + + +def reset_model(model_id=''): + """Reset a trained model to an untrained state.""" + r = requests.post('https://api.ultralytics.com/model-reset', json={'apiKey': Auth().api_key, 'modelId': model_id}) + if r.status_code == 200: + LOGGER.info(f'{PREFIX}Model reset successfully') + return + LOGGER.warning(f'{PREFIX}Model reset failure {r.status_code} {r.reason}') + + +def export_fmts_hub(): + """Returns a list of HUB-supported export formats.""" + from ultralytics.yolo.engine.exporter import export_formats + return list(export_formats()['Argument'][1:]) + ['ultralytics_tflite', 'ultralytics_coreml'] + + +def export_model(model_id='', format='torchscript'): + """Export a model to all formats.""" + assert format in export_fmts_hub(), f"Unsupported export format '{format}', valid formats are {export_fmts_hub()}" + r = requests.post(f'https://api.ultralytics.com/v1/models/{model_id}/export', + json={'format': format}, + headers={'x-api-key': Auth().api_key}) + assert r.status_code == 200, f'{PREFIX}{format} export failure {r.status_code} {r.reason}' + LOGGER.info(f'{PREFIX}{format} export started ✅') + + +def get_export(model_id='', format='torchscript'): + """Get an exported model dictionary with download URL.""" + assert format in export_fmts_hub(), f"Unsupported export format '{format}', valid formats are {export_fmts_hub()}" + r = requests.post('https://api.ultralytics.com/get-export', + json={ + 'apiKey': Auth().api_key, + 'modelId': model_id, + 'format': format}) + assert r.status_code == 200, f'{PREFIX}{format} get_export failure {r.status_code} {r.reason}' + return r.json() + + +def check_dataset(path='', task='detect'): + """ + Function for error-checking HUB dataset Zip file before upload. It checks a dataset for errors before it is + uploaded to the HUB. Usage examples are given below. + + Args: + path (str, optional): Path to data.zip (with data.yaml inside data.zip). Defaults to ''. + task (str, optional): Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. Defaults to 'detect'. + + Example: + ```python + from ultralytics.hub import check_dataset + + check_dataset('path/to/coco8.zip', task='detect') # detect dataset + check_dataset('path/to/coco8-seg.zip', task='segment') # segment dataset + check_dataset('path/to/coco8-pose.zip', task='pose') # pose dataset + ``` + """ + HUBDatasetStats(path=path, task=task).get_json() + LOGGER.info('Checks completed correctly ✅. Upload this dataset to https://hub.ultralytics.com/datasets/.') + + +if __name__ == '__main__': + start() diff --git a/modules/ultralytics/hub/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/hub/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0998dad5b639be3e94e3ac48bbffb950da96f992 Binary files /dev/null and b/modules/ultralytics/hub/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/hub/__pycache__/auth.cpython-312.pyc b/modules/ultralytics/hub/__pycache__/auth.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..39eb827f1444a59a489aaa8dd35044729da195a9 Binary files /dev/null and b/modules/ultralytics/hub/__pycache__/auth.cpython-312.pyc differ diff --git a/modules/ultralytics/hub/__pycache__/utils.cpython-312.pyc b/modules/ultralytics/hub/__pycache__/utils.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..022564b43867146bcf0f822239705a6d02107d5b Binary files /dev/null and b/modules/ultralytics/hub/__pycache__/utils.cpython-312.pyc differ diff --git a/modules/ultralytics/hub/auth.py b/modules/ultralytics/hub/auth.py new file mode 100644 index 0000000000000000000000000000000000000000..960b3dc3011a06927e30ec5fbb75b0f593a487f4 --- /dev/null +++ b/modules/ultralytics/hub/auth.py @@ -0,0 +1,139 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import requests + +from ultralytics.hub.utils import HUB_API_ROOT, PREFIX, request_with_credentials +from ultralytics.yolo.utils import LOGGER, SETTINGS, emojis, is_colab, set_settings + +API_KEY_URL = 'https://hub.ultralytics.com/settings?tab=api+keys' + + +class Auth: + id_token = api_key = model_key = False + + def __init__(self, api_key='', verbose=False): + """ + Initialize the Auth class with an optional API key. + + Args: + api_key (str, optional): May be an API key or a combination API key and model ID, i.e. key_id + """ + # Split the input API key in case it contains a combined key_model and keep only the API key part + api_key = api_key.split('_')[0] + + # Set API key attribute as value passed or SETTINGS API key if none passed + self.api_key = api_key or SETTINGS.get('api_key', '') + + # If an API key is provided + if self.api_key: + # If the provided API key matches the API key in the SETTINGS + if self.api_key == SETTINGS.get('api_key'): + # Log that the user is already logged in + if verbose: + LOGGER.info(f'{PREFIX}Authenticated ✅') + return + else: + # Attempt to authenticate with the provided API key + success = self.authenticate() + # If the API key is not provided and the environment is a Google Colab notebook + elif is_colab(): + # Attempt to authenticate using browser cookies + success = self.auth_with_cookies() + else: + # Request an API key + success = self.request_api_key() + + # Update SETTINGS with the new API key after successful authentication + if success: + set_settings({'api_key': self.api_key}) + # Log that the new login was successful + if verbose: + LOGGER.info(f'{PREFIX}New authentication successful ✅') + elif verbose: + LOGGER.info(f'{PREFIX}Retrieve API key from {API_KEY_URL}') + + def request_api_key(self, max_attempts=3): + """ + Prompt the user to input their API key. Returns the model ID. + """ + import getpass + for attempts in range(max_attempts): + LOGGER.info(f'{PREFIX}Login. Attempt {attempts + 1} of {max_attempts}') + input_key = getpass.getpass(f'Enter API key from {API_KEY_URL} ') + self.api_key = input_key.split('_')[0] # remove model id if present + if self.authenticate(): + return True + raise ConnectionError(emojis(f'{PREFIX}Failed to authenticate ❌')) + + def authenticate(self) -> bool: + """ + Attempt to authenticate with the server using either id_token or API key. + + Returns: + bool: True if authentication is successful, False otherwise. + """ + try: + header = self.get_auth_header() + if header: + r = requests.post(f'{HUB_API_ROOT}/v1/auth', headers=header) + if not r.json().get('success', False): + raise ConnectionError('Unable to authenticate.') + return True + raise ConnectionError('User has not authenticated locally.') + except ConnectionError: + self.id_token = self.api_key = False # reset invalid + LOGGER.warning(f'{PREFIX}Invalid API key ⚠️') + return False + + def auth_with_cookies(self) -> bool: + """ + Attempt to fetch authentication via cookies and set id_token. + User must be logged in to HUB and running in a supported browser. + + Returns: + bool: True if authentication is successful, False otherwise. + """ + if not is_colab(): + return False # Currently only works with Colab + try: + authn = request_with_credentials(f'{HUB_API_ROOT}/v1/auth/auto') + if authn.get('success', False): + self.id_token = authn.get('data', {}).get('idToken', None) + self.authenticate() + return True + raise ConnectionError('Unable to fetch browser authentication details.') + except ConnectionError: + self.id_token = False # reset invalid + return False + + def get_auth_header(self): + """ + Get the authentication header for making API requests. + + Returns: + (dict): The authentication header if id_token or API key is set, None otherwise. + """ + if self.id_token: + return {'authorization': f'Bearer {self.id_token}'} + elif self.api_key: + return {'x-api-key': self.api_key} + else: + return None + + def get_state(self) -> bool: + """ + Get the authentication state. + + Returns: + bool: True if either id_token or API key is set, False otherwise. + """ + return self.id_token or self.api_key + + def set_api_key(self, key: str): + """ + Set the API key for authentication. + + Args: + key (str): The API key string. + """ + self.api_key = key diff --git a/modules/ultralytics/hub/session.py b/modules/ultralytics/hub/session.py new file mode 100644 index 0000000000000000000000000000000000000000..01b75fbfaf2c00de29400158ede86f6245f7ab1f --- /dev/null +++ b/modules/ultralytics/hub/session.py @@ -0,0 +1,189 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +import signal +import sys +from pathlib import Path +from time import sleep + +import requests + +from ultralytics.hub.utils import HUB_API_ROOT, PREFIX, smart_request +from ultralytics.yolo.utils import LOGGER, __version__, checks, emojis, is_colab, threaded +from ultralytics.yolo.utils.errors import HUBModelError + +AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__version__}-local' + + +class HUBTrainingSession: + """ + HUB training session for Ultralytics HUB YOLO models. Handles model initialization, heartbeats, and checkpointing. + + Args: + url (str): Model identifier used to initialize the HUB training session. + + Attributes: + agent_id (str): Identifier for the instance communicating with the server. + model_id (str): Identifier for the YOLOv5 model being trained. + model_url (str): URL for the model in Ultralytics HUB. + api_url (str): API URL for the model in Ultralytics HUB. + auth_header (Dict): Authentication header for the Ultralytics HUB API requests. + rate_limits (Dict): Rate limits for different API calls (in seconds). + timers (Dict): Timers for rate limiting. + metrics_queue (Dict): Queue for the model's metrics. + model (Dict): Model data fetched from Ultralytics HUB. + alive (bool): Indicates if the heartbeat loop is active. + """ + + def __init__(self, url): + """ + Initialize the HUBTrainingSession with the provided model identifier. + + Args: + url (str): Model identifier used to initialize the HUB training session. + It can be a URL string or a model key with specific format. + + Raises: + ValueError: If the provided model identifier is invalid. + ConnectionError: If connecting with global API key is not supported. + """ + + from ultralytics.hub.auth import Auth + + # Parse input + if url.startswith('https://hub.ultralytics.com/models/'): + url = url.split('https://hub.ultralytics.com/models/')[-1] + if [len(x) for x in url.split('_')] == [42, 20]: + key, model_id = url.split('_') + elif len(url) == 20: + key, model_id = '', url + else: + raise HUBModelError(f"model='{url}' not found. Check format is correct, i.e. " + f"model='https://hub.ultralytics.com/models/MODEL_ID' and try again.") + + # Authorize + auth = Auth(key) + self.agent_id = None # identifies which instance is communicating with server + self.model_id = model_id + self.model_url = f'https://hub.ultralytics.com/models/{model_id}' + self.api_url = f'{HUB_API_ROOT}/v1/models/{model_id}' + self.auth_header = auth.get_auth_header() + self.rate_limits = {'metrics': 3.0, 'ckpt': 900.0, 'heartbeat': 300.0} # rate limits (seconds) + self.timers = {} # rate limit timers (seconds) + self.metrics_queue = {} # metrics queue + self.model = self._get_model() + self.alive = True + self._start_heartbeat() # start heartbeats + self._register_signal_handlers() + LOGGER.info(f'{PREFIX}View model at {self.model_url} 🚀') + + def _register_signal_handlers(self): + """Register signal handlers for SIGTERM and SIGINT signals to gracefully handle termination.""" + signal.signal(signal.SIGTERM, self._handle_signal) + signal.signal(signal.SIGINT, self._handle_signal) + + def _handle_signal(self, signum, frame): + """ + Handle kill signals and prevent heartbeats from being sent on Colab after termination. + This method does not use frame, it is included as it is passed by signal. + """ + if self.alive is True: + LOGGER.info(f'{PREFIX}Kill signal received! ❌') + self._stop_heartbeat() + sys.exit(signum) + + def _stop_heartbeat(self): + """Terminate the heartbeat loop.""" + self.alive = False + + def upload_metrics(self): + """Upload model metrics to Ultralytics HUB.""" + payload = {'metrics': self.metrics_queue.copy(), 'type': 'metrics'} + smart_request('post', self.api_url, json=payload, headers=self.auth_header, code=2) + + def _get_model(self): + """Fetch and return model data from Ultralytics HUB.""" + api_url = f'{HUB_API_ROOT}/v1/models/{self.model_id}' + + try: + response = smart_request('get', api_url, headers=self.auth_header, thread=False, code=0) + data = response.json().get('data', None) + + if data.get('status', None) == 'trained': + raise ValueError(emojis(f'Model is already trained and uploaded to {self.model_url} 🚀')) + + if not data.get('data', None): + raise ValueError('Dataset may still be processing. Please wait a minute and try again.') # RF fix + self.model_id = data['id'] + + if data['status'] == 'new': # new model to start training + self.train_args = { + # TODO: deprecate 'batch_size' key for 'batch' in 3Q23 + 'batch': data['batch' if ('batch' in data) else 'batch_size'], + 'epochs': data['epochs'], + 'imgsz': data['imgsz'], + 'patience': data['patience'], + 'device': data['device'], + 'cache': data['cache'], + 'data': data['data']} + self.model_file = data.get('cfg') or data.get('weights') # cfg for pretrained=False + self.model_file = checks.check_yolov5u_filename(self.model_file, verbose=False) # YOLOv5->YOLOv5u + elif data['status'] == 'training': # existing model to resume training + self.train_args = {'data': data['data'], 'resume': True} + self.model_file = data['resume'] + + return data + except requests.exceptions.ConnectionError as e: + raise ConnectionRefusedError('ERROR: The HUB server is not online. Please try again later.') from e + except Exception: + raise + + def upload_model(self, epoch, weights, is_best=False, map=0.0, final=False): + """ + Upload a model checkpoint to Ultralytics HUB. + + Args: + epoch (int): The current training epoch. + weights (str): Path to the model weights file. + is_best (bool): Indicates if the current model is the best one so far. + map (float): Mean average precision of the model. + final (bool): Indicates if the model is the final model after training. + """ + if Path(weights).is_file(): + with open(weights, 'rb') as f: + file = f.read() + else: + LOGGER.warning(f'{PREFIX}WARNING ⚠️ Model upload issue. Missing model {weights}.') + file = None + url = f'{self.api_url}/upload' + # url = 'http://httpbin.org/post' # for debug + data = {'epoch': epoch} + if final: + data.update({'type': 'final', 'map': map}) + smart_request('post', + url, + data=data, + files={'best.pt': file}, + headers=self.auth_header, + retry=10, + timeout=3600, + thread=False, + progress=True, + code=4) + else: + data.update({'type': 'epoch', 'isBest': bool(is_best)}) + smart_request('post', url, data=data, files={'last.pt': file}, headers=self.auth_header, code=3) + + @threaded + def _start_heartbeat(self): + """Begin a threaded heartbeat loop to report the agent's status to Ultralytics HUB.""" + while self.alive: + r = smart_request('post', + f'{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}', + json={ + 'agent': AGENT_NAME, + 'agentId': self.agent_id}, + headers=self.auth_header, + retry=0, + code=5, + thread=False) # already in a thread + self.agent_id = r.json().get('data', {}).get('agentId', None) + sleep(self.rate_limits['heartbeat']) diff --git a/modules/ultralytics/hub/utils.py b/modules/ultralytics/hub/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..26f560d726c1ba0dc19d3d9f7b53199b2555faf5 --- /dev/null +++ b/modules/ultralytics/hub/utils.py @@ -0,0 +1,217 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import os +import platform +import random +import sys +import threading +import time +from pathlib import Path + +import requests +from tqdm import tqdm + +from ultralytics.yolo.utils import (ENVIRONMENT, LOGGER, ONLINE, RANK, SETTINGS, TESTS_RUNNING, TQDM_BAR_FORMAT, + TryExcept, __version__, colorstr, get_git_origin_url, is_colab, is_git_dir, + is_pip_package) + +PREFIX = colorstr('Ultralytics HUB: ') +HELP_MSG = 'If this issue persists please visit https://github.com/ultralytics/hub/issues for assistance.' +HUB_API_ROOT = os.environ.get('ULTRALYTICS_HUB_API', 'https://api.ultralytics.com') + + +def request_with_credentials(url: str) -> any: + """ + Make an AJAX request with cookies attached in a Google Colab environment. + + Args: + url (str): The URL to make the request to. + + Returns: + (any): The response data from the AJAX request. + + Raises: + OSError: If the function is not run in a Google Colab environment. + """ + if not is_colab(): + raise OSError('request_with_credentials() must run in a Colab environment') + from google.colab import output # noqa + from IPython import display # noqa + display.display( + display.Javascript(""" + window._hub_tmp = new Promise((resolve, reject) => { + const timeout = setTimeout(() => reject("Failed authenticating existing browser session"), 5000) + fetch("%s", { + method: 'POST', + credentials: 'include' + }) + .then((response) => resolve(response.json())) + .then((json) => { + clearTimeout(timeout); + }).catch((err) => { + clearTimeout(timeout); + reject(err); + }); + }); + """ % url)) + return output.eval_js('_hub_tmp') + + +def requests_with_progress(method, url, **kwargs): + """ + Make an HTTP request using the specified method and URL, with an optional progress bar. + + Args: + method (str): The HTTP method to use (e.g. 'GET', 'POST'). + url (str): The URL to send the request to. + **kwargs (dict): Additional keyword arguments to pass to the underlying `requests.request` function. + + Returns: + (requests.Response): The response object from the HTTP request. + + Note: + If 'progress' is set to True, the progress bar will display the download progress + for responses with a known content length. + """ + progress = kwargs.pop('progress', False) + if not progress: + return requests.request(method, url, **kwargs) + response = requests.request(method, url, stream=True, **kwargs) + total = int(response.headers.get('content-length', 0)) # total size + pbar = tqdm(total=total, unit='B', unit_scale=True, unit_divisor=1024, bar_format=TQDM_BAR_FORMAT) + for data in response.iter_content(chunk_size=1024): + pbar.update(len(data)) + pbar.close() + return response + + +def smart_request(method, url, retry=3, timeout=30, thread=True, code=-1, verbose=True, progress=False, **kwargs): + """ + Makes an HTTP request using the 'requests' library, with exponential backoff retries up to a specified timeout. + + Args: + method (str): The HTTP method to use for the request. Choices are 'post' and 'get'. + url (str): The URL to make the request to. + retry (int, optional): Number of retries to attempt before giving up. Default is 3. + timeout (int, optional): Timeout in seconds after which the function will give up retrying. Default is 30. + thread (bool, optional): Whether to execute the request in a separate daemon thread. Default is True. + code (int, optional): An identifier for the request, used for logging purposes. Default is -1. + verbose (bool, optional): A flag to determine whether to print out to console or not. Default is True. + progress (bool, optional): Whether to show a progress bar during the request. Default is False. + **kwargs (dict): Keyword arguments to be passed to the requests function specified in method. + + Returns: + (requests.Response): The HTTP response object. If the request is executed in a separate thread, returns None. + """ + retry_codes = (408, 500) # retry only these codes + + @TryExcept(verbose=verbose) + def func(func_method, func_url, **func_kwargs): + """Make HTTP requests with retries and timeouts, with optional progress tracking.""" + r = None # response + t0 = time.time() # initial time for timer + for i in range(retry + 1): + if (time.time() - t0) > timeout: + break + r = requests_with_progress(func_method, func_url, **func_kwargs) # i.e. get(url, data, json, files) + if r.status_code < 300: # return codes in the 2xx range are generally considered "good" or "successful" + break + try: + m = r.json().get('message', 'No JSON message.') + except AttributeError: + m = 'Unable to read JSON.' + if i == 0: + if r.status_code in retry_codes: + m += f' Retrying {retry}x for {timeout}s.' if retry else '' + elif r.status_code == 429: # rate limit + h = r.headers # response headers + m = f"Rate limit reached ({h['X-RateLimit-Remaining']}/{h['X-RateLimit-Limit']}). " \ + f"Please retry after {h['Retry-After']}s." + if verbose: + LOGGER.warning(f'{PREFIX}{m} {HELP_MSG} ({r.status_code} #{code})') + if r.status_code not in retry_codes: + return r + time.sleep(2 ** i) # exponential standoff + return r + + args = method, url + kwargs['progress'] = progress + if thread: + threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True).start() + else: + return func(*args, **kwargs) + + +class Events: + """ + A class for collecting anonymous event analytics. Event analytics are enabled when sync=True in settings and + disabled when sync=False. Run 'yolo settings' to see and update settings YAML file. + + Attributes: + url (str): The URL to send anonymous events. + rate_limit (float): The rate limit in seconds for sending events. + metadata (dict): A dictionary containing metadata about the environment. + enabled (bool): A flag to enable or disable Events based on certain conditions. + """ + + url = 'https://www.google-analytics.com/mp/collect?measurement_id=G-X8NCJYTQXM&api_secret=QLQrATrNSwGRFRLE-cbHJw' + + def __init__(self): + """ + Initializes the Events object with default values for events, rate_limit, and metadata. + """ + self.events = [] # events list + self.rate_limit = 60.0 # rate limit (seconds) + self.t = 0.0 # rate limit timer (seconds) + self.metadata = { + 'cli': Path(sys.argv[0]).name == 'yolo', + 'install': 'git' if is_git_dir() else 'pip' if is_pip_package() else 'other', + 'python': '.'.join(platform.python_version_tuple()[:2]), # i.e. 3.10 + 'version': __version__, + 'env': ENVIRONMENT, + 'session_id': round(random.random() * 1E15), + 'engagement_time_msec': 1000} + self.enabled = \ + SETTINGS['sync'] and \ + RANK in (-1, 0) and \ + not TESTS_RUNNING and \ + ONLINE and \ + (is_pip_package() or get_git_origin_url() == 'https://github.com/ultralytics/ultralytics.git') + + def __call__(self, cfg): + """ + Attempts to add a new event to the events list and send events if the rate limit is reached. + + Args: + cfg (IterableSimpleNamespace): The configuration object containing mode and task information. + """ + if not self.enabled: + # Events disabled, do nothing + return + + # Attempt to add to events + if len(self.events) < 25: # Events list limited to 25 events (drop any events past this) + params = {**self.metadata, **{'task': cfg.task}} + if cfg.mode == 'export': + params['format'] = cfg.format + self.events.append({'name': cfg.mode, 'params': params}) + + # Check rate limit + t = time.time() + if (t - self.t) < self.rate_limit: + # Time is under rate limiter, wait to send + return + + # Time is over rate limiter, send now + data = {'client_id': SETTINGS['uuid'], 'events': self.events} # SHA-256 anonymized UUID hash and events list + + # POST equivalent to requests.post(self.url, json=data) + smart_request('post', self.url, json=data, retry=0, verbose=False) + + # Reset events and rate limit timer + self.events = [] + self.t = t + + +# Run below code on hub/utils init ------------------------------------------------------------------------------------- +events = Events() diff --git a/modules/ultralytics/models/README.md b/modules/ultralytics/models/README.md new file mode 100644 index 0000000000000000000000000000000000000000..a0edc4b06aa06c454bdd6d97087df6970e689871 --- /dev/null +++ b/modules/ultralytics/models/README.md @@ -0,0 +1,45 @@ +## Models + +Welcome to the Ultralytics Models directory! Here you will find a wide variety of pre-configured model configuration +files (`*.yaml`s) that can be used to create custom YOLO models. The models in this directory have been expertly crafted +and fine-tuned by the Ultralytics team to provide the best performance for a wide range of object detection and image +segmentation tasks. + +These model configurations cover a wide range of scenarios, from simple object detection to more complex tasks like +instance segmentation and object tracking. They are also designed to run efficiently on a variety of hardware platforms, +from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or just getting started with YOLO, this +directory provides a great starting point for your custom model development needs. + +To get started, simply browse through the models in this directory and find one that best suits your needs. Once you've +selected a model, you can use the provided `*.yaml` file to train and deploy your custom YOLO model with ease. See full +details at the Ultralytics [Docs](https://docs.ultralytics.com/models), and if you need help or have any questions, feel free +to reach out to the Ultralytics team for support. So, don't wait, start creating your custom YOLO model now! + +### Usage + +Model `*.yaml` files may be used directly in the Command Line Interface (CLI) with a `yolo` command: + +```bash +yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100 +``` + +They may also be used directly in a Python environment, and accepts the same +[arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above: + +```python +from ultralytics import YOLO + +model = YOLO("model.yaml") # build a YOLOv8n model from scratch +# YOLO("model.pt") use pre-trained model if available +model.info() # display model information +model.train(data="coco128.yaml", epochs=100) # train the model +``` + +## Pre-trained Model Architectures + +Ultralytics supports many model architectures. Visit https://docs.ultralytics.com/models to view detailed information +and usage. Any of these models can be used by loading their configs or pretrained checkpoints if available. + +## Contributing New Models + +If you've developed a new model architecture or have improvements for existing models that you'd like to contribute to the Ultralytics community, please submit your contribution in a new Pull Request. For more details, visit our [Contributing Guide](https://docs.ultralytics.com/help/contributing). diff --git a/modules/ultralytics/models/rt-detr/rtdetr-l.yaml b/modules/ultralytics/models/rt-detr/rtdetr-l.yaml new file mode 100644 index 0000000000000000000000000000000000000000..bd20da16f0828a375f1f469c1e698d6351e67aa8 --- /dev/null +++ b/modules/ultralytics/models/rt-detr/rtdetr-l.yaml @@ -0,0 +1,50 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr + +# Parameters +nc: 80 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n' + # [depth, width, max_channels] + l: [1.00, 1.00, 1024] + +backbone: + # [from, repeats, module, args] + - [-1, 1, HGStem, [32, 48]] # 0-P2/4 + - [-1, 6, HGBlock, [48, 128, 3]] # stage 1 + + - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8 + - [-1, 6, HGBlock, [96, 512, 3]] # stage 2 + + - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16 + - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut + - [-1, 6, HGBlock, [192, 1024, 5, True, True]] + - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3 + + - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32 + - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4 + +head: + - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2 + - [-1, 1, AIFI, [1024, 8]] + - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1 + - [[-2, -1], 1, Concat, [1]] + - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0 + - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0 + - [[-2, -1], 1, Concat, [1]] # cat backbone P4 + - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1 + + - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0 + - [[-1, 17], 1, Concat, [1]] # cat Y4 + - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0 + + - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1 + - [[-1, 12], 1, Concat, [1]] # cat Y5 + - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1 + + - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5) diff --git a/modules/ultralytics/models/rt-detr/rtdetr-x.yaml b/modules/ultralytics/models/rt-detr/rtdetr-x.yaml new file mode 100644 index 0000000000000000000000000000000000000000..848cb52b1f7430331ec625f56e496feb31f3f8eb --- /dev/null +++ b/modules/ultralytics/models/rt-detr/rtdetr-x.yaml @@ -0,0 +1,54 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# RT-DETR-x object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr + +# Parameters +nc: 80 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n' + # [depth, width, max_channels] + x: [1.00, 1.00, 2048] + +backbone: + # [from, repeats, module, args] + - [-1, 1, HGStem, [32, 64]] # 0-P2/4 + - [-1, 6, HGBlock, [64, 128, 3]] # stage 1 + + - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8 + - [-1, 6, HGBlock, [128, 512, 3]] + - [-1, 6, HGBlock, [128, 512, 3, False, True]] # 4-stage 2 + + - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 5-P3/16 + - [-1, 6, HGBlock, [256, 1024, 5, True, False]] # cm, c2, k, light, shortcut + - [-1, 6, HGBlock, [256, 1024, 5, True, True]] + - [-1, 6, HGBlock, [256, 1024, 5, True, True]] + - [-1, 6, HGBlock, [256, 1024, 5, True, True]] + - [-1, 6, HGBlock, [256, 1024, 5, True, True]] # 10-stage 3 + + - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 11-P4/32 + - [-1, 6, HGBlock, [512, 2048, 5, True, False]] + - [-1, 6, HGBlock, [512, 2048, 5, True, True]] # 13-stage 4 + +head: + - [-1, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 14 input_proj.2 + - [-1, 1, AIFI, [2048, 8]] + - [-1, 1, Conv, [384, 1, 1]] # 16, Y5, lateral_convs.0 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [10, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 18 input_proj.1 + - [[-2, -1], 1, Concat, [1]] + - [-1, 3, RepC3, [384]] # 20, fpn_blocks.0 + - [-1, 1, Conv, [384, 1, 1]] # 21, Y4, lateral_convs.1 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [4, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 23 input_proj.0 + - [[-2, -1], 1, Concat, [1]] # cat backbone P4 + - [-1, 3, RepC3, [384]] # X3 (25), fpn_blocks.1 + + - [-1, 1, Conv, [384, 3, 2]] # 26, downsample_convs.0 + - [[-1, 21], 1, Concat, [1]] # cat Y4 + - [-1, 3, RepC3, [384]] # F4 (28), pan_blocks.0 + + - [-1, 1, Conv, [384, 3, 2]] # 29, downsample_convs.1 + - [[-1, 16], 1, Concat, [1]] # cat Y5 + - [-1, 3, RepC3, [384]] # F5 (31), pan_blocks.1 + + - [[25, 28, 31], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5) diff --git a/modules/ultralytics/models/v3/yolov3-spp.yaml b/modules/ultralytics/models/v3/yolov3-spp.yaml new file mode 100644 index 0000000000000000000000000000000000000000..406e019b4c84d9b8de5cfc7e9f9d9d49c5eead76 --- /dev/null +++ b/modules/ultralytics/models/v3/yolov3-spp.yaml @@ -0,0 +1,48 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv3-SPP object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3 + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple + +# darknet53 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [32, 3, 1]], # 0 + [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 + [-1, 1, Bottleneck, [64]], + [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 + [-1, 2, Bottleneck, [128]], + [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 + [-1, 8, Bottleneck, [256]], + [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 + [-1, 8, Bottleneck, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 + [-1, 4, Bottleneck, [1024]], # 10 + ] + +# YOLOv3-SPP head +head: + [[-1, 1, Bottleneck, [1024, False]], + [-1, 1, SPP, [512, [5, 9, 13]]], + [-1, 1, Conv, [1024, 3, 1]], + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) + + [-2, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P4 + [-1, 1, Bottleneck, [512, False]], + [-1, 1, Bottleneck, [512, False]], + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) + + [-2, 1, Conv, [128, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P3 + [-1, 1, Bottleneck, [256, False]], + [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) + + [[27, 22, 15], 1, Detect, [nc]], # Detect(P3, P4, P5) + ] diff --git a/modules/ultralytics/models/v3/yolov3-tiny.yaml b/modules/ultralytics/models/v3/yolov3-tiny.yaml new file mode 100644 index 0000000000000000000000000000000000000000..69d8e42ce68daee04bd777f22ebf8f4c6d60de9a --- /dev/null +++ b/modules/ultralytics/models/v3/yolov3-tiny.yaml @@ -0,0 +1,39 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv3-tiny object detection model with P4-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3 + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple + +# YOLOv3-tiny backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [16, 3, 1]], # 0 + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2 + [-1, 1, Conv, [32, 3, 1]], + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4 + [-1, 1, Conv, [64, 3, 1]], + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8 + [-1, 1, Conv, [128, 3, 1]], + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16 + [-1, 1, Conv, [256, 3, 1]], + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32 + [-1, 1, Conv, [512, 3, 1]], + [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11 + [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12 + ] + +# YOLOv3-tiny head +head: + [[-1, 1, Conv, [1024, 3, 1]], + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large) + + [-2, 1, Conv, [128, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P4 + [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium) + + [[19, 15], 1, Detect, [nc]], # Detect(P4, P5) + ] diff --git a/modules/ultralytics/models/v3/yolov3.yaml b/modules/ultralytics/models/v3/yolov3.yaml new file mode 100644 index 0000000000000000000000000000000000000000..7cc0afa173e09af9f09f752b45ad8bd113db612f --- /dev/null +++ b/modules/ultralytics/models/v3/yolov3.yaml @@ -0,0 +1,48 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv3 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3 + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple + +# darknet53 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [32, 3, 1]], # 0 + [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 + [-1, 1, Bottleneck, [64]], + [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 + [-1, 2, Bottleneck, [128]], + [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 + [-1, 8, Bottleneck, [256]], + [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 + [-1, 8, Bottleneck, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 + [-1, 4, Bottleneck, [1024]], # 10 + ] + +# YOLOv3 head +head: + [[-1, 1, Bottleneck, [1024, False]], + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, Conv, [1024, 3, 1]], + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) + + [-2, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P4 + [-1, 1, Bottleneck, [512, False]], + [-1, 1, Bottleneck, [512, False]], + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) + + [-2, 1, Conv, [128, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P3 + [-1, 1, Bottleneck, [256, False]], + [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) + + [[27, 22, 15], 1, Detect, [nc]], # Detect(P3, P4, P5) + ] diff --git a/modules/ultralytics/models/v5/yolov5-p6.yaml b/modules/ultralytics/models/v5/yolov5-p6.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d4683771b50057b216aa48c5d8e5722a671d077c --- /dev/null +++ b/modules/ultralytics/models/v5/yolov5-p6.yaml @@ -0,0 +1,61 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv5 object detection model with P3-P6 outputs. For details see https://docs.ultralytics.com/models/yolov5 + +# Parameters +nc: 80 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will call yolov5-p6.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] + s: [0.33, 0.50, 1024] + m: [0.67, 0.75, 1024] + l: [1.00, 1.00, 1024] + x: [1.33, 1.25, 1024] + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 + [-1, 3, C3, [768]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 11 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [768, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P5 + [-1, 3, C3, [768, False]], # 15 + + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 19 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 23 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 20], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 26 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 16], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [768, False]], # 29 (P5/32-large) + + [-1, 1, Conv, [768, 3, 2]], + [[-1, 12], 1, Concat, [1]], # cat head P6 + [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) + + [[23, 26, 29, 32], 1, Detect, [nc]], # Detect(P3, P4, P5, P6) + ] diff --git a/modules/ultralytics/models/v5/yolov5.yaml b/modules/ultralytics/models/v5/yolov5.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4a3fcedf7c8d8e935c637fe80f52f94310841f45 --- /dev/null +++ b/modules/ultralytics/models/v5/yolov5.yaml @@ -0,0 +1,50 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5 + +# Parameters +nc: 80 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] + s: [0.33, 0.50, 1024] + m: [0.67, 0.75, 1024] + l: [1.00, 1.00, 1024] + x: [1.33, 1.25, 1024] + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc]], # Detect(P3, P4, P5) + ] diff --git a/modules/ultralytics/models/v6/yolov6.yaml b/modules/ultralytics/models/v6/yolov6.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cb5e32ac3a75d49ddbda9e4cecdc1265ed209401 --- /dev/null +++ b/modules/ultralytics/models/v6/yolov6.yaml @@ -0,0 +1,53 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/models/yolov6 + +# Parameters +nc: 80 # number of classes +activation: nn.ReLU() # (optional) model default activation function +scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] + s: [0.33, 0.50, 1024] + m: [0.67, 0.75, 768] + l: [1.00, 1.00, 512] + x: [1.00, 1.25, 512] + +# YOLOv6-3.0s backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 6, Conv, [128, 3, 1]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 12, Conv, [256, 3, 1]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 18, Conv, [512, 3, 1]] + - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 + - [-1, 6, Conv, [1024, 3, 1]] + - [-1, 1, SPPF, [1024, 5]] # 9 + +# YOLOv6-3.0s head +head: + - [-1, 1, Conv, [256, 1, 1]] + - [-1, 1, nn.ConvTranspose2d, [256, 2, 2, 0]] + - [[-1, 6], 1, Concat, [1]] # cat backbone P4 + - [-1, 1, Conv, [256, 3, 1]] + - [-1, 9, Conv, [256, 3, 1]] # 14 + + - [-1, 1, Conv, [128, 1, 1]] + - [-1, 1, nn.ConvTranspose2d, [128, 2, 2, 0]] + - [[-1, 4], 1, Concat, [1]] # cat backbone P3 + - [-1, 1, Conv, [128, 3, 1]] + - [-1, 9, Conv, [128, 3, 1]] # 19 + + - [-1, 1, Conv, [128, 3, 2]] + - [[-1, 15], 1, Concat, [1]] # cat head P4 + - [-1, 1, Conv, [256, 3, 1]] + - [-1, 9, Conv, [256, 3, 1]] # 23 + + - [-1, 1, Conv, [256, 3, 2]] + - [[-1, 10], 1, Concat, [1]] # cat head P5 + - [-1, 1, Conv, [512, 3, 1]] + - [-1, 9, Conv, [512, 3, 1]] # 27 + + - [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5) diff --git a/modules/ultralytics/models/v8/yolov8-cls.yaml b/modules/ultralytics/models/v8/yolov8-cls.yaml new file mode 100644 index 0000000000000000000000000000000000000000..5332f1d64ee32bdf8d5cb995e5ef3a3f6f970413 --- /dev/null +++ b/modules/ultralytics/models/v8/yolov8-cls.yaml @@ -0,0 +1,29 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify + +# Parameters +nc: 1000 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] + s: [0.33, 0.50, 1024] + m: [0.67, 0.75, 1024] + l: [1.00, 1.00, 1024] + x: [1.00, 1.25, 1024] + +# YOLOv8.0n backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 3, C2f, [128, True]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 6, C2f, [256, True]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 6, C2f, [512, True]] + - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 + - [-1, 3, C2f, [1024, True]] + +# YOLOv8.0n head +head: + - [-1, 1, Classify, [nc]] # Classify diff --git a/modules/ultralytics/models/v8/yolov8-p2.yaml b/modules/ultralytics/models/v8/yolov8-p2.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3e286aa96f6f9ba79970c8fead0e83782f70bfca --- /dev/null +++ b/modules/ultralytics/models/v8/yolov8-p2.yaml @@ -0,0 +1,54 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect + +# Parameters +nc: 80 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] + s: [0.33, 0.50, 1024] + m: [0.67, 0.75, 768] + l: [1.00, 1.00, 512] + x: [1.00, 1.25, 512] + +# YOLOv8.0 backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 3, C2f, [128, True]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 6, C2f, [256, True]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 6, C2f, [512, True]] + - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 + - [-1, 3, C2f, [1024, True]] + - [-1, 1, SPPF, [1024, 5]] # 9 + +# YOLOv8.0-p2 head +head: + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 6], 1, Concat, [1]] # cat backbone P4 + - [-1, 3, C2f, [512]] # 12 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 4], 1, Concat, [1]] # cat backbone P3 + - [-1, 3, C2f, [256]] # 15 (P3/8-small) + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 2], 1, Concat, [1]] # cat backbone P2 + - [-1, 3, C2f, [128]] # 18 (P2/4-xsmall) + + - [-1, 1, Conv, [128, 3, 2]] + - [[-1, 15], 1, Concat, [1]] # cat head P3 + - [-1, 3, C2f, [256]] # 21 (P3/8-small) + + - [-1, 1, Conv, [256, 3, 2]] + - [[-1, 12], 1, Concat, [1]] # cat head P4 + - [-1, 3, C2f, [512]] # 24 (P4/16-medium) + + - [-1, 1, Conv, [512, 3, 2]] + - [[-1, 9], 1, Concat, [1]] # cat head P5 + - [-1, 3, C2f, [1024]] # 27 (P5/32-large) + + - [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5) diff --git a/modules/ultralytics/models/v8/yolov8-p6.yaml b/modules/ultralytics/models/v8/yolov8-p6.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3635ed97ebc4219188f174be99fa301daeaf49b8 --- /dev/null +++ b/modules/ultralytics/models/v8/yolov8-p6.yaml @@ -0,0 +1,56 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect + +# Parameters +nc: 80 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] + s: [0.33, 0.50, 1024] + m: [0.67, 0.75, 768] + l: [1.00, 1.00, 512] + x: [1.00, 1.25, 512] + +# YOLOv8.0x6 backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 3, C2f, [128, True]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 6, C2f, [256, True]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 6, C2f, [512, True]] + - [-1, 1, Conv, [768, 3, 2]] # 7-P5/32 + - [-1, 3, C2f, [768, True]] + - [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64 + - [-1, 3, C2f, [1024, True]] + - [-1, 1, SPPF, [1024, 5]] # 11 + +# YOLOv8.0x6 head +head: + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 8], 1, Concat, [1]] # cat backbone P5 + - [-1, 3, C2, [768, False]] # 14 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 6], 1, Concat, [1]] # cat backbone P4 + - [-1, 3, C2, [512, False]] # 17 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 4], 1, Concat, [1]] # cat backbone P3 + - [-1, 3, C2, [256, False]] # 20 (P3/8-small) + + - [-1, 1, Conv, [256, 3, 2]] + - [[-1, 17], 1, Concat, [1]] # cat head P4 + - [-1, 3, C2, [512, False]] # 23 (P4/16-medium) + + - [-1, 1, Conv, [512, 3, 2]] + - [[-1, 14], 1, Concat, [1]] # cat head P5 + - [-1, 3, C2, [768, False]] # 26 (P5/32-large) + + - [-1, 1, Conv, [768, 3, 2]] + - [[-1, 11], 1, Concat, [1]] # cat head P6 + - [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge) + + - [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6) diff --git a/modules/ultralytics/models/v8/yolov8-pose-p6.yaml b/modules/ultralytics/models/v8/yolov8-pose-p6.yaml new file mode 100644 index 0000000000000000000000000000000000000000..06381fb196673f9751677f9993540fe74e88ba03 --- /dev/null +++ b/modules/ultralytics/models/v8/yolov8-pose-p6.yaml @@ -0,0 +1,57 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose + +# Parameters +nc: 1 # number of classes +kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) +scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] + s: [0.33, 0.50, 1024] + m: [0.67, 0.75, 768] + l: [1.00, 1.00, 512] + x: [1.00, 1.25, 512] + +# YOLOv8.0x6 backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 3, C2f, [128, True]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 6, C2f, [256, True]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 6, C2f, [512, True]] + - [-1, 1, Conv, [768, 3, 2]] # 7-P5/32 + - [-1, 3, C2f, [768, True]] + - [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64 + - [-1, 3, C2f, [1024, True]] + - [-1, 1, SPPF, [1024, 5]] # 11 + +# YOLOv8.0x6 head +head: + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 8], 1, Concat, [1]] # cat backbone P5 + - [-1, 3, C2, [768, False]] # 14 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 6], 1, Concat, [1]] # cat backbone P4 + - [-1, 3, C2, [512, False]] # 17 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 4], 1, Concat, [1]] # cat backbone P3 + - [-1, 3, C2, [256, False]] # 20 (P3/8-small) + + - [-1, 1, Conv, [256, 3, 2]] + - [[-1, 17], 1, Concat, [1]] # cat head P4 + - [-1, 3, C2, [512, False]] # 23 (P4/16-medium) + + - [-1, 1, Conv, [512, 3, 2]] + - [[-1, 14], 1, Concat, [1]] # cat head P5 + - [-1, 3, C2, [768, False]] # 26 (P5/32-large) + + - [-1, 1, Conv, [768, 3, 2]] + - [[-1, 11], 1, Concat, [1]] # cat head P6 + - [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge) + + - [[20, 23, 26, 29], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5, P6) diff --git a/modules/ultralytics/models/v8/yolov8-pose.yaml b/modules/ultralytics/models/v8/yolov8-pose.yaml new file mode 100644 index 0000000000000000000000000000000000000000..9f48e1ead9b223c9a4fcc6836501c6794d431957 --- /dev/null +++ b/modules/ultralytics/models/v8/yolov8-pose.yaml @@ -0,0 +1,47 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose + +# Parameters +nc: 1 # number of classes +kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) +scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will call yolov8-pose.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] + s: [0.33, 0.50, 1024] + m: [0.67, 0.75, 768] + l: [1.00, 1.00, 512] + x: [1.00, 1.25, 512] + +# YOLOv8.0n backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 3, C2f, [128, True]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 6, C2f, [256, True]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 6, C2f, [512, True]] + - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 + - [-1, 3, C2f, [1024, True]] + - [-1, 1, SPPF, [1024, 5]] # 9 + +# YOLOv8.0n head +head: + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 6], 1, Concat, [1]] # cat backbone P4 + - [-1, 3, C2f, [512]] # 12 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 4], 1, Concat, [1]] # cat backbone P3 + - [-1, 3, C2f, [256]] # 15 (P3/8-small) + + - [-1, 1, Conv, [256, 3, 2]] + - [[-1, 12], 1, Concat, [1]] # cat head P4 + - [-1, 3, C2f, [512]] # 18 (P4/16-medium) + + - [-1, 1, Conv, [512, 3, 2]] + - [[-1, 9], 1, Concat, [1]] # cat head P5 + - [-1, 3, C2f, [1024]] # 21 (P5/32-large) + + - [[15, 18, 21], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5) diff --git a/modules/ultralytics/models/v8/yolov8-rtdetr.yaml b/modules/ultralytics/models/v8/yolov8-rtdetr.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a0581068f441617d3d215fb4c380f374e4da94d0 --- /dev/null +++ b/modules/ultralytics/models/v8/yolov8-rtdetr.yaml @@ -0,0 +1,46 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect + +# Parameters +nc: 80 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs + s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs + m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs + l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs + x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs + +# YOLOv8.0n backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 3, C2f, [128, True]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 6, C2f, [256, True]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 6, C2f, [512, True]] + - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 + - [-1, 3, C2f, [1024, True]] + - [-1, 1, SPPF, [1024, 5]] # 9 + +# YOLOv8.0n head +head: + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 6], 1, Concat, [1]] # cat backbone P4 + - [-1, 3, C2f, [512]] # 12 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 4], 1, Concat, [1]] # cat backbone P3 + - [-1, 3, C2f, [256]] # 15 (P3/8-small) + + - [-1, 1, Conv, [256, 3, 2]] + - [[-1, 12], 1, Concat, [1]] # cat head P4 + - [-1, 3, C2f, [512]] # 18 (P4/16-medium) + + - [-1, 1, Conv, [512, 3, 2]] + - [[-1, 9], 1, Concat, [1]] # cat head P5 + - [-1, 3, C2f, [1024]] # 21 (P5/32-large) + + - [[15, 18, 21], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5) diff --git a/modules/ultralytics/models/v8/yolov8-seg.yaml b/modules/ultralytics/models/v8/yolov8-seg.yaml new file mode 100644 index 0000000000000000000000000000000000000000..fbb08fc451307ea99dc7fe99f6edfe2eb40c4daf --- /dev/null +++ b/modules/ultralytics/models/v8/yolov8-seg.yaml @@ -0,0 +1,46 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment + +# Parameters +nc: 80 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] + s: [0.33, 0.50, 1024] + m: [0.67, 0.75, 768] + l: [1.00, 1.00, 512] + x: [1.00, 1.25, 512] + +# YOLOv8.0n backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 3, C2f, [128, True]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 6, C2f, [256, True]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 6, C2f, [512, True]] + - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 + - [-1, 3, C2f, [1024, True]] + - [-1, 1, SPPF, [1024, 5]] # 9 + +# YOLOv8.0n head +head: + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 6], 1, Concat, [1]] # cat backbone P4 + - [-1, 3, C2f, [512]] # 12 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 4], 1, Concat, [1]] # cat backbone P3 + - [-1, 3, C2f, [256]] # 15 (P3/8-small) + + - [-1, 1, Conv, [256, 3, 2]] + - [[-1, 12], 1, Concat, [1]] # cat head P4 + - [-1, 3, C2f, [512]] # 18 (P4/16-medium) + + - [-1, 1, Conv, [512, 3, 2]] + - [[-1, 9], 1, Concat, [1]] # cat head P5 + - [-1, 3, C2f, [1024]] # 21 (P5/32-large) + + - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5) diff --git a/modules/ultralytics/models/v8/yolov8.yaml b/modules/ultralytics/models/v8/yolov8.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2255450f1715a3c244aed909a350f76f38c04170 --- /dev/null +++ b/modules/ultralytics/models/v8/yolov8.yaml @@ -0,0 +1,46 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect + +# Parameters +nc: 80 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs + s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs + m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs + l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs + x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs + +# YOLOv8.0n backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 3, C2f, [128, True]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 6, C2f, [256, True]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 6, C2f, [512, True]] + - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 + - [-1, 3, C2f, [1024, True]] + - [-1, 1, SPPF, [1024, 5]] # 9 + +# YOLOv8.0n head +head: + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 6], 1, Concat, [1]] # cat backbone P4 + - [-1, 3, C2f, [512]] # 12 + + - [-1, 1, nn.Upsample, [None, 2, 'nearest']] + - [[-1, 4], 1, Concat, [1]] # cat backbone P3 + - [-1, 3, C2f, [256]] # 15 (P3/8-small) + + - [-1, 1, Conv, [256, 3, 2]] + - [[-1, 12], 1, Concat, [1]] # cat head P4 + - [-1, 3, C2f, [512]] # 18 (P4/16-medium) + + - [-1, 1, Conv, [512, 3, 2]] + - [[-1, 9], 1, Concat, [1]] # cat head P5 + - [-1, 3, C2f, [1024]] # 21 (P5/32-large) + + - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5) diff --git a/modules/ultralytics/nn/__init__.py b/modules/ultralytics/nn/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9889b7ef218a106eade7e56f381a66c27c53b7c3 --- /dev/null +++ b/modules/ultralytics/nn/__init__.py @@ -0,0 +1,9 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .tasks import (BaseModel, ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight, + attempt_load_weights, guess_model_scale, guess_model_task, parse_model, torch_safe_load, + yaml_model_load) + +__all__ = ('attempt_load_one_weight', 'attempt_load_weights', 'parse_model', 'yaml_model_load', 'guess_model_task', + 'guess_model_scale', 'torch_safe_load', 'DetectionModel', 'SegmentationModel', 'ClassificationModel', + 'BaseModel') diff --git a/modules/ultralytics/nn/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/nn/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..489d58748069abba0484702d785a14a010c77d2f Binary files /dev/null and b/modules/ultralytics/nn/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/nn/__pycache__/autobackend.cpython-312.pyc b/modules/ultralytics/nn/__pycache__/autobackend.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1f26359402c8dc7f30bcd6bfac4a768d7a959a55 Binary files /dev/null and b/modules/ultralytics/nn/__pycache__/autobackend.cpython-312.pyc differ diff --git a/modules/ultralytics/nn/__pycache__/tasks.cpython-312.pyc b/modules/ultralytics/nn/__pycache__/tasks.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..78793bfa00128833c1204eca6e3898c6f232ba64 Binary files /dev/null and b/modules/ultralytics/nn/__pycache__/tasks.cpython-312.pyc differ diff --git a/modules/ultralytics/nn/autobackend.py b/modules/ultralytics/nn/autobackend.py new file mode 100644 index 0000000000000000000000000000000000000000..7fb9e6d132e6345b9b4898ff04b100a76a7addf1 --- /dev/null +++ b/modules/ultralytics/nn/autobackend.py @@ -0,0 +1,455 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import ast +import contextlib +import json +import platform +import zipfile +from collections import OrderedDict, namedtuple +from pathlib import Path +from urllib.parse import urlparse + +import cv2 +import numpy as np +import torch +import torch.nn as nn +from PIL import Image + +from ultralytics.yolo.utils import LINUX, LOGGER, ROOT, yaml_load +from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version, check_yaml +from ultralytics.yolo.utils.downloads import attempt_download_asset, is_url +from ultralytics.yolo.utils.ops import xywh2xyxy + + +def check_class_names(names): + """Check class names. Map imagenet class codes to human-readable names if required. Convert lists to dicts.""" + if isinstance(names, list): # names is a list + names = dict(enumerate(names)) # convert to dict + if isinstance(names, dict): + # Convert 1) string keys to int, i.e. '0' to 0, and non-string values to strings, i.e. True to 'True' + names = {int(k): str(v) for k, v in names.items()} + n = len(names) + if max(names.keys()) >= n: + raise KeyError(f'{n}-class dataset requires class indices 0-{n - 1}, but you have invalid class indices ' + f'{min(names.keys())}-{max(names.keys())} defined in your dataset YAML.') + if isinstance(names[0], str) and names[0].startswith('n0'): # imagenet class codes, i.e. 'n01440764' + map = yaml_load(ROOT / 'datasets/ImageNet.yaml')['map'] # human-readable names + names = {k: map[v] for k, v in names.items()} + return names + + +class AutoBackend(nn.Module): + + def __init__(self, + weights='yolov8n.pt', + device=torch.device('cpu'), + dnn=False, + data=None, + fp16=False, + fuse=True, + verbose=True): + """ + MultiBackend class for python inference on various platforms using Ultralytics YOLO. + + Args: + weights (str): The path to the weights file. Default: 'yolov8n.pt' + device (torch.device): The device to run the model on. + dnn (bool): Use OpenCV DNN module for inference if True, defaults to False. + data (str | Path | optional): Additional data.yaml file for class names. + fp16 (bool): If True, use half precision. Default: False + fuse (bool): Whether to fuse the model or not. Default: True + verbose (bool): Whether to run in verbose mode or not. Default: True + + Supported formats and their naming conventions: + | Format | Suffix | + |-----------------------|------------------| + | PyTorch | *.pt | + | TorchScript | *.torchscript | + | ONNX Runtime | *.onnx | + | ONNX OpenCV DNN | *.onnx dnn=True | + | OpenVINO | *.xml | + | CoreML | *.mlmodel | + | TensorRT | *.engine | + | TensorFlow SavedModel | *_saved_model | + | TensorFlow GraphDef | *.pb | + | TensorFlow Lite | *.tflite | + | TensorFlow Edge TPU | *_edgetpu.tflite | + | PaddlePaddle | *_paddle_model | + """ + super().__init__() + w = str(weights[0] if isinstance(weights, list) else weights) + nn_module = isinstance(weights, torch.nn.Module) + pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w) + fp16 &= pt or jit or onnx or engine or nn_module or triton # FP16 + nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH) + stride = 32 # default stride + model, metadata = None, None + cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA + if not (pt or triton or nn_module): + w = attempt_download_asset(w) # download if not local + + # NOTE: special case: in-memory pytorch model + if nn_module: + model = weights.to(device) + model = model.fuse(verbose=verbose) if fuse else model + if hasattr(model, 'kpt_shape'): + kpt_shape = model.kpt_shape # pose-only + stride = max(int(model.stride.max()), 32) # model stride + names = model.module.names if hasattr(model, 'module') else model.names # get class names + model.half() if fp16 else model.float() + self.model = model # explicitly assign for to(), cpu(), cuda(), half() + pt = True + elif pt: # PyTorch + from ultralytics.nn.tasks import attempt_load_weights + model = attempt_load_weights(weights if isinstance(weights, list) else w, + device=device, + inplace=True, + fuse=fuse) + if hasattr(model, 'kpt_shape'): + kpt_shape = model.kpt_shape # pose-only + stride = max(int(model.stride.max()), 32) # model stride + names = model.module.names if hasattr(model, 'module') else model.names # get class names + model.half() if fp16 else model.float() + self.model = model # explicitly assign for to(), cpu(), cuda(), half() + elif jit: # TorchScript + LOGGER.info(f'Loading {w} for TorchScript inference...') + extra_files = {'config.txt': ''} # model metadata + model = torch.jit.load(w, _extra_files=extra_files, map_location=device) + model.half() if fp16 else model.float() + if extra_files['config.txt']: # load metadata dict + metadata = json.loads(extra_files['config.txt'], object_hook=lambda x: dict(x.items())) + elif dnn: # ONNX OpenCV DNN + LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...') + check_requirements('opencv-python>=4.5.4') + net = cv2.dnn.readNetFromONNX(w) + elif onnx: # ONNX Runtime + LOGGER.info(f'Loading {w} for ONNX Runtime inference...') + check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime')) + import onnxruntime + providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider'] + session = onnxruntime.InferenceSession(w, providers=providers) + output_names = [x.name for x in session.get_outputs()] + metadata = session.get_modelmeta().custom_metadata_map # metadata + elif xml: # OpenVINO + LOGGER.info(f'Loading {w} for OpenVINO inference...') + check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/ + from openvino.runtime import Core, Layout, get_batch # noqa + ie = Core() + w = Path(w) + if not w.is_file(): # if not *.xml + w = next(w.glob('*.xml')) # get *.xml file from *_openvino_model dir + network = ie.read_model(model=str(w), weights=w.with_suffix('.bin')) + if network.get_parameters()[0].get_layout().empty: + network.get_parameters()[0].set_layout(Layout('NCHW')) + batch_dim = get_batch(network) + if batch_dim.is_static: + batch_size = batch_dim.get_length() + executable_network = ie.compile_model(network, device_name='CPU') # device_name="MYRIAD" for NCS2 + metadata = w.parent / 'metadata.yaml' + elif engine: # TensorRT + LOGGER.info(f'Loading {w} for TensorRT inference...') + try: + import tensorrt as trt # noqa https://developer.nvidia.com/nvidia-tensorrt-download + except ImportError: + if LINUX: + check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') + import tensorrt as trt # noqa + check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0 + if device.type == 'cpu': + device = torch.device('cuda:0') + Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) + logger = trt.Logger(trt.Logger.INFO) + # Read file + with open(w, 'rb') as f, trt.Runtime(logger) as runtime: + meta_len = int.from_bytes(f.read(4), byteorder='little') # read metadata length + metadata = json.loads(f.read(meta_len).decode('utf-8')) # read metadata + model = runtime.deserialize_cuda_engine(f.read()) # read engine + context = model.create_execution_context() + bindings = OrderedDict() + output_names = [] + fp16 = False # default updated below + dynamic = False + for i in range(model.num_bindings): + name = model.get_binding_name(i) + dtype = trt.nptype(model.get_binding_dtype(i)) + if model.binding_is_input(i): + if -1 in tuple(model.get_binding_shape(i)): # dynamic + dynamic = True + context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2])) + if dtype == np.float16: + fp16 = True + else: # output + output_names.append(name) + shape = tuple(context.get_binding_shape(i)) + im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device) + bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr())) + binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items()) + batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size + elif coreml: # CoreML + LOGGER.info(f'Loading {w} for CoreML inference...') + import coremltools as ct + model = ct.models.MLModel(w) + metadata = dict(model.user_defined_metadata) + elif saved_model: # TF SavedModel + LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...') + import tensorflow as tf + keras = False # assume TF1 saved_model + model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w) + metadata = Path(w) / 'metadata.yaml' + elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt + LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...') + import tensorflow as tf + + from ultralytics.yolo.engine.exporter import gd_outputs + + def wrap_frozen_graph(gd, inputs, outputs): + """Wrap frozen graphs for deployment.""" + x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=''), []) # wrapped + ge = x.graph.as_graph_element + return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs)) + + gd = tf.Graph().as_graph_def() # TF GraphDef + with open(w, 'rb') as f: + gd.ParseFromString(f.read()) + frozen_func = wrap_frozen_graph(gd, inputs='x:0', outputs=gd_outputs(gd)) + elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python + try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu + from tflite_runtime.interpreter import Interpreter, load_delegate + except ImportError: + import tensorflow as tf + Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate + if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime + LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...') + delegate = { + 'Linux': 'libedgetpu.so.1', + 'Darwin': 'libedgetpu.1.dylib', + 'Windows': 'edgetpu.dll'}[platform.system()] + interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)]) + else: # TFLite + LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') + interpreter = Interpreter(model_path=w) # load TFLite model + interpreter.allocate_tensors() # allocate + input_details = interpreter.get_input_details() # inputs + output_details = interpreter.get_output_details() # outputs + # Load metadata + with contextlib.suppress(zipfile.BadZipFile): + with zipfile.ZipFile(w, 'r') as model: + meta_file = model.namelist()[0] + metadata = ast.literal_eval(model.read(meta_file).decode('utf-8')) + elif tfjs: # TF.js + raise NotImplementedError('YOLOv8 TF.js inference is not supported') + elif paddle: # PaddlePaddle + LOGGER.info(f'Loading {w} for PaddlePaddle inference...') + check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle') + import paddle.inference as pdi # noqa + w = Path(w) + if not w.is_file(): # if not *.pdmodel + w = next(w.rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir + config = pdi.Config(str(w), str(w.with_suffix('.pdiparams'))) + if cuda: + config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0) + predictor = pdi.create_predictor(config) + input_handle = predictor.get_input_handle(predictor.get_input_names()[0]) + output_names = predictor.get_output_names() + metadata = w.parents[1] / 'metadata.yaml' + elif triton: # NVIDIA Triton Inference Server + LOGGER.info('Triton Inference Server not supported...') + ''' + TODO: + check_requirements('tritonclient[all]') + from utils.triton import TritonRemoteModel + model = TritonRemoteModel(url=w) + nhwc = model.runtime.startswith("tensorflow") + ''' + else: + from ultralytics.yolo.engine.exporter import export_formats + raise TypeError(f"model='{w}' is not a supported model format. " + 'See https://docs.ultralytics.com/modes/predict for help.' + f'\n\n{export_formats()}') + + # Load external metadata YAML + if isinstance(metadata, (str, Path)) and Path(metadata).exists(): + metadata = yaml_load(metadata) + if metadata: + for k, v in metadata.items(): + if k in ('stride', 'batch'): + metadata[k] = int(v) + elif k in ('imgsz', 'names', 'kpt_shape') and isinstance(v, str): + metadata[k] = eval(v) + stride = metadata['stride'] + task = metadata['task'] + batch = metadata['batch'] + imgsz = metadata['imgsz'] + names = metadata['names'] + kpt_shape = metadata.get('kpt_shape') + elif not (pt or triton or nn_module): + LOGGER.warning(f"WARNING ⚠️ Metadata not found for 'model={weights}'") + + # Check names + if 'names' not in locals(): # names missing + names = self._apply_default_class_names(data) + names = check_class_names(names) + + self.__dict__.update(locals()) # assign all variables to self + + def forward(self, im, augment=False, visualize=False): + """ + Runs inference on the YOLOv8 MultiBackend model. + + Args: + im (torch.Tensor): The image tensor to perform inference on. + augment (bool): whether to perform data augmentation during inference, defaults to False + visualize (bool): whether to visualize the output predictions, defaults to False + + Returns: + (tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True) + """ + b, ch, h, w = im.shape # batch, channel, height, width + if self.fp16 and im.dtype != torch.float16: + im = im.half() # to FP16 + if self.nhwc: + im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3) + + if self.pt or self.nn_module: # PyTorch + y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im) + elif self.jit: # TorchScript + y = self.model(im) + elif self.dnn: # ONNX OpenCV DNN + im = im.cpu().numpy() # torch to numpy + self.net.setInput(im) + y = self.net.forward() + elif self.onnx: # ONNX Runtime + im = im.cpu().numpy() # torch to numpy + y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im}) + elif self.xml: # OpenVINO + im = im.cpu().numpy() # FP32 + y = list(self.executable_network([im]).values()) + elif self.engine: # TensorRT + if self.dynamic and im.shape != self.bindings['images'].shape: + i = self.model.get_binding_index('images') + self.context.set_binding_shape(i, im.shape) # reshape if dynamic + self.bindings['images'] = self.bindings['images']._replace(shape=im.shape) + for name in self.output_names: + i = self.model.get_binding_index(name) + self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i))) + s = self.bindings['images'].shape + assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}" + self.binding_addrs['images'] = int(im.data_ptr()) + self.context.execute_v2(list(self.binding_addrs.values())) + y = [self.bindings[x].data for x in sorted(self.output_names)] + elif self.coreml: # CoreML + im = im[0].cpu().numpy() + im_pil = Image.fromarray((im * 255).astype('uint8')) + # im = im.resize((192, 320), Image.ANTIALIAS) + y = self.model.predict({'image': im_pil}) # coordinates are xywh normalized + if 'confidence' in y: + box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels + conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float) + y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1) + elif len(y) == 1: # classification model + y = list(y.values()) + elif len(y) == 2: # segmentation model + y = list(reversed(y.values())) # reversed for segmentation models (pred, proto) + elif self.paddle: # PaddlePaddle + im = im.cpu().numpy().astype(np.float32) + self.input_handle.copy_from_cpu(im) + self.predictor.run() + y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names] + elif self.triton: # NVIDIA Triton Inference Server + y = self.model(im) + else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU) + im = im.cpu().numpy() + if self.saved_model: # SavedModel + y = self.model(im, training=False) if self.keras else self.model(im) + if not isinstance(y, list): + y = [y] + elif self.pb: # GraphDef + y = self.frozen_func(x=self.tf.constant(im)) + if len(y) == 2 and len(self.names) == 999: # segments and names not defined + ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes + nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400) + self.names = {i: f'class{i}' for i in range(nc)} + else: # Lite or Edge TPU + input = self.input_details[0] + int8 = input['dtype'] == np.int8 # is TFLite quantized int8 model + if int8: + scale, zero_point = input['quantization'] + im = (im / scale + zero_point).astype(np.int8) # de-scale + self.interpreter.set_tensor(input['index'], im) + self.interpreter.invoke() + y = [] + for output in self.output_details: + x = self.interpreter.get_tensor(output['index']) + if int8: + scale, zero_point = output['quantization'] + x = (x.astype(np.float32) - zero_point) * scale # re-scale + y.append(x) + # TF segment fixes: export is reversed vs ONNX export and protos are transposed + if len(y) == 2: # segment with (det, proto) output order reversed + if len(y[1].shape) != 4: + y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32) + y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160) + y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y] + # y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels + + # for x in y: + # print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes + if isinstance(y, (list, tuple)): + return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y] + else: + return self.from_numpy(y) + + def from_numpy(self, x): + """ + Convert a numpy array to a tensor. + + Args: + x (np.ndarray): The array to be converted. + + Returns: + (torch.Tensor): The converted tensor + """ + return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x + + def warmup(self, imgsz=(1, 3, 640, 640)): + """ + Warm up the model by running one forward pass with a dummy input. + + Args: + imgsz (tuple): The shape of the dummy input tensor in the format (batch_size, channels, height, width) + + Returns: + (None): This method runs the forward pass and don't return any value + """ + warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module + if any(warmup_types) and (self.device.type != 'cpu' or self.triton): + im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input + for _ in range(2 if self.jit else 1): # + self.forward(im) # warmup + + @staticmethod + def _apply_default_class_names(data): + """Applies default class names to an input YAML file or returns numerical class names.""" + with contextlib.suppress(Exception): + return yaml_load(check_yaml(data))['names'] + return {i: f'class{i}' for i in range(999)} # return default if above errors + + @staticmethod + def _model_type(p='path/to/model.pt'): + """ + This function takes a path to a model file and returns the model type + + Args: + p: path to the model file. Defaults to path/to/model.pt + """ + # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx + # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle] + from ultralytics.yolo.engine.exporter import export_formats + sf = list(export_formats().Suffix) # export suffixes + if not is_url(p, check=False) and not isinstance(p, str): + check_suffix(p, sf) # checks + url = urlparse(p) # if url may be Triton inference server + types = [s in Path(p).name for s in sf] + types[8] &= not types[9] # tflite &= not edgetpu + triton = not any(types) and all([any(s in url.scheme for s in ['http', 'grpc']), url.netloc]) + return types + [triton] diff --git a/modules/ultralytics/nn/autoshape.py b/modules/ultralytics/nn/autoshape.py new file mode 100644 index 0000000000000000000000000000000000000000..d557f78061ed9e7152e010a96617ccd3409e9511 --- /dev/null +++ b/modules/ultralytics/nn/autoshape.py @@ -0,0 +1,244 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Common modules +""" + +from copy import copy +from pathlib import Path + +import cv2 +import numpy as np +import requests +import torch +import torch.nn as nn +from PIL import Image, ImageOps +from torch.cuda import amp + +from ultralytics.nn.autobackend import AutoBackend +from ultralytics.yolo.data.augment import LetterBox +from ultralytics.yolo.utils import LOGGER, colorstr +from ultralytics.yolo.utils.files import increment_path +from ultralytics.yolo.utils.ops import Profile, make_divisible, non_max_suppression, scale_boxes, xyxy2xywh +from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box +from ultralytics.yolo.utils.torch_utils import copy_attr, smart_inference_mode + + +class AutoShape(nn.Module): + """YOLOv8 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS.""" + conf = 0.25 # NMS confidence threshold + iou = 0.45 # NMS IoU threshold + agnostic = False # NMS class-agnostic + multi_label = False # NMS multiple labels per box + classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs + max_det = 1000 # maximum number of detections per image + amp = False # Automatic Mixed Precision (AMP) inference + + def __init__(self, model, verbose=True): + """Initializes object and copies attributes from model object.""" + super().__init__() + if verbose: + LOGGER.info('Adding AutoShape... ') + copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes + self.dmb = isinstance(model, AutoBackend) # DetectMultiBackend() instance + self.pt = not self.dmb or model.pt # PyTorch model + self.model = model.eval() + if self.pt: + m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect() + m.inplace = False # Detect.inplace=False for safe multithread inference + m.export = True # do not output loss values + + def _apply(self, fn): + """Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers.""" + self = super()._apply(fn) + if self.pt: + m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect() + m.stride = fn(m.stride) + m.grid = list(map(fn, m.grid)) + if isinstance(m.anchor_grid, list): + m.anchor_grid = list(map(fn, m.anchor_grid)) + return self + + @smart_inference_mode() + def forward(self, ims, size=640, augment=False, profile=False): + """Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:.""" + # file: ims = 'data/images/zidane.jpg' # str or PosixPath + # URI: = 'https://ultralytics.com/images/zidane.jpg' + # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3) + # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3) + # numpy: = np.zeros((640,1280,3)) # HWC + # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) + # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images + + dt = (Profile(), Profile(), Profile()) + with dt[0]: + if isinstance(size, int): # expand + size = (size, size) + p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param + autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference + if isinstance(ims, torch.Tensor): # torch + with amp.autocast(autocast): + return self.model(ims.to(p.device).type_as(p), augment=augment) # inference + + # Preprocess + n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images + shape0, shape1, files = [], [], [] # image and inference shapes, filenames + for i, im in enumerate(ims): + f = f'image{i}' # filename + if isinstance(im, (str, Path)): # filename or uri + im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im + im = np.asarray(ImageOps.exif_transpose(im)) + elif isinstance(im, Image.Image): # PIL Image + im, f = np.asarray(ImageOps.exif_transpose(im)), getattr(im, 'filename', f) or f + files.append(Path(f).with_suffix('.jpg').name) + if im.shape[0] < 5: # image in CHW + im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) + im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input + s = im.shape[:2] # HWC + shape0.append(s) # image shape + g = max(size) / max(s) # gain + shape1.append([y * g for y in s]) + ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update + shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size # inf shape + x = [LetterBox(shape1, auto=False)(image=im)['img'] for im in ims] # pad + x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW + x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32 + + with amp.autocast(autocast): + # Inference + with dt[1]: + y = self.model(x, augment=augment) # forward + + # Postprocess + with dt[2]: + y = non_max_suppression(y if self.dmb else y[0], + self.conf, + self.iou, + self.classes, + self.agnostic, + self.multi_label, + max_det=self.max_det) # NMS + for i in range(n): + scale_boxes(shape1, y[i][:, :4], shape0[i]) + + return Detections(ims, y, files, dt, self.names, x.shape) + + +class Detections: + """ YOLOv8 detections class for inference results""" + + def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None): + """Initialize object attributes for YOLO detection results.""" + super().__init__() + d = pred[0].device # device + gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations + self.ims = ims # list of images as numpy arrays + self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) + self.names = names # class names + self.files = files # image filenames + self.times = times # profiling times + self.xyxy = pred # xyxy pixels + self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels + self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized + self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized + self.n = len(self.pred) # number of images (batch size) + self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms) + self.s = tuple(shape) # inference BCHW shape + + def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')): + """Return performance metrics and optionally cropped/save images or results.""" + s, crops = '', [] + for i, (im, pred) in enumerate(zip(self.ims, self.pred)): + s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string + if pred.shape[0]: + for c in pred[:, -1].unique(): + n = (pred[:, -1] == c).sum() # detections per class + s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string + s = s.rstrip(', ') + if show or save or render or crop: + annotator = Annotator(im, example=str(self.names)) + for *box, conf, cls in reversed(pred): # xyxy, confidence, class + label = f'{self.names[int(cls)]} {conf:.2f}' + if crop: + file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None + crops.append({ + 'box': box, + 'conf': conf, + 'cls': cls, + 'label': label, + 'im': save_one_box(box, im, file=file, save=save)}) + else: # all others + annotator.box_label(box, label if labels else '', color=colors(cls)) + im = annotator.im + else: + s += '(no detections)' + + im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np + if show: + im.show(self.files[i]) # show + if save: + f = self.files[i] + im.save(save_dir / f) # save + if i == self.n - 1: + LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}") + if render: + self.ims[i] = np.asarray(im) + if pprint: + s = s.lstrip('\n') + return f'{s}\nSpeed: %.1fms preprocess, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t + if crop: + if save: + LOGGER.info(f'Saved results to {save_dir}\n') + return crops + + def show(self, labels=True): + """Displays YOLO results with detected bounding boxes.""" + self._run(show=True, labels=labels) # show results + + def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False): + """Save detection results with optional labels to specified directory.""" + save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir + self._run(save=True, labels=labels, save_dir=save_dir) # save results + + def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False): + """Crops images into detections and saves them if 'save' is True.""" + save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None + return self._run(crop=True, save=save, save_dir=save_dir) # crop results + + def render(self, labels=True): + """Renders detected objects and returns images.""" + self._run(render=True, labels=labels) # render results + return self.ims + + def pandas(self): + """Return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]).""" + import pandas + new = copy(self) # return copy + ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns + cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns + for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): + a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update + setattr(new, k, [pandas.DataFrame(x, columns=c) for x in a]) + return new + + def tolist(self): + """Return a list of Detections objects, i.e. 'for result in results.tolist():'.""" + r = range(self.n) # iterable + x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r] + # for d in x: + # for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: + # setattr(d, k, getattr(d, k)[0]) # pop out of list + return x + + def print(self): + """Print the results of the `self._run()` function.""" + LOGGER.info(self.__str__()) + + def __len__(self): # override len(results) + return self.n + + def __str__(self): # override print(results) + return self._run(pprint=True) # print results + + def __repr__(self): + """Returns a printable representation of the object.""" + return f'YOLOv8 {self.__class__} instance\n' + self.__str__() diff --git a/modules/ultralytics/nn/modules/__init__.py b/modules/ultralytics/nn/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b6dc6c4423631e70146cf1db223e03a3873dec5c --- /dev/null +++ b/modules/ultralytics/nn/modules/__init__.py @@ -0,0 +1,29 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Ultralytics modules. Visualize with: + +from ultralytics.nn.modules import * +import torch +import os + +x = torch.ones(1, 128, 40, 40) +m = Conv(128, 128) +f = f'{m._get_name()}.onnx' +torch.onnx.export(m, x, f) +os.system(f'onnxsim {f} {f} && open {f}') +""" + +from .block import (C1, C2, C3, C3TR, DFL, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, GhostBottleneck, + HGBlock, HGStem, Proto, RepC3) +from .conv import (CBAM, ChannelAttention, Concat, Conv, Conv2, ConvTranspose, DWConv, DWConvTranspose2d, Focus, + GhostConv, LightConv, RepConv, SpatialAttention) +from .head import Classify, Detect, Pose, RTDETRDecoder, Segment +from .transformer import (AIFI, MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer, LayerNorm2d, + MLPBlock, MSDeformAttn, TransformerBlock, TransformerEncoderLayer, TransformerLayer) + +__all__ = ('Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', + 'GhostConv', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer', + 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', + 'C2f', 'C3x', 'C3TR', 'C3Ghost', 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect', + 'Segment', 'Pose', 'Classify', 'TransformerEncoderLayer', 'RepC3', 'RTDETRDecoder', 'AIFI', + 'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP') diff --git a/modules/ultralytics/nn/modules/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/nn/modules/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f2dbf02b9c70290deda0f7c102b43ce9aca1aa04 Binary files /dev/null and b/modules/ultralytics/nn/modules/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/nn/modules/__pycache__/block.cpython-312.pyc b/modules/ultralytics/nn/modules/__pycache__/block.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..966ee11e0ad60e80980c2967a2528d2a252df06b Binary files /dev/null and b/modules/ultralytics/nn/modules/__pycache__/block.cpython-312.pyc differ diff --git a/modules/ultralytics/nn/modules/__pycache__/conv.cpython-312.pyc b/modules/ultralytics/nn/modules/__pycache__/conv.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..17d2194b2151b7d35002f6ab36c45bf8d43c4033 Binary files /dev/null and b/modules/ultralytics/nn/modules/__pycache__/conv.cpython-312.pyc differ diff --git a/modules/ultralytics/nn/modules/__pycache__/head.cpython-312.pyc b/modules/ultralytics/nn/modules/__pycache__/head.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b70140b7abdd55415623bb11fddfe473721d641a Binary files /dev/null and b/modules/ultralytics/nn/modules/__pycache__/head.cpython-312.pyc differ diff --git a/modules/ultralytics/nn/modules/__pycache__/transformer.cpython-312.pyc b/modules/ultralytics/nn/modules/__pycache__/transformer.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e189abcc257b40518228ea5864bf39cd02a7b1d8 Binary files /dev/null and b/modules/ultralytics/nn/modules/__pycache__/transformer.cpython-312.pyc differ diff --git a/modules/ultralytics/nn/modules/__pycache__/utils.cpython-312.pyc b/modules/ultralytics/nn/modules/__pycache__/utils.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..25e33cf986569354c07867a952af5979221520ff Binary files /dev/null and b/modules/ultralytics/nn/modules/__pycache__/utils.cpython-312.pyc differ diff --git a/modules/ultralytics/nn/modules/block.py b/modules/ultralytics/nn/modules/block.py new file mode 100644 index 0000000000000000000000000000000000000000..508ddb3cb7ee68d6110ac35d7a9c698c2feabb8c --- /dev/null +++ b/modules/ultralytics/nn/modules/block.py @@ -0,0 +1,304 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Block modules +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .conv import Conv, DWConv, GhostConv, LightConv, RepConv +from .transformer import TransformerBlock + +__all__ = ('DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost', + 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'RepC3') + + +class DFL(nn.Module): + """ + Integral module of Distribution Focal Loss (DFL). + Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 + """ + + def __init__(self, c1=16): + """Initialize a convolutional layer with a given number of input channels.""" + super().__init__() + self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False) + x = torch.arange(c1, dtype=torch.float) + self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1)) + self.c1 = c1 + + def forward(self, x): + """Applies a transformer layer on input tensor 'x' and returns a tensor.""" + b, c, a = x.shape # batch, channels, anchors + return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a) + # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a) + + +class Proto(nn.Module): + """YOLOv8 mask Proto module for segmentation models.""" + + def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks + super().__init__() + self.cv1 = Conv(c1, c_, k=3) + self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest') + self.cv2 = Conv(c_, c_, k=3) + self.cv3 = Conv(c_, c2) + + def forward(self, x): + """Performs a forward pass through layers using an upsampled input image.""" + return self.cv3(self.cv2(self.upsample(self.cv1(x)))) + + +class HGStem(nn.Module): + """StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d. + https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py + """ + + def __init__(self, c1, cm, c2): + super().__init__() + self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU()) + self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU()) + self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU()) + self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU()) + self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU()) + self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True) + + def forward(self, x): + """Forward pass of a PPHGNetV2 backbone layer.""" + x = self.stem1(x) + x = F.pad(x, [0, 1, 0, 1]) + x2 = self.stem2a(x) + x2 = F.pad(x2, [0, 1, 0, 1]) + x2 = self.stem2b(x2) + x1 = self.pool(x) + x = torch.cat([x1, x2], dim=1) + x = self.stem3(x) + x = self.stem4(x) + return x + + +class HGBlock(nn.Module): + """HG_Block of PPHGNetV2 with 2 convolutions and LightConv. + https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py + """ + + def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()): + super().__init__() + block = LightConv if lightconv else Conv + self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n)) + self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv + self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv + self.add = shortcut and c1 == c2 + + def forward(self, x): + """Forward pass of a PPHGNetV2 backbone layer.""" + y = [x] + y.extend(m(y[-1]) for m in self.m) + y = self.ec(self.sc(torch.cat(y, 1))) + return y + x if self.add else y + + +class SPP(nn.Module): + """Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729.""" + + def __init__(self, c1, c2, k=(5, 9, 13)): + """Initialize the SPP layer with input/output channels and pooling kernel sizes.""" + super().__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) + self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) + + def forward(self, x): + """Forward pass of the SPP layer, performing spatial pyramid pooling.""" + x = self.cv1(x) + return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) + + +class SPPF(nn.Module): + """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher.""" + + def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) + super().__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c_ * 4, c2, 1, 1) + self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) + + def forward(self, x): + """Forward pass through Ghost Convolution block.""" + x = self.cv1(x) + y1 = self.m(x) + y2 = self.m(y1) + return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) + + +class C1(nn.Module): + """CSP Bottleneck with 1 convolution.""" + + def __init__(self, c1, c2, n=1): # ch_in, ch_out, number + super().__init__() + self.cv1 = Conv(c1, c2, 1, 1) + self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n))) + + def forward(self, x): + """Applies cross-convolutions to input in the C3 module.""" + y = self.cv1(x) + return self.m(y) + y + + +class C2(nn.Module): + """CSP Bottleneck with 2 convolutions.""" + + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + self.c = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, 2 * self.c, 1, 1) + self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2) + # self.attention = ChannelAttention(2 * self.c) # or SpatialAttention() + self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))) + + def forward(self, x): + """Forward pass through the CSP bottleneck with 2 convolutions.""" + a, b = self.cv1(x).chunk(2, 1) + return self.cv2(torch.cat((self.m(a), b), 1)) + + +class C2f(nn.Module): + """CSP Bottleneck with 2 convolutions.""" + + def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + self.c = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, 2 * self.c, 1, 1) + self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2) + self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) + + def forward(self, x): + """Forward pass through C2f layer.""" + y = list(self.cv1(x).chunk(2, 1)) + y.extend(m(y[-1]) for m in self.m) + return self.cv2(torch.cat(y, 1)) + + def forward_split(self, x): + """Forward pass using split() instead of chunk().""" + y = list(self.cv1(x).split((self.c, self.c), 1)) + y.extend(m(y[-1]) for m in self.m) + return self.cv2(torch.cat(y, 1)) + + +class C3(nn.Module): + """CSP Bottleneck with 3 convolutions.""" + + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c1, c_, 1, 1) + self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) + self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n))) + + def forward(self, x): + """Forward pass through the CSP bottleneck with 2 convolutions.""" + return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) + + +class C3x(C3): + """C3 module with cross-convolutions.""" + + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): + """Initialize C3TR instance and set default parameters.""" + super().__init__(c1, c2, n, shortcut, g, e) + self.c_ = int(c2 * e) + self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n))) + + +class RepC3(nn.Module): + """Rep C3.""" + + def __init__(self, c1, c2, n=3, e=1.0): + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c2, 1, 1) + self.cv2 = Conv(c1, c2, 1, 1) + self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)]) + self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity() + + def forward(self, x): + """Forward pass of RT-DETR neck layer.""" + return self.cv3(self.m(self.cv1(x)) + self.cv2(x)) + + +class C3TR(C3): + """C3 module with TransformerBlock().""" + + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): + """Initialize C3Ghost module with GhostBottleneck().""" + super().__init__(c1, c2, n, shortcut, g, e) + c_ = int(c2 * e) + self.m = TransformerBlock(c_, c_, 4, n) + + +class C3Ghost(C3): + """C3 module with GhostBottleneck().""" + + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): + """Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling.""" + super().__init__(c1, c2, n, shortcut, g, e) + c_ = int(c2 * e) # hidden channels + self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) + + +class GhostBottleneck(nn.Module): + """Ghost Bottleneck https://github.com/huawei-noah/ghostnet.""" + + def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride + super().__init__() + c_ = c2 // 2 + self.conv = nn.Sequential( + GhostConv(c1, c_, 1, 1), # pw + DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw + GhostConv(c_, c2, 1, 1, act=False)) # pw-linear + self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, + act=False)) if s == 2 else nn.Identity() + + def forward(self, x): + """Applies skip connection and concatenation to input tensor.""" + return self.conv(x) + self.shortcut(x) + + +class Bottleneck(nn.Module): + """Standard bottleneck.""" + + def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, k[0], 1) + self.cv2 = Conv(c_, c2, k[1], 1, g=g) + self.add = shortcut and c1 == c2 + + def forward(self, x): + """'forward()' applies the YOLOv5 FPN to input data.""" + return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) + + +class BottleneckCSP(nn.Module): + """CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks.""" + + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) + self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) + self.cv4 = Conv(2 * c_, c2, 1, 1) + self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) + self.act = nn.SiLU() + self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) + + def forward(self, x): + """Applies a CSP bottleneck with 3 convolutions.""" + y1 = self.cv3(self.m(self.cv1(x))) + y2 = self.cv2(x) + return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) diff --git a/modules/ultralytics/nn/modules/conv.py b/modules/ultralytics/nn/modules/conv.py new file mode 100644 index 0000000000000000000000000000000000000000..38ee3f5f3f40618e5fc0f7f836a3ecc595496bec --- /dev/null +++ b/modules/ultralytics/nn/modules/conv.py @@ -0,0 +1,297 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Convolution modules +""" + +import math + +import numpy as np +import torch +import torch.nn as nn + +__all__ = ('Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv', + 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv') + + +def autopad(k, p=None, d=1): # kernel, padding, dilation + """Pad to 'same' shape outputs.""" + if d > 1: + k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size + if p is None: + p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad + return p + + +class Conv(nn.Module): + """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" + default_act = nn.SiLU() # default activation + + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): + """Initialize Conv layer with given arguments including activation.""" + super().__init__() + self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) + self.bn = nn.BatchNorm2d(c2) + self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() + + def forward(self, x): + """Apply convolution, batch normalization and activation to input tensor.""" + return self.act(self.bn(self.conv(x))) + + def forward_fuse(self, x): + """Perform transposed convolution of 2D data.""" + return self.act(self.conv(x)) + + +class Conv2(Conv): + """Simplified RepConv module with Conv fusing.""" + + def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True): + """Initialize Conv layer with given arguments including activation.""" + super().__init__(c1, c2, k, s, p, g=g, d=d, act=act) + self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv + + def forward(self, x): + """Apply convolution, batch normalization and activation to input tensor.""" + return self.act(self.bn(self.conv(x) + self.cv2(x))) + + def fuse_convs(self): + """Fuse parallel convolutions.""" + w = torch.zeros_like(self.conv.weight.data) + i = [x // 2 for x in w.shape[2:]] + w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone() + self.conv.weight.data += w + self.__delattr__('cv2') + + +class LightConv(nn.Module): + """Light convolution with args(ch_in, ch_out, kernel). + https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py + """ + + def __init__(self, c1, c2, k=1, act=nn.ReLU()): + """Initialize Conv layer with given arguments including activation.""" + super().__init__() + self.conv1 = Conv(c1, c2, 1, act=False) + self.conv2 = DWConv(c2, c2, k, act=act) + + def forward(self, x): + """Apply 2 convolutions to input tensor.""" + return self.conv2(self.conv1(x)) + + +class DWConv(Conv): + """Depth-wise convolution.""" + + def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation + super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act) + + +class DWConvTranspose2d(nn.ConvTranspose2d): + """Depth-wise transpose convolution.""" + + def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out + super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2)) + + +class ConvTranspose(nn.Module): + """Convolution transpose 2d layer.""" + default_act = nn.SiLU() # default activation + + def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True): + """Initialize ConvTranspose2d layer with batch normalization and activation function.""" + super().__init__() + self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn) + self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity() + self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() + + def forward(self, x): + """Applies transposed convolutions, batch normalization and activation to input.""" + return self.act(self.bn(self.conv_transpose(x))) + + def forward_fuse(self, x): + """Applies activation and convolution transpose operation to input.""" + return self.act(self.conv_transpose(x)) + + +class Focus(nn.Module): + """Focus wh information into c-space.""" + + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups + super().__init__() + self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act) + # self.contract = Contract(gain=2) + + def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) + return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1)) + # return self.conv(self.contract(x)) + + +class GhostConv(nn.Module): + """Ghost Convolution https://github.com/huawei-noah/ghostnet.""" + + def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups + super().__init__() + c_ = c2 // 2 # hidden channels + self.cv1 = Conv(c1, c_, k, s, None, g, act=act) + self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act) + + def forward(self, x): + """Forward propagation through a Ghost Bottleneck layer with skip connection.""" + y = self.cv1(x) + return torch.cat((y, self.cv2(y)), 1) + + +class RepConv(nn.Module): + """RepConv is a basic rep-style block, including training and deploy status + This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py + """ + default_act = nn.SiLU() # default activation + + def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False): + super().__init__() + assert k == 3 and p == 1 + self.g = g + self.c1 = c1 + self.c2 = c2 + self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() + + self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None + self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False) + self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False) + + def forward_fuse(self, x): + """Forward process""" + return self.act(self.conv(x)) + + def forward(self, x): + """Forward process""" + id_out = 0 if self.bn is None else self.bn(x) + return self.act(self.conv1(x) + self.conv2(x) + id_out) + + def get_equivalent_kernel_bias(self): + kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1) + kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2) + kernelid, biasid = self._fuse_bn_tensor(self.bn) + return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid + + def _avg_to_3x3_tensor(self, avgp): + channels = self.c1 + groups = self.g + kernel_size = avgp.kernel_size + input_dim = channels // groups + k = torch.zeros((channels, input_dim, kernel_size, kernel_size)) + k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2 + return k + + def _pad_1x1_to_3x3_tensor(self, kernel1x1): + if kernel1x1 is None: + return 0 + else: + return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) + + def _fuse_bn_tensor(self, branch): + if branch is None: + return 0, 0 + if isinstance(branch, Conv): + kernel = branch.conv.weight + running_mean = branch.bn.running_mean + running_var = branch.bn.running_var + gamma = branch.bn.weight + beta = branch.bn.bias + eps = branch.bn.eps + elif isinstance(branch, nn.BatchNorm2d): + if not hasattr(self, 'id_tensor'): + input_dim = self.c1 // self.g + kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32) + for i in range(self.c1): + kernel_value[i, i % input_dim, 1, 1] = 1 + self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device) + kernel = self.id_tensor + running_mean = branch.running_mean + running_var = branch.running_var + gamma = branch.weight + beta = branch.bias + eps = branch.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return kernel * t, beta - running_mean * gamma / std + + def fuse_convs(self): + if hasattr(self, 'conv'): + return + kernel, bias = self.get_equivalent_kernel_bias() + self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels, + out_channels=self.conv1.conv.out_channels, + kernel_size=self.conv1.conv.kernel_size, + stride=self.conv1.conv.stride, + padding=self.conv1.conv.padding, + dilation=self.conv1.conv.dilation, + groups=self.conv1.conv.groups, + bias=True).requires_grad_(False) + self.conv.weight.data = kernel + self.conv.bias.data = bias + for para in self.parameters(): + para.detach_() + self.__delattr__('conv1') + self.__delattr__('conv2') + if hasattr(self, 'nm'): + self.__delattr__('nm') + if hasattr(self, 'bn'): + self.__delattr__('bn') + if hasattr(self, 'id_tensor'): + self.__delattr__('id_tensor') + + +class ChannelAttention(nn.Module): + """Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet.""" + + def __init__(self, channels: int) -> None: + super().__init__() + self.pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True) + self.act = nn.Sigmoid() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return x * self.act(self.fc(self.pool(x))) + + +class SpatialAttention(nn.Module): + """Spatial-attention module.""" + + def __init__(self, kernel_size=7): + """Initialize Spatial-attention module with kernel size argument.""" + super().__init__() + assert kernel_size in (3, 7), 'kernel size must be 3 or 7' + padding = 3 if kernel_size == 7 else 1 + self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) + self.act = nn.Sigmoid() + + def forward(self, x): + """Apply channel and spatial attention on input for feature recalibration.""" + return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1))) + + +class CBAM(nn.Module): + """Convolutional Block Attention Module.""" + + def __init__(self, c1, kernel_size=7): # ch_in, kernels + super().__init__() + self.channel_attention = ChannelAttention(c1) + self.spatial_attention = SpatialAttention(kernel_size) + + def forward(self, x): + """Applies the forward pass through C1 module.""" + return self.spatial_attention(self.channel_attention(x)) + + +class Concat(nn.Module): + """Concatenate a list of tensors along dimension.""" + + def __init__(self, dimension=1): + """Concatenates a list of tensors along a specified dimension.""" + super().__init__() + self.d = dimension + + def forward(self, x): + """Forward pass for the YOLOv8 mask Proto module.""" + return torch.cat(x, self.d) diff --git a/modules/ultralytics/nn/modules/head.py b/modules/ultralytics/nn/modules/head.py new file mode 100644 index 0000000000000000000000000000000000000000..24d44a5e0c397ed6089c68df71468651935acaa8 --- /dev/null +++ b/modules/ultralytics/nn/modules/head.py @@ -0,0 +1,351 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Model head modules +""" + +import math + +import torch +import torch.nn as nn +from torch.nn.init import constant_, xavier_uniform_ + +from ultralytics.yolo.utils.tal import dist2bbox, make_anchors + +from .block import DFL, Proto +from .conv import Conv +from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer +from .utils import bias_init_with_prob, linear_init_ + +__all__ = 'Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder' + + +class Detect(nn.Module): + """YOLOv8 Detect head for detection models.""" + dynamic = False # force grid reconstruction + export = False # export mode + shape = None + anchors = torch.empty(0) # init + strides = torch.empty(0) # init + + def __init__(self, nc=80, ch=()): # detection layer + super().__init__() + self.nc = nc # number of classes + self.nl = len(ch) # number of detection layers + self.reg_max = 26 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x) + self.no = nc + self.reg_max * 4 # number of outputs per anchor + self.stride = torch.zeros(self.nl) # strides computed during build + c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], self.nc) # channels + self.cv2 = nn.ModuleList( + nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch) + self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch) + self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity() + + def forward(self, x): + """Concatenates and returns predicted bounding boxes and class probabilities.""" + shape = x[0].shape # BCHW + for i in range(self.nl): + x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) + if self.training: + return x + elif self.dynamic or self.shape != shape: + self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) + self.shape = shape + + x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2) + if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'): # avoid TF FlexSplitV ops + box = x_cat[:, :self.reg_max * 4] + cls = x_cat[:, self.reg_max * 4:] + else: + box, cls = x_cat.split((self.reg_max * 4, self.nc), 1) + dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides + y = torch.cat((dbox, cls.sigmoid()), 1) + return y if self.export else (y, x) + + def bias_init(self): + """Initialize Detect() biases, WARNING: requires stride availability.""" + m = self # self.model[-1] # Detect() module + # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 + # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency + for a, b, s in zip(m.cv2, m.cv3, m.stride): # from + a[-1].bias.data[:] = 1.0 # box + b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) + + +class Segment(Detect): + """YOLOv8 Segment head for segmentation models.""" + + def __init__(self, nc=80, nm=32, npr=256, ch=()): + """Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers.""" + super().__init__(nc, ch) + self.nm = nm # number of masks + self.npr = npr # number of protos + #self.proto = Proto(ch[0], self.npr, self.nm) # protos + self.detect = Detect.forward + + c4 = max(ch[0] // 4, self.nm) + self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch) + + def forward(self, x): + """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients.""" + #p = self.proto(x[0]) # mask protos #mobilesamv2 change + p=0 + # import pdb;pdb.set_trace() + bs = x[0].shape[0] # batch size + + mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients + x = self.detect(self, x) + if self.training: + return x, mc, p + return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p)) + + +class Pose(Detect): + """YOLOv8 Pose head for keypoints models.""" + + def __init__(self, nc=80, kpt_shape=(17, 3), ch=()): + """Initialize YOLO network with default parameters and Convolutional Layers.""" + super().__init__(nc, ch) + self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) + self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total + self.detect = Detect.forward + + c4 = max(ch[0] // 4, self.nk) + self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch) + + def forward(self, x): + """Perform forward pass through YOLO model and return predictions.""" + bs = x[0].shape[0] # batch size + kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w) + x = self.detect(self, x) + if self.training: + return x, kpt + pred_kpt = self.kpts_decode(bs, kpt) + return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt)) + + def kpts_decode(self, bs, kpts): + """Decodes keypoints.""" + ndim = self.kpt_shape[1] + if self.export: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug + y = kpts.view(bs, *self.kpt_shape, -1) + a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides + if ndim == 3: + a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2) + return a.view(bs, self.nk, -1) + else: + y = kpts.clone() + if ndim == 3: + y[:, 2::3].sigmoid_() # inplace sigmoid + y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides + y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides + return y + + +class Classify(nn.Module): + """YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2).""" + + def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups + super().__init__() + c_ = 1280 # efficientnet_b0 size + self.conv = Conv(c1, c_, k, s, p, g) + self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1) + self.drop = nn.Dropout(p=0.0, inplace=True) + self.linear = nn.Linear(c_, c2) # to x(b,c2) + + def forward(self, x): + """Performs a forward pass of the YOLO model on input image data.""" + if isinstance(x, list): + x = torch.cat(x, 1) + x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1))) + return x if self.training else x.softmax(1) + + +class RTDETRDecoder(nn.Module): + + def __init__( + self, + nc=80, + ch=(512, 1024, 2048), + hd=256, # hidden dim + nq=300, # num queries + ndp=4, # num decoder points + nh=8, # num head + ndl=6, # num decoder layers + d_ffn=1024, # dim of feedforward + dropout=0., + act=nn.ReLU(), + eval_idx=-1, + # training args + nd=100, # num denoising + label_noise_ratio=0.5, + box_noise_scale=1.0, + learnt_init_query=False): + super().__init__() + self.hidden_dim = hd + self.nhead = nh + self.nl = len(ch) # num level + self.nc = nc + self.num_queries = nq + self.num_decoder_layers = ndl + + # backbone feature projection + self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch) + # NOTE: simplified version but it's not consistent with .pt weights. + # self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch) + + # Transformer module + decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp) + self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx) + + # denoising part + self.denoising_class_embed = nn.Embedding(nc, hd) + self.num_denoising = nd + self.label_noise_ratio = label_noise_ratio + self.box_noise_scale = box_noise_scale + + # decoder embedding + self.learnt_init_query = learnt_init_query + if learnt_init_query: + self.tgt_embed = nn.Embedding(nq, hd) + self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2) + + # encoder head + self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd)) + self.enc_score_head = nn.Linear(hd, nc) + self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3) + + # decoder head + self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)]) + self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)]) + + self._reset_parameters() + + def forward(self, x, batch=None): + from ultralytics.vit.utils.ops import get_cdn_group + + # input projection and embedding + feats, shapes = self._get_encoder_input(x) + + # prepare denoising training + dn_embed, dn_bbox, attn_mask, dn_meta = \ + get_cdn_group(batch, + self.nc, + self.num_queries, + self.denoising_class_embed.weight, + self.num_denoising, + self.label_noise_ratio, + self.box_noise_scale, + self.training) + + embed, refer_bbox, enc_bboxes, enc_scores = \ + self._get_decoder_input(feats, shapes, dn_embed, dn_bbox) + + # decoder + dec_bboxes, dec_scores = self.decoder(embed, + refer_bbox, + feats, + shapes, + self.dec_bbox_head, + self.dec_score_head, + self.query_pos_head, + attn_mask=attn_mask) + if not self.training: + dec_scores = dec_scores.sigmoid_() + return dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta + + def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device='cpu', eps=1e-2): + anchors = [] + for i, (h, w) in enumerate(shapes): + grid_y, grid_x = torch.meshgrid(torch.arange(end=h, dtype=dtype, device=device), + torch.arange(end=w, dtype=dtype, device=device), + indexing='ij') + grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2) + + valid_WH = torch.tensor([h, w], dtype=dtype, device=device) + grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2) + wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0 ** i) + anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4) + + anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4) + valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1 + anchors = torch.log(anchors / (1 - anchors)) + anchors = torch.where(valid_mask, anchors, torch.inf) + return anchors, valid_mask + + def _get_encoder_input(self, x): + # get projection features + x = [self.input_proj[i](feat) for i, feat in enumerate(x)] + # get encoder inputs + feats = [] + shapes = [] + for feat in x: + h, w = feat.shape[2:] + # [b, c, h, w] -> [b, h*w, c] + feats.append(feat.flatten(2).permute(0, 2, 1)) + # [nl, 2] + shapes.append([h, w]) + + # [b, h*w, c] + feats = torch.cat(feats, 1) + return feats, shapes + + def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None): + bs = len(feats) + # prepare input for decoder + anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device) + features = self.enc_output(torch.where(valid_mask, feats, 0)) # bs, h*w, 256 + + enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc) + # dynamic anchors + static content + enc_outputs_bboxes = self.enc_bbox_head(features) + anchors # (bs, h*w, 4) + + # query selection + # (bs, num_queries) + topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1) + # (bs, num_queries) + batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1) + + # Unsigmoided + refer_bbox = enc_outputs_bboxes[batch_ind, topk_ind].view(bs, self.num_queries, -1) + # refer_bbox = torch.gather(enc_outputs_bboxes, 1, topk_ind.reshape(bs, self.num_queries).unsqueeze(-1).repeat(1, 1, 4)) + + enc_bboxes = refer_bbox.sigmoid() + if dn_bbox is not None: + refer_bbox = torch.cat([dn_bbox, refer_bbox], 1) + if self.training: + refer_bbox = refer_bbox.detach() + enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1) + + if self.learnt_init_query: + embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) + else: + embeddings = features[batch_ind, topk_ind].view(bs, self.num_queries, -1) + if self.training: + embeddings = embeddings.detach() + if dn_embed is not None: + embeddings = torch.cat([dn_embed, embeddings], 1) + + return embeddings, refer_bbox, enc_bboxes, enc_scores + + # TODO + def _reset_parameters(self): + # class and bbox head init + bias_cls = bias_init_with_prob(0.01) / 80 * self.nc + # NOTE: the weight initialization in `linear_init_` would cause NaN when training with custom datasets. + # linear_init_(self.enc_score_head) + constant_(self.enc_score_head.bias, bias_cls) + constant_(self.enc_bbox_head.layers[-1].weight, 0.) + constant_(self.enc_bbox_head.layers[-1].bias, 0.) + for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head): + # linear_init_(cls_) + constant_(cls_.bias, bias_cls) + constant_(reg_.layers[-1].weight, 0.) + constant_(reg_.layers[-1].bias, 0.) + + linear_init_(self.enc_output[0]) + xavier_uniform_(self.enc_output[0].weight) + if self.learnt_init_query: + xavier_uniform_(self.tgt_embed.weight) + xavier_uniform_(self.query_pos_head.layers[0].weight) + xavier_uniform_(self.query_pos_head.layers[1].weight) + for layer in self.input_proj: + xavier_uniform_(layer[0].weight) diff --git a/modules/ultralytics/nn/modules/transformer.py b/modules/ultralytics/nn/modules/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..b3304cc8d8f8ba7f60493bc1d800f496053ed434 --- /dev/null +++ b/modules/ultralytics/nn/modules/transformer.py @@ -0,0 +1,378 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Transformer modules +""" + +import math + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.nn.init import constant_, xavier_uniform_ + +from .conv import Conv +from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch + +__all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI', + 'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP') + + +class TransformerEncoderLayer(nn.Module): + """Transformer Encoder.""" + + def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False): + super().__init__() + self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True) + # Implementation of Feedforward model + self.fc1 = nn.Linear(c1, cm) + self.fc2 = nn.Linear(cm, c1) + + self.norm1 = nn.LayerNorm(c1) + self.norm2 = nn.LayerNorm(c1) + self.dropout = nn.Dropout(dropout) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + + self.act = act + self.normalize_before = normalize_before + + def with_pos_embed(self, tensor, pos=None): + """Add position embeddings if given.""" + return tensor if pos is None else tensor + pos + + def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None): + q = k = self.with_pos_embed(src, pos) + src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] + src = src + self.dropout1(src2) + src = self.norm1(src) + src2 = self.fc2(self.dropout(self.act(self.fc1(src)))) + src = src + self.dropout2(src2) + src = self.norm2(src) + return src + + def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None): + src2 = self.norm1(src) + q = k = self.with_pos_embed(src2, pos) + src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] + src = src + self.dropout1(src2) + src2 = self.norm2(src) + src2 = self.fc2(self.dropout(self.act(self.fc1(src2)))) + src = src + self.dropout2(src2) + return src + + def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None): + """Forward propagates the input through the encoder module.""" + if self.normalize_before: + return self.forward_pre(src, src_mask, src_key_padding_mask, pos) + return self.forward_post(src, src_mask, src_key_padding_mask, pos) + + +class AIFI(TransformerEncoderLayer): + + def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False): + super().__init__(c1, cm, num_heads, dropout, act, normalize_before) + + def forward(self, x): + c, h, w = x.shape[1:] + pos_embed = self.build_2d_sincos_position_embedding(w, h, c) + # flatten [B, C, H, W] to [B, HxW, C] + x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype)) + return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous() + + @staticmethod + def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.): + grid_w = torch.arange(int(w), dtype=torch.float32) + grid_h = torch.arange(int(h), dtype=torch.float32) + grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij') + assert embed_dim % 4 == 0, \ + 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding' + pos_dim = embed_dim // 4 + omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim + omega = 1. / (temperature ** omega) + + out_w = grid_w.flatten()[..., None] @ omega[None] + out_h = grid_h.flatten()[..., None] @ omega[None] + + return torch.concat([torch.sin(out_w), torch.cos(out_w), + torch.sin(out_h), torch.cos(out_h)], axis=1)[None, :, :] + + +class TransformerLayer(nn.Module): + """Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance).""" + + def __init__(self, c, num_heads): + """Initializes a self-attention mechanism using linear transformations and multi-head attention.""" + super().__init__() + self.q = nn.Linear(c, c, bias=False) + self.k = nn.Linear(c, c, bias=False) + self.v = nn.Linear(c, c, bias=False) + self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) + self.fc1 = nn.Linear(c, c, bias=False) + self.fc2 = nn.Linear(c, c, bias=False) + + def forward(self, x): + """Apply a transformer block to the input x and return the output.""" + x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x + x = self.fc2(self.fc1(x)) + x + return x + + +class TransformerBlock(nn.Module): + """Vision Transformer https://arxiv.org/abs/2010.11929.""" + + def __init__(self, c1, c2, num_heads, num_layers): + """Initialize a Transformer module with position embedding and specified number of heads and layers.""" + super().__init__() + self.conv = None + if c1 != c2: + self.conv = Conv(c1, c2) + self.linear = nn.Linear(c2, c2) # learnable position embedding + self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers))) + self.c2 = c2 + + def forward(self, x): + """Forward propagates the input through the bottleneck module.""" + if self.conv is not None: + x = self.conv(x) + b, _, w, h = x.shape + p = x.flatten(2).permute(2, 0, 1) + return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h) + + +class MLPBlock(nn.Module): + + def __init__(self, embedding_dim, mlp_dim, act=nn.GELU): + super().__init__() + self.lin1 = nn.Linear(embedding_dim, mlp_dim) + self.lin2 = nn.Linear(mlp_dim, embedding_dim) + self.act = act() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.lin2(self.act(self.lin1(x))) + + +class MLP(nn.Module): + """ Very simple multi-layer perceptron (also called FFN)""" + + def __init__(self, input_dim, hidden_dim, output_dim, num_layers): + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + return x + + +# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa +# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa +class LayerNorm2d(nn.Module): + + def __init__(self, num_channels, eps=1e-6): + super().__init__() + self.weight = nn.Parameter(torch.ones(num_channels)) + self.bias = nn.Parameter(torch.zeros(num_channels)) + self.eps = eps + + def forward(self, x): + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x + + +class MSDeformAttn(nn.Module): + """ + Original Multi-Scale Deformable Attention Module. + https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py + """ + + def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4): + super().__init__() + if d_model % n_heads != 0: + raise ValueError(f'd_model must be divisible by n_heads, but got {d_model} and {n_heads}') + _d_per_head = d_model // n_heads + # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation + assert _d_per_head * n_heads == d_model, '`d_model` must be divisible by `n_heads`' + + self.im2col_step = 64 + + self.d_model = d_model + self.n_levels = n_levels + self.n_heads = n_heads + self.n_points = n_points + + self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) + self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) + self.value_proj = nn.Linear(d_model, d_model) + self.output_proj = nn.Linear(d_model, d_model) + + self._reset_parameters() + + def _reset_parameters(self): + constant_(self.sampling_offsets.weight.data, 0.) + thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) + grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) + grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat( + 1, self.n_levels, self.n_points, 1) + for i in range(self.n_points): + grid_init[:, :, i, :] *= i + 1 + with torch.no_grad(): + self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) + constant_(self.attention_weights.weight.data, 0.) + constant_(self.attention_weights.bias.data, 0.) + xavier_uniform_(self.value_proj.weight.data) + constant_(self.value_proj.bias.data, 0.) + xavier_uniform_(self.output_proj.weight.data) + constant_(self.output_proj.bias.data, 0.) + + def forward(self, query, refer_bbox, value, value_shapes, value_mask=None): + """ + https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py + Args: + query (torch.Tensor): [bs, query_length, C] + refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0), + bottom-right (1, 1), including padding area + value (torch.Tensor): [bs, value_length, C] + value_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] + value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements + + Returns: + output (Tensor): [bs, Length_{query}, C] + """ + bs, len_q = query.shape[:2] + len_v = value.shape[1] + assert sum(s[0] * s[1] for s in value_shapes) == len_v + + value = self.value_proj(value) + if value_mask is not None: + value = value.masked_fill(value_mask[..., None], float(0)) + value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads) + sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2) + attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points) + attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points) + # N, Len_q, n_heads, n_levels, n_points, 2 + num_points = refer_bbox.shape[-1] + if num_points == 2: + offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1) + add = sampling_offsets / offset_normalizer[None, None, None, :, None, :] + sampling_locations = refer_bbox[:, :, None, :, None, :] + add + elif num_points == 4: + add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5 + sampling_locations = refer_bbox[:, :, None, :, None, :2] + add + else: + raise ValueError(f'Last dim of reference_points must be 2 or 4, but got {num_points}.') + output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights) + output = self.output_proj(output) + return output + + +class DeformableTransformerDecoderLayer(nn.Module): + """ + https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py + https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py + """ + + def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0., act=nn.ReLU(), n_levels=4, n_points=4): + super().__init__() + + # self attention + self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) + self.dropout1 = nn.Dropout(dropout) + self.norm1 = nn.LayerNorm(d_model) + + # cross attention + self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) + self.dropout2 = nn.Dropout(dropout) + self.norm2 = nn.LayerNorm(d_model) + + # ffn + self.linear1 = nn.Linear(d_model, d_ffn) + self.act = act + self.dropout3 = nn.Dropout(dropout) + self.linear2 = nn.Linear(d_ffn, d_model) + self.dropout4 = nn.Dropout(dropout) + self.norm3 = nn.LayerNorm(d_model) + + @staticmethod + def with_pos_embed(tensor, pos): + return tensor if pos is None else tensor + pos + + def forward_ffn(self, tgt): + tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt)))) + tgt = tgt + self.dropout4(tgt2) + tgt = self.norm3(tgt) + return tgt + + def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None): + # self attention + q = k = self.with_pos_embed(embed, query_pos) + tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), + attn_mask=attn_mask)[0].transpose(0, 1) + embed = embed + self.dropout1(tgt) + embed = self.norm1(embed) + + # cross attention + tgt = self.cross_attn(self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, + padding_mask) + embed = embed + self.dropout2(tgt) + embed = self.norm2(embed) + + # ffn + embed = self.forward_ffn(embed) + + return embed + + +class DeformableTransformerDecoder(nn.Module): + """ + https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py + """ + + def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1): + super().__init__() + self.layers = _get_clones(decoder_layer, num_layers) + self.num_layers = num_layers + self.hidden_dim = hidden_dim + self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx + + def forward( + self, + embed, # decoder embeddings + refer_bbox, # anchor + feats, # image features + shapes, # feature shapes + bbox_head, + score_head, + pos_mlp, + attn_mask=None, + padding_mask=None): + output = embed + dec_bboxes = [] + dec_cls = [] + last_refined_bbox = None + refer_bbox = refer_bbox.sigmoid() + for i, layer in enumerate(self.layers): + output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox)) + + # refine bboxes, (bs, num_queries+num_denoising, 4) + refined_bbox = torch.sigmoid(bbox_head[i](output) + inverse_sigmoid(refer_bbox)) + + if self.training: + dec_cls.append(score_head[i](output)) + if i == 0: + dec_bboxes.append(refined_bbox) + else: + dec_bboxes.append(torch.sigmoid(bbox_head[i](output) + inverse_sigmoid(last_refined_bbox))) + elif i == self.eval_idx: + dec_cls.append(score_head[i](output)) + dec_bboxes.append(refined_bbox) + break + + last_refined_bbox = refined_bbox + refer_bbox = refined_bbox.detach() if self.training else refined_bbox + + return torch.stack(dec_bboxes), torch.stack(dec_cls) diff --git a/modules/ultralytics/nn/modules/utils.py b/modules/ultralytics/nn/modules/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..f8636dc479d242e982fb969a313f7fd786cc3107 --- /dev/null +++ b/modules/ultralytics/nn/modules/utils.py @@ -0,0 +1,78 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Module utils +""" + +import copy +import math + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.nn.init import uniform_ + +__all__ = 'multi_scale_deformable_attn_pytorch', 'inverse_sigmoid' + + +def _get_clones(module, n): + return nn.ModuleList([copy.deepcopy(module) for _ in range(n)]) + + +def bias_init_with_prob(prior_prob=0.01): + """initialize conv/fc bias value according to a given probability value.""" + return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init + + +def linear_init_(module): + bound = 1 / math.sqrt(module.weight.shape[0]) + uniform_(module.weight, -bound, bound) + if hasattr(module, 'bias') and module.bias is not None: + uniform_(module.bias, -bound, bound) + + +def inverse_sigmoid(x, eps=1e-5): + x = x.clamp(min=0, max=1) + x1 = x.clamp(min=eps) + x2 = (1 - x).clamp(min=eps) + return torch.log(x1 / x2) + + +def multi_scale_deformable_attn_pytorch(value: torch.Tensor, value_spatial_shapes: torch.Tensor, + sampling_locations: torch.Tensor, + attention_weights: torch.Tensor) -> torch.Tensor: + """ + Multi-scale deformable attention. + https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py + """ + + bs, _, num_heads, embed_dims = value.shape + _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape + value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) + sampling_grids = 2 * sampling_locations - 1 + sampling_value_list = [] + for level, (H_, W_) in enumerate(value_spatial_shapes): + # bs, H_*W_, num_heads, embed_dims -> + # bs, H_*W_, num_heads*embed_dims -> + # bs, num_heads*embed_dims, H_*W_ -> + # bs*num_heads, embed_dims, H_, W_ + value_l_ = (value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)) + # bs, num_queries, num_heads, num_points, 2 -> + # bs, num_heads, num_queries, num_points, 2 -> + # bs*num_heads, num_queries, num_points, 2 + sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1) + # bs*num_heads, embed_dims, num_queries, num_points + sampling_value_l_ = F.grid_sample(value_l_, + sampling_grid_l_, + mode='bilinear', + padding_mode='zeros', + align_corners=False) + sampling_value_list.append(sampling_value_l_) + # (bs, num_queries, num_heads, num_levels, num_points) -> + # (bs, num_heads, num_queries, num_levels, num_points) -> + # (bs, num_heads, 1, num_queries, num_levels*num_points) + attention_weights = attention_weights.transpose(1, 2).reshape(bs * num_heads, 1, num_queries, + num_levels * num_points) + output = ((torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view( + bs, num_heads * embed_dims, num_queries)) + return output.transpose(1, 2).contiguous() diff --git a/modules/ultralytics/nn/tasks.py b/modules/ultralytics/nn/tasks.py new file mode 100644 index 0000000000000000000000000000000000000000..3c2ba066a45c2734e69078d44b953511cc6cbe9e --- /dev/null +++ b/modules/ultralytics/nn/tasks.py @@ -0,0 +1,780 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import contextlib +from copy import deepcopy +from pathlib import Path + +import torch +import torch.nn as nn + +from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, + Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d, + Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv, + RTDETRDecoder, Segment) +from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load +from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_yaml +from ultralytics.yolo.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8PoseLoss, v8SegmentationLoss +from ultralytics.yolo.utils.plotting import feature_visualization +from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights, + intersect_dicts, make_divisible, model_info, scale_img, time_sync) + +try: + import thop +except ImportError: + thop = None + + +class BaseModel(nn.Module): + """ + The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family. + """ + + def forward(self, x, *args, **kwargs): + """ + Forward pass of the model on a single scale. + Wrapper for `_forward_once` method. + + Args: + x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels. + + Returns: + (torch.Tensor): The output of the network. + """ + if isinstance(x, dict): # for cases of training and validating while training. + return self.loss(x, *args, **kwargs) + return self.predict(x, *args, **kwargs) + + def predict(self, x, profile=False, visualize=False, augment=False): + """ + Perform a forward pass through the network. + + Args: + x (torch.Tensor): The input tensor to the model. + profile (bool): Print the computation time of each layer if True, defaults to False. + visualize (bool): Save the feature maps of the model if True, defaults to False. + augment (bool): Augment image during prediction, defaults to False. + + Returns: + (torch.Tensor): The last output of the model. + """ + if augment: + return self._predict_augment(x) + return self._predict_once(x, profile, visualize) + + def _predict_once(self, x, profile=False, visualize=False): + """ + Perform a forward pass through the network. + + Args: + x (torch.Tensor): The input tensor to the model. + profile (bool): Print the computation time of each layer if True, defaults to False. + visualize (bool): Save the feature maps of the model if True, defaults to False. + + Returns: + (torch.Tensor): The last output of the model. + """ + y, dt = [], [] # outputs + for m in self.model: + if m.f != -1: # if not from previous layer + x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers + if profile: + self._profile_one_layer(m, x, dt) + x = m(x) # run + y.append(x if m.i in self.save else None) # save output + if visualize: + feature_visualization(x, m.type, m.i, save_dir=visualize) + return x + + def _predict_augment(self, x): + """Perform augmentations on input image x and return augmented inference.""" + LOGGER.warning( + f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.' + ) + return self._predict_once(x) + + def _profile_one_layer(self, m, x, dt): + """ + Profile the computation time and FLOPs of a single layer of the model on a given input. + Appends the results to the provided list. + + Args: + m (nn.Module): The layer to be profiled. + x (torch.Tensor): The input data to the layer. + dt (list): A list to store the computation time of the layer. + + Returns: + None + """ + c = m == self.model[-1] # is final layer, copy input as inplace fix + o = thop.profile(m, inputs=[x.clone() if c else x], verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs + t = time_sync() + for _ in range(10): + m(x.clone() if c else x) + dt.append((time_sync() - t) * 100) + if m == self.model[0]: + LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module") + LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') + if c: + LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") + + def fuse(self, verbose=True): + """ + Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the + computation efficiency. + + Returns: + (nn.Module): The fused model is returned. + """ + if not self.is_fused(): + for m in self.model.modules(): + if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'): + if isinstance(m, Conv2): + m.fuse_convs() + m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv + delattr(m, 'bn') # remove batchnorm + m.forward = m.forward_fuse # update forward + if isinstance(m, ConvTranspose) and hasattr(m, 'bn'): + m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn) + delattr(m, 'bn') # remove batchnorm + m.forward = m.forward_fuse # update forward + if isinstance(m, RepConv): + m.fuse_convs() + m.forward = m.forward_fuse # update forward + self.info(verbose=verbose) + + return self + + def is_fused(self, thresh=10): + """ + Check if the model has less than a certain threshold of BatchNorm layers. + + Args: + thresh (int, optional): The threshold number of BatchNorm layers. Default is 10. + + Returns: + (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise. + """ + bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() + return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model + + def info(self, detailed=False, verbose=True, imgsz=640): + """ + Prints model information + + Args: + verbose (bool): if True, prints out the model information. Defaults to False + imgsz (int): the size of the image that the model will be trained on. Defaults to 640 + """ + return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz) + + def _apply(self, fn): + """ + `_apply()` is a function that applies a function to all the tensors in the model that are not + parameters or registered buffers + + Args: + fn: the function to apply to the model + + Returns: + A model that is a Detect() object. + """ + self = super()._apply(fn) + m = self.model[-1] # Detect() + if isinstance(m, (Detect, Segment)): + m.stride = fn(m.stride) + m.anchors = fn(m.anchors) + m.strides = fn(m.strides) + return self + + def load(self, weights, verbose=True): + """Load the weights into the model. + + Args: + weights (dict | torch.nn.Module): The pre-trained weights to be loaded. + verbose (bool, optional): Whether to log the transfer progress. Defaults to True. + """ + model = weights['model'] if isinstance(weights, dict) else weights # torchvision models are not dicts + csd = model.float().state_dict() # checkpoint state_dict as FP32 + csd = intersect_dicts(csd, self.state_dict()) # intersect + self.load_state_dict(csd, strict=False) # load + if verbose: + LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights') + + def loss(self, batch, preds=None): + """ + Compute loss + + Args: + batch (dict): Batch to compute loss on + preds (torch.Tensor | List[torch.Tensor]): Predictions. + """ + if not hasattr(self, 'criterion'): + self.criterion = self.init_criterion() + + preds = self.forward(batch['img']) if preds is None else preds + return self.criterion(preds, batch) + + def init_criterion(self): + raise NotImplementedError('compute_loss() needs to be implemented by task heads') + + +class DetectionModel(BaseModel): + """YOLOv8 detection model.""" + + def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes + super().__init__() + self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict + + # Define model + ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels + if nc and nc != self.yaml['nc']: + LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") + self.yaml['nc'] = nc # override yaml value + self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist + self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict + self.inplace = self.yaml.get('inplace', True) + + # Build strides + m = self.model[-1] # Detect() + if isinstance(m, (Detect, Segment, Pose)): + s = 256 # 2x min stride + m.inplace = self.inplace + forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose)) else self.forward(x) + m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward + self.stride = m.stride + m.bias_init() # only run once + else: + self.stride = torch.Tensor([32]) # default stride for i.e. RTDETR + + # Init weights, biases + initialize_weights(self) + if verbose: + self.info() + LOGGER.info('') + + def _predict_augment(self, x): + """Perform augmentations on input image x and return augmented inference and train outputs.""" + img_size = x.shape[-2:] # height, width + s = [1, 0.83, 0.67] # scales + f = [None, 3, None] # flips (2-ud, 3-lr) + y = [] # outputs + for si, fi in zip(s, f): + xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) + yi = super().predict(xi)[0] # forward + # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save + yi = self._descale_pred(yi, fi, si, img_size) + y.append(yi) + y = self._clip_augmented(y) # clip augmented tails + return torch.cat(y, -1), None # augmented inference, train + + @staticmethod + def _descale_pred(p, flips, scale, img_size, dim=1): + """De-scale predictions following augmented inference (inverse operation).""" + p[:, :4] /= scale # de-scale + x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim) + if flips == 2: + y = img_size[0] - y # de-flip ud + elif flips == 3: + x = img_size[1] - x # de-flip lr + return torch.cat((x, y, wh, cls), dim) + + def _clip_augmented(self, y): + """Clip YOLOv5 augmented inference tails.""" + nl = self.model[-1].nl # number of detection layers (P3-P5) + g = sum(4 ** x for x in range(nl)) # grid points + e = 1 # exclude layer count + i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e)) # indices + y[0] = y[0][..., :-i] # large + i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices + y[-1] = y[-1][..., i:] # small + return y + + def init_criterion(self): + return v8DetectionLoss(self) + + +class SegmentationModel(DetectionModel): + """YOLOv8 segmentation model.""" + + def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True): + """Initialize YOLOv8 segmentation model with given config and parameters.""" + super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) + + def init_criterion(self): + return v8SegmentationLoss(self) + + def _predict_augment(self, x): + """Perform augmentations on input image x and return augmented inference.""" + LOGGER.warning( + f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.' + ) + return self._predict_once(x) + + +class PoseModel(DetectionModel): + """YOLOv8 pose model.""" + + def __init__(self, cfg='yolov8n-pose.yaml', ch=3, nc=None, data_kpt_shape=(None, None), verbose=True): + """Initialize YOLOv8 Pose model.""" + if not isinstance(cfg, dict): + cfg = yaml_model_load(cfg) # load model YAML + if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg['kpt_shape']): + LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}") + cfg['kpt_shape'] = data_kpt_shape + super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) + + def init_criterion(self): + return v8PoseLoss(self) + + def _predict_augment(self, x): + """Perform augmentations on input image x and return augmented inference.""" + LOGGER.warning( + f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.' + ) + return self._predict_once(x) + + +class ClassificationModel(BaseModel): + """YOLOv8 classification model.""" + + def __init__(self, + cfg=None, + model=None, + ch=3, + nc=None, + cutoff=10, + verbose=True): # yaml, model, channels, number of classes, cutoff index, verbose flag + super().__init__() + self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg, ch, nc, verbose) + + def _from_detection_model(self, model, nc=1000, cutoff=10): + """Create a YOLOv5 classification model from a YOLOv5 detection model.""" + from ultralytics.nn.autobackend import AutoBackend + if isinstance(model, AutoBackend): + model = model.model # unwrap DetectMultiBackend + model.model = model.model[:cutoff] # backbone + m = model.model[-1] # last layer + ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module + c = Classify(ch, nc) # Classify() + c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type + model.model[-1] = c # replace + self.model = model.model + self.stride = model.stride + self.save = [] + self.nc = nc + + def _from_yaml(self, cfg, ch, nc, verbose): + """Set YOLOv8 model configurations and define the model architecture.""" + self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict + + # Define model + ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels + if nc and nc != self.yaml['nc']: + LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") + self.yaml['nc'] = nc # override yaml value + elif not nc and not self.yaml.get('nc', None): + raise ValueError('nc not specified. Must specify nc in model.yaml or function arguments.') + self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist + self.stride = torch.Tensor([1]) # no stride constraints + self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict + self.info() + + @staticmethod + def reshape_outputs(model, nc): + """Update a TorchVision classification model to class count 'n' if required.""" + name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module + if isinstance(m, Classify): # YOLO Classify() head + if m.linear.out_features != nc: + m.linear = nn.Linear(m.linear.in_features, nc) + elif isinstance(m, nn.Linear): # ResNet, EfficientNet + if m.out_features != nc: + setattr(model, name, nn.Linear(m.in_features, nc)) + elif isinstance(m, nn.Sequential): + types = [type(x) for x in m] + if nn.Linear in types: + i = types.index(nn.Linear) # nn.Linear index + if m[i].out_features != nc: + m[i] = nn.Linear(m[i].in_features, nc) + elif nn.Conv2d in types: + i = types.index(nn.Conv2d) # nn.Conv2d index + if m[i].out_channels != nc: + m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None) + + def init_criterion(self): + """Compute the classification loss between predictions and true labels.""" + return v8ClassificationLoss() + + +class RTDETRDetectionModel(DetectionModel): + + def __init__(self, cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True): + super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) + + def init_criterion(self): + """Compute the classification loss between predictions and true labels.""" + from ultralytics.vit.utils.loss import RTDETRDetectionLoss + + return RTDETRDetectionLoss(nc=self.nc, use_vfl=True) + + def loss(self, batch, preds=None): + if not hasattr(self, 'criterion'): + self.criterion = self.init_criterion() + + img = batch['img'] + # NOTE: preprocess gt_bbox and gt_labels to list. + bs = len(img) + batch_idx = batch['batch_idx'] + gt_groups = [(batch_idx == i).sum().item() for i in range(bs)] + targets = { + 'cls': batch['cls'].to(img.device, dtype=torch.long).view(-1), + 'bboxes': batch['bboxes'].to(device=img.device), + 'batch_idx': batch_idx.to(img.device, dtype=torch.long).view(-1), + 'gt_groups': gt_groups} + + preds = self.predict(img, batch=targets) if preds is None else preds + dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds + if dn_meta is None: + dn_bboxes, dn_scores = None, None + else: + dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta['dn_num_split'], dim=2) + dn_scores, dec_scores = torch.split(dec_scores, dn_meta['dn_num_split'], dim=2) + + dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes]) # (7, bs, 300, 4) + dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores]) + + loss = self.criterion((dec_bboxes, dec_scores), + targets, + dn_bboxes=dn_bboxes, + dn_scores=dn_scores, + dn_meta=dn_meta) + # NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses. + return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ['loss_giou', 'loss_class', 'loss_bbox']], + device=img.device) + + def predict(self, x, profile=False, visualize=False, batch=None, augment=False): + """ + Perform a forward pass through the network. + + Args: + x (torch.Tensor): The input tensor to the model + profile (bool): Print the computation time of each layer if True, defaults to False. + visualize (bool): Save the feature maps of the model if True, defaults to False + batch (dict): A dict including gt boxes and labels from dataloader. + + Returns: + (torch.Tensor): The last output of the model. + """ + y, dt = [], [] # outputs + for m in self.model[:-1]: # except the head part + if m.f != -1: # if not from previous layer + x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers + if profile: + self._profile_one_layer(m, x, dt) + x = m(x) # run + y.append(x if m.i in self.save else None) # save output + if visualize: + feature_visualization(x, m.type, m.i, save_dir=visualize) + head = self.model[-1] + x = head([y[j] for j in head.f], batch) # head inference + return x + + +class Ensemble(nn.ModuleList): + """Ensemble of models.""" + + def __init__(self): + """Initialize an ensemble of models.""" + super().__init__() + + def forward(self, x, augment=False, profile=False, visualize=False): + """Function generates the YOLOv5 network's final layer.""" + y = [module(x, augment, profile, visualize)[0] for module in self] + # y = torch.stack(y).max(0)[0] # max ensemble + # y = torch.stack(y).mean(0) # mean ensemble + y = torch.cat(y, 2) # nms ensemble, y shape(B, HW, C) + return y, None # inference, train output + + +# Functions ------------------------------------------------------------------------------------------------------------ + + +def torch_safe_load(weight): + """ + This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, + it catches the error, logs a warning message, and attempts to install the missing module via the + check_requirements() function. After installation, the function again attempts to load the model using torch.load(). + + Args: + weight (str): The file path of the PyTorch model. + + Returns: + (dict): The loaded PyTorch model. + """ + from ultralytics.yolo.utils.downloads import attempt_download_asset + + check_suffix(file=weight, suffix='.pt') + file = attempt_download_asset(weight) # search online if missing locally + try: + return torch.load(file, map_location='cpu'), file # load + except ModuleNotFoundError as e: # e.name is missing module name + if e.name == 'models': + raise TypeError( + emojis(f'ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained ' + f'with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with ' + f'YOLOv8 at https://github.com/ultralytics/ultralytics.' + f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to " + f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from e + LOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements." + f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future." + f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to " + f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'") + check_requirements(e.name) # install missing module + + return torch.load(file, map_location='cpu'), file # load + + +def attempt_load_weights(weights, device=None, inplace=True, fuse=False): + """Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a.""" + + ensemble = Ensemble() + for w in weights if isinstance(weights, list) else [weights]: + ckpt, w = torch_safe_load(w) # load ckpt + args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} if 'train_args' in ckpt else None # combined args + model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model + + # Model compatibility updates + model.args = args # attach args to model + model.pt_path = w # attach *.pt file path to model + model.task = guess_model_task(model) + if not hasattr(model, 'stride'): + model.stride = torch.tensor([32.]) + + # Append + ensemble.append(model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()) # model in eval mode + + # Module compatibility updates + for m in ensemble.modules(): + t = type(m) + if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment): + m.inplace = inplace # torch 1.7.0 compatibility + elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): + m.recompute_scale_factor = None # torch 1.11.0 compatibility + + # Return model + if len(ensemble) == 1: + return ensemble[-1] + + # Return ensemble + LOGGER.info(f'Ensemble created with {weights}\n') + for k in 'names', 'nc', 'yaml': + setattr(ensemble, k, getattr(ensemble[0], k)) + ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride + assert all(ensemble[0].nc == m.nc for m in ensemble), f'Models differ in class counts {[m.nc for m in ensemble]}' + return ensemble + + +def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False): + """Loads a single model weights.""" + ckpt, weight = torch_safe_load(weight) # load ckpt + args = {**DEFAULT_CFG_DICT, **(ckpt.get('train_args', {}))} # combine model and default args, preferring model args + model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model + + # Model compatibility updates + model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model + model.pt_path = weight # attach *.pt file path to model + model.task = guess_model_task(model) + if not hasattr(model, 'stride'): + model.stride = torch.tensor([32.]) + + model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval() # model in eval mode + + # Module compatibility updates + for m in model.modules(): + t = type(m) + if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment): + m.inplace = inplace # torch 1.7.0 compatibility + elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): + m.recompute_scale_factor = None # torch 1.11.0 compatibility + + # Return model and ckpt + return model, ckpt + + +def parse_model(d, ch, verbose=True): # model_dict, input_channels(3) + # Parse a YOLO model.yaml dictionary into a PyTorch model + import ast + + # Args + max_channels = float('inf') + nc, act, scales = (d.get(x) for x in ('nc', 'activation', 'scales')) + depth, width, kpt_shape = (d.get(x, 1.0) for x in ('depth_multiple', 'width_multiple', 'kpt_shape')) + if scales: + scale = d.get('scale') + if not scale: + scale = tuple(scales.keys())[0] + LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.") + depth, width, max_channels = scales[scale] + + if act: + Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() + if verbose: + LOGGER.info(f"{colorstr('activation:')} {act}") # print + + if verbose: + LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}") + ch = [ch] + layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out + for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args + m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module + for j, a in enumerate(args): + if isinstance(a, str): + with contextlib.suppress(ValueError): + args[j] = locals()[a] if a in locals() else ast.literal_eval(a) + + n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain + if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, + BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3): + c1, c2 = ch[f], args[0] + if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output) + c2 = make_divisible(min(c2, max_channels) * width, 8) + + args = [c1, c2, *args[1:]] + if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3): + args.insert(2, n) # number of repeats + n = 1 + elif m is AIFI: + args = [ch[f], *args] + elif m in (HGStem, HGBlock): + c1, cm, c2 = ch[f], args[0], args[1] + args = [c1, cm, c2, *args[2:]] + if m is HGBlock: + args.insert(4, n) # number of repeats + n = 1 + + elif m is nn.BatchNorm2d: + args = [ch[f]] + elif m is Concat: + c2 = sum(ch[x] for x in f) + elif m in (Detect, Segment, Pose, RTDETRDecoder): + args.append([ch[x] for x in f]) + if m is Segment: + args[2] = make_divisible(min(args[2], max_channels) * width, 8) + else: + c2 = ch[f] + + m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module + t = str(m)[8:-2].replace('__main__.', '') # module type + m.np = sum(x.numel() for x in m_.parameters()) # number params + m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type + if verbose: + LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print + save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist + layers.append(m_) + if i == 0: + ch = [] + ch.append(c2) + return nn.Sequential(*layers), sorted(save) + + +def yaml_model_load(path): + """Load a YOLOv8 model from a YAML file.""" + import re + + path = Path(path) + if path.stem in (f'yolov{d}{x}6' for x in 'nsmlx' for d in (5, 8)): + new_stem = re.sub(r'(\d+)([nslmx])6(.+)?$', r'\1\2-p6\3', path.stem) + LOGGER.warning(f'WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.') + path = path.with_stem(new_stem) + + unified_path = re.sub(r'(\d+)([nslmx])(.+)?$', r'\1\3', str(path)) # i.e. yolov8x.yaml -> yolov8.yaml + yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path) + d = yaml_load(yaml_file) # model dict + d['scale'] = guess_model_scale(path) + d['yaml_file'] = str(path) + return d + + +def guess_model_scale(model_path): + """ + Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. + The function uses regular expression matching to find the pattern of the model scale in the YAML file name, + which is denoted by n, s, m, l, or x. The function returns the size character of the model scale as a string. + + Args: + model_path (str | Path): The path to the YOLO model's YAML file. + + Returns: + (str): The size character of the model's scale, which can be n, s, m, l, or x. + """ + with contextlib.suppress(AttributeError): + import re + return re.search(r'yolov\d+([nslmx])', Path(model_path).stem).group(1) # n, s, m, l, or x + return '' + + +def guess_model_task(model): + """ + Guess the task of a PyTorch model from its architecture or configuration. + + Args: + model (nn.Module | dict): PyTorch model or model configuration in YAML format. + + Returns: + (str): Task of the model ('detect', 'segment', 'classify', 'pose'). + + Raises: + SyntaxError: If the task of the model could not be determined. + """ + + def cfg2task(cfg): + """Guess from YAML dictionary.""" + m = cfg['head'][-1][-2].lower() # output module name + if m in ('classify', 'classifier', 'cls', 'fc'): + return 'classify' + if m == 'detect': + return 'detect' + if m == 'segment': + return 'segment' + if m == 'pose': + return 'pose' + + # Guess from model cfg + if isinstance(model, dict): + with contextlib.suppress(Exception): + return cfg2task(model) + + # Guess from PyTorch model + if isinstance(model, nn.Module): # PyTorch model + for x in 'model.args', 'model.model.args', 'model.model.model.args': + with contextlib.suppress(Exception): + return eval(x)['task'] + for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml': + with contextlib.suppress(Exception): + return cfg2task(eval(x)) + + for m in model.modules(): + if isinstance(m, Detect): + return 'detect' + elif isinstance(m, Segment): + return 'segment' + elif isinstance(m, Classify): + return 'classify' + elif isinstance(m, Pose): + return 'pose' + + # Guess from model filename + if isinstance(model, (str, Path)): + model = Path(model) + if '-seg' in model.stem or 'segment' in model.parts: + return 'segment' + elif '-cls' in model.stem or 'classify' in model.parts: + return 'classify' + elif '-pose' in model.stem or 'pose' in model.parts: + return 'pose' + elif 'detect' in model.parts: + return 'detect' + + # Unable to determine task from model + LOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. " + "Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify', or 'pose'.") + return 'detect' # assume detect diff --git a/modules/ultralytics/tracker/README.md b/modules/ultralytics/tracker/README.md new file mode 100644 index 0000000000000000000000000000000000000000..26ec0c3246b3e2caf8c499fb476d7da6ede60386 --- /dev/null +++ b/modules/ultralytics/tracker/README.md @@ -0,0 +1,86 @@ +# Tracker + +## Supported Trackers + +- [x] ByteTracker +- [x] BoT-SORT + +## Usage + +### python interface: + +You can use the Python interface to track objects using the YOLO model. + +```python +from ultralytics import YOLO + +model = YOLO("yolov8n.pt") # or a segmentation model .i.e yolov8n-seg.pt +model.track( + source="video/streams", + stream=True, + tracker="botsort.yaml", # or 'bytetrack.yaml' + show=True, +) +``` + +You can get the IDs of the tracked objects using the following code: + +```python +from ultralytics import YOLO + +model = YOLO("yolov8n.pt") + +for result in model.track(source="video.mp4"): + print( + result.boxes.id.cpu().numpy().astype(int) + ) # this will print the IDs of the tracked objects in the frame +``` + +If you want to use the tracker with a folder of images or when you loop on the video frames, you should use the `persist` parameter to tell the model that these frames are related to each other so the IDs will be fixed for the same objects. Otherwise, the IDs will be different in each frame because in each loop, the model creates a new object for tracking, but the `persist` parameter makes it use the same object for tracking. + +```python +import cv2 +from ultralytics import YOLO + +cap = cv2.VideoCapture("video.mp4") +model = YOLO("yolov8n.pt") +while True: + ret, frame = cap.read() + if not ret: + break + results = model.track(frame, persist=True) + boxes = results[0].boxes.xyxy.cpu().numpy().astype(int) + ids = results[0].boxes.id.cpu().numpy().astype(int) + for box, id in zip(boxes, ids): + cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2) + cv2.putText( + frame, + f"Id {id}", + (box[0], box[1]), + cv2.FONT_HERSHEY_SIMPLEX, + 1, + (0, 0, 255), + 2, + ) + cv2.imshow("frame", frame) + if cv2.waitKey(1) & 0xFF == ord("q"): + break +``` + +## Change tracker parameters + +You can change the tracker parameters by eding the `tracker.yaml` file which is located in the ultralytics/tracker/cfg folder. + +## Command Line Interface (CLI) + +You can also use the command line interface to track objects using the YOLO model. + +```bash +yolo detect track source=... tracker=... +yolo segment track source=... tracker=... +yolo pose track source=... tracker=... +``` + +By default, trackers will use the configuration in `ultralytics/tracker/cfg`. +We also support using a modified tracker config file. Please refer to the tracker config files +in `ultralytics/tracker/cfg`.
diff --git a/modules/ultralytics/tracker/__init__.py b/modules/ultralytics/tracker/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..13d3903e763e1fbb21c1064f6bffdafcca08e9e6 --- /dev/null +++ b/modules/ultralytics/tracker/__init__.py @@ -0,0 +1,6 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .track import register_tracker +from .trackers import BOTSORT, BYTETracker + +__all__ = 'register_tracker', 'BOTSORT', 'BYTETracker' # allow simpler import diff --git a/modules/ultralytics/tracker/cfg/botsort.yaml b/modules/ultralytics/tracker/cfg/botsort.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d4947c6079cb5628d80a0134a9f72bc5c3ab360e --- /dev/null +++ b/modules/ultralytics/tracker/cfg/botsort.yaml @@ -0,0 +1,18 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# Default YOLO tracker settings for BoT-SORT tracker https://github.com/NirAharon/BoT-SORT + +tracker_type: botsort # tracker type, ['botsort', 'bytetrack'] +track_high_thresh: 0.5 # threshold for the first association +track_low_thresh: 0.1 # threshold for the second association +new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks +track_buffer: 30 # buffer to calculate the time when to remove tracks +match_thresh: 0.8 # threshold for matching tracks +# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now) +# mot20: False # for tracker evaluation(not used for now) + +# BoT-SORT settings +cmc_method: sparseOptFlow # method of global motion compensation +# ReID model related thresh (not supported yet) +proximity_thresh: 0.5 +appearance_thresh: 0.25 +with_reid: False diff --git a/modules/ultralytics/tracker/cfg/bytetrack.yaml b/modules/ultralytics/tracker/cfg/bytetrack.yaml new file mode 100644 index 0000000000000000000000000000000000000000..5060f92622a9873dbdd0596e29172277c1cdbb99 --- /dev/null +++ b/modules/ultralytics/tracker/cfg/bytetrack.yaml @@ -0,0 +1,11 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# Default YOLO tracker settings for ByteTrack tracker https://github.com/ifzhang/ByteTrack + +tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack'] +track_high_thresh: 0.5 # threshold for the first association +track_low_thresh: 0.1 # threshold for the second association +new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks +track_buffer: 30 # buffer to calculate the time when to remove tracks +match_thresh: 0.8 # threshold for matching tracks +# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now) +# mot20: False # for tracker evaluation(not used for now) diff --git a/modules/ultralytics/tracker/track.py b/modules/ultralytics/tracker/track.py new file mode 100644 index 0000000000000000000000000000000000000000..d08abfc7ad94465d5c7283df4c960580065ffec9 --- /dev/null +++ b/modules/ultralytics/tracker/track.py @@ -0,0 +1,65 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from functools import partial + +import torch + +from ultralytics.yolo.utils import IterableSimpleNamespace, yaml_load +from ultralytics.yolo.utils.checks import check_yaml + +from .trackers import BOTSORT, BYTETracker + +TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT} + + +def on_predict_start(predictor, persist=False): + """ + Initialize trackers for object tracking during prediction. + + Args: + predictor (object): The predictor object to initialize trackers for. + persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False. + + Raises: + AssertionError: If the tracker_type is not 'bytetrack' or 'botsort'. + """ + if hasattr(predictor, 'trackers') and persist: + return + tracker = check_yaml(predictor.args.tracker) + cfg = IterableSimpleNamespace(**yaml_load(tracker)) + assert cfg.tracker_type in ['bytetrack', 'botsort'], \ + f"Only support 'bytetrack' and 'botsort' for now, but got '{cfg.tracker_type}'" + trackers = [] + for _ in range(predictor.dataset.bs): + tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30) + trackers.append(tracker) + predictor.trackers = trackers + + +def on_predict_postprocess_end(predictor): + """Postprocess detected boxes and update with object tracking.""" + bs = predictor.dataset.bs + im0s = predictor.batch[1] + for i in range(bs): + det = predictor.results[i].boxes.cpu().numpy() + if len(det) == 0: + continue + tracks = predictor.trackers[i].update(det, im0s[i]) + if len(tracks) == 0: + continue + idx = tracks[:, -1].astype(int) + predictor.results[i] = predictor.results[i][idx] + predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1])) + + +def register_tracker(model, persist): + """ + Register tracking callbacks to the model for object tracking during prediction. + + Args: + model (object): The model object to register tracking callbacks for. + persist (bool): Whether to persist the trackers if they already exist. + + """ + model.add_callback('on_predict_start', partial(on_predict_start, persist=persist)) + model.add_callback('on_predict_postprocess_end', on_predict_postprocess_end) diff --git a/modules/ultralytics/tracker/trackers/__init__.py b/modules/ultralytics/tracker/trackers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a0fd890e95dfd40c1d025e8d8ed97495b9c33c4e --- /dev/null +++ b/modules/ultralytics/tracker/trackers/__init__.py @@ -0,0 +1,6 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .bot_sort import BOTSORT +from .byte_tracker import BYTETracker + +__all__ = 'BOTSORT', 'BYTETracker' # allow simpler import diff --git a/modules/ultralytics/tracker/trackers/basetrack.py b/modules/ultralytics/tracker/trackers/basetrack.py new file mode 100644 index 0000000000000000000000000000000000000000..3c7b0f707508d92699b9a2f5c3d4500006e9faa5 --- /dev/null +++ b/modules/ultralytics/tracker/trackers/basetrack.py @@ -0,0 +1,71 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from collections import OrderedDict + +import numpy as np + + +class TrackState: + """Enumeration of possible object tracking states.""" + + New = 0 + Tracked = 1 + Lost = 2 + Removed = 3 + + +class BaseTrack: + """Base class for object tracking, handling basic track attributes and operations.""" + + _count = 0 + + track_id = 0 + is_activated = False + state = TrackState.New + + history = OrderedDict() + features = [] + curr_feature = None + score = 0 + start_frame = 0 + frame_id = 0 + time_since_update = 0 + + # Multi-camera + location = (np.inf, np.inf) + + @property + def end_frame(self): + """Return the last frame ID of the track.""" + return self.frame_id + + @staticmethod + def next_id(): + """Increment and return the global track ID counter.""" + BaseTrack._count += 1 + return BaseTrack._count + + def activate(self, *args): + """Activate the track with the provided arguments.""" + raise NotImplementedError + + def predict(self): + """Predict the next state of the track.""" + raise NotImplementedError + + def update(self, *args, **kwargs): + """Update the track with new observations.""" + raise NotImplementedError + + def mark_lost(self): + """Mark the track as lost.""" + self.state = TrackState.Lost + + def mark_removed(self): + """Mark the track as removed.""" + self.state = TrackState.Removed + + @staticmethod + def reset_id(): + """Reset the global track ID counter.""" + BaseTrack._count = 0 diff --git a/modules/ultralytics/tracker/trackers/bot_sort.py b/modules/ultralytics/tracker/trackers/bot_sort.py new file mode 100644 index 0000000000000000000000000000000000000000..10e88682d91c72b3b7671ee00e19fd42a4cd6c64 --- /dev/null +++ b/modules/ultralytics/tracker/trackers/bot_sort.py @@ -0,0 +1,148 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from collections import deque + +import numpy as np + +from ..utils import matching +from ..utils.gmc import GMC +from ..utils.kalman_filter import KalmanFilterXYWH +from .basetrack import TrackState +from .byte_tracker import BYTETracker, STrack + + +class BOTrack(STrack): + shared_kalman = KalmanFilterXYWH() + + def __init__(self, tlwh, score, cls, feat=None, feat_history=50): + """Initialize YOLOv8 object with temporal parameters, such as feature history, alpha and current features.""" + super().__init__(tlwh, score, cls) + + self.smooth_feat = None + self.curr_feat = None + if feat is not None: + self.update_features(feat) + self.features = deque([], maxlen=feat_history) + self.alpha = 0.9 + + def update_features(self, feat): + """Update features vector and smooth it using exponential moving average.""" + feat /= np.linalg.norm(feat) + self.curr_feat = feat + if self.smooth_feat is None: + self.smooth_feat = feat + else: + self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat + self.features.append(feat) + self.smooth_feat /= np.linalg.norm(self.smooth_feat) + + def predict(self): + """Predicts the mean and covariance using Kalman filter.""" + mean_state = self.mean.copy() + if self.state != TrackState.Tracked: + mean_state[6] = 0 + mean_state[7] = 0 + + self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) + + def re_activate(self, new_track, frame_id, new_id=False): + """Reactivates a track with updated features and optionally assigns a new ID.""" + if new_track.curr_feat is not None: + self.update_features(new_track.curr_feat) + super().re_activate(new_track, frame_id, new_id) + + def update(self, new_track, frame_id): + """Update the YOLOv8 instance with new track and frame ID.""" + if new_track.curr_feat is not None: + self.update_features(new_track.curr_feat) + super().update(new_track, frame_id) + + @property + def tlwh(self): + """Get current position in bounding box format `(top left x, top left y, + width, height)`. + """ + if self.mean is None: + return self._tlwh.copy() + ret = self.mean[:4].copy() + ret[:2] -= ret[2:] / 2 + return ret + + @staticmethod + def multi_predict(stracks): + """Predicts the mean and covariance of multiple object tracks using shared Kalman filter.""" + if len(stracks) <= 0: + return + multi_mean = np.asarray([st.mean.copy() for st in stracks]) + multi_covariance = np.asarray([st.covariance for st in stracks]) + for i, st in enumerate(stracks): + if st.state != TrackState.Tracked: + multi_mean[i][6] = 0 + multi_mean[i][7] = 0 + multi_mean, multi_covariance = BOTrack.shared_kalman.multi_predict(multi_mean, multi_covariance) + for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): + stracks[i].mean = mean + stracks[i].covariance = cov + + def convert_coords(self, tlwh): + """Converts Top-Left-Width-Height bounding box coordinates to X-Y-Width-Height format.""" + return self.tlwh_to_xywh(tlwh) + + @staticmethod + def tlwh_to_xywh(tlwh): + """Convert bounding box to format `(center x, center y, width, + height)`. + """ + ret = np.asarray(tlwh).copy() + ret[:2] += ret[2:] / 2 + return ret + + +class BOTSORT(BYTETracker): + + def __init__(self, args, frame_rate=30): + """Initialize YOLOv8 object with ReID module and GMC algorithm.""" + super().__init__(args, frame_rate) + # ReID module + self.proximity_thresh = args.proximity_thresh + self.appearance_thresh = args.appearance_thresh + + if args.with_reid: + # Haven't supported BoT-SORT(reid) yet + self.encoder = None + # self.gmc = GMC(method=args.cmc_method, verbose=[args.name, args.ablation]) + self.gmc = GMC(method=args.cmc_method) + + def get_kalmanfilter(self): + """Returns an instance of KalmanFilterXYWH for object tracking.""" + return KalmanFilterXYWH() + + def init_track(self, dets, scores, cls, img=None): + """Initialize track with detections, scores, and classes.""" + if len(dets) == 0: + return [] + if self.args.with_reid and self.encoder is not None: + features_keep = self.encoder.inference(img, dets) + return [BOTrack(xyxy, s, c, f) for (xyxy, s, c, f) in zip(dets, scores, cls, features_keep)] # detections + else: + return [BOTrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] # detections + + def get_dists(self, tracks, detections): + """Get distances between tracks and detections using IoU and (optionally) ReID embeddings.""" + dists = matching.iou_distance(tracks, detections) + dists_mask = (dists > self.proximity_thresh) + + # TODO: mot20 + # if not self.args.mot20: + dists = matching.fuse_score(dists, detections) + + if self.args.with_reid and self.encoder is not None: + emb_dists = matching.embedding_distance(tracks, detections) / 2.0 + emb_dists[emb_dists > self.appearance_thresh] = 1.0 + emb_dists[dists_mask] = 1.0 + dists = np.minimum(dists, emb_dists) + return dists + + def multi_predict(self, tracks): + """Predict and track multiple objects with YOLOv8 model.""" + BOTrack.multi_predict(tracks) diff --git a/modules/ultralytics/tracker/trackers/byte_tracker.py b/modules/ultralytics/tracker/trackers/byte_tracker.py new file mode 100644 index 0000000000000000000000000000000000000000..6034cdc9dc6f29de331f2767ba83fe8bd7c617a5 --- /dev/null +++ b/modules/ultralytics/tracker/trackers/byte_tracker.py @@ -0,0 +1,364 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import numpy as np + +from ..utils import matching +from ..utils.kalman_filter import KalmanFilterXYAH +from .basetrack import BaseTrack, TrackState + + +class STrack(BaseTrack): + shared_kalman = KalmanFilterXYAH() + + def __init__(self, tlwh, score, cls): + """wait activate.""" + self._tlwh = np.asarray(self.tlbr_to_tlwh(tlwh[:-1]), dtype=np.float32) + self.kalman_filter = None + self.mean, self.covariance = None, None + self.is_activated = False + + self.score = score + self.tracklet_len = 0 + self.cls = cls + self.idx = tlwh[-1] + + def predict(self): + """Predicts mean and covariance using Kalman filter.""" + mean_state = self.mean.copy() + if self.state != TrackState.Tracked: + mean_state[7] = 0 + self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) + + @staticmethod + def multi_predict(stracks): + """Perform multi-object predictive tracking using Kalman filter for given stracks.""" + if len(stracks) <= 0: + return + multi_mean = np.asarray([st.mean.copy() for st in stracks]) + multi_covariance = np.asarray([st.covariance for st in stracks]) + for i, st in enumerate(stracks): + if st.state != TrackState.Tracked: + multi_mean[i][7] = 0 + multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance) + for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): + stracks[i].mean = mean + stracks[i].covariance = cov + + @staticmethod + def multi_gmc(stracks, H=np.eye(2, 3)): + """Update state tracks positions and covariances using a homography matrix.""" + if len(stracks) > 0: + multi_mean = np.asarray([st.mean.copy() for st in stracks]) + multi_covariance = np.asarray([st.covariance for st in stracks]) + + R = H[:2, :2] + R8x8 = np.kron(np.eye(4, dtype=float), R) + t = H[:2, 2] + + for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): + mean = R8x8.dot(mean) + mean[:2] += t + cov = R8x8.dot(cov).dot(R8x8.transpose()) + + stracks[i].mean = mean + stracks[i].covariance = cov + + def activate(self, kalman_filter, frame_id): + """Start a new tracklet.""" + self.kalman_filter = kalman_filter + self.track_id = self.next_id() + self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh)) + + self.tracklet_len = 0 + self.state = TrackState.Tracked + if frame_id == 1: + self.is_activated = True + self.frame_id = frame_id + self.start_frame = frame_id + + def re_activate(self, new_track, frame_id, new_id=False): + """Reactivates a previously lost track with a new detection.""" + self.mean, self.covariance = self.kalman_filter.update(self.mean, self.covariance, + self.convert_coords(new_track.tlwh)) + self.tracklet_len = 0 + self.state = TrackState.Tracked + self.is_activated = True + self.frame_id = frame_id + if new_id: + self.track_id = self.next_id() + self.score = new_track.score + self.cls = new_track.cls + self.idx = new_track.idx + + def update(self, new_track, frame_id): + """ + Update a matched track + :type new_track: STrack + :type frame_id: int + :return: + """ + self.frame_id = frame_id + self.tracklet_len += 1 + + new_tlwh = new_track.tlwh + self.mean, self.covariance = self.kalman_filter.update(self.mean, self.covariance, + self.convert_coords(new_tlwh)) + self.state = TrackState.Tracked + self.is_activated = True + + self.score = new_track.score + self.cls = new_track.cls + self.idx = new_track.idx + + def convert_coords(self, tlwh): + """Convert a bounding box's top-left-width-height format to its x-y-angle-height equivalent.""" + return self.tlwh_to_xyah(tlwh) + + @property + def tlwh(self): + """Get current position in bounding box format `(top left x, top left y, + width, height)`. + """ + if self.mean is None: + return self._tlwh.copy() + ret = self.mean[:4].copy() + ret[2] *= ret[3] + ret[:2] -= ret[2:] / 2 + return ret + + @property + def tlbr(self): + """Convert bounding box to format `(min x, min y, max x, max y)`, i.e., + `(top left, bottom right)`. + """ + ret = self.tlwh.copy() + ret[2:] += ret[:2] + return ret + + @staticmethod + def tlwh_to_xyah(tlwh): + """Convert bounding box to format `(center x, center y, aspect ratio, + height)`, where the aspect ratio is `width / height`. + """ + ret = np.asarray(tlwh).copy() + ret[:2] += ret[2:] / 2 + ret[2] /= ret[3] + return ret + + @staticmethod + def tlbr_to_tlwh(tlbr): + """Converts top-left bottom-right format to top-left width height format.""" + ret = np.asarray(tlbr).copy() + ret[2:] -= ret[:2] + return ret + + @staticmethod + def tlwh_to_tlbr(tlwh): + """Converts tlwh bounding box format to tlbr format.""" + ret = np.asarray(tlwh).copy() + ret[2:] += ret[:2] + return ret + + def __repr__(self): + """Return a string representation of the BYTETracker object with start and end frames and track ID.""" + return f'OT_{self.track_id}_({self.start_frame}-{self.end_frame})' + + +class BYTETracker: + + def __init__(self, args, frame_rate=30): + """Initialize a YOLOv8 object to track objects with given arguments and frame rate.""" + self.tracked_stracks = [] # type: list[STrack] + self.lost_stracks = [] # type: list[STrack] + self.removed_stracks = [] # type: list[STrack] + + self.frame_id = 0 + self.args = args + self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer) + self.kalman_filter = self.get_kalmanfilter() + self.reset_id() + + def update(self, results, img=None): + """Updates object tracker with new detections and returns tracked object bounding boxes.""" + self.frame_id += 1 + activated_stracks = [] + refind_stracks = [] + lost_stracks = [] + removed_stracks = [] + + scores = results.conf + bboxes = results.xyxy + # Add index + bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1) + cls = results.cls + + remain_inds = scores > self.args.track_high_thresh + inds_low = scores > self.args.track_low_thresh + inds_high = scores < self.args.track_high_thresh + + inds_second = np.logical_and(inds_low, inds_high) + dets_second = bboxes[inds_second] + dets = bboxes[remain_inds] + scores_keep = scores[remain_inds] + scores_second = scores[inds_second] + cls_keep = cls[remain_inds] + cls_second = cls[inds_second] + + detections = self.init_track(dets, scores_keep, cls_keep, img) + # Add newly detected tracklets to tracked_stracks + unconfirmed = [] + tracked_stracks = [] # type: list[STrack] + for track in self.tracked_stracks: + if not track.is_activated: + unconfirmed.append(track) + else: + tracked_stracks.append(track) + # Step 2: First association, with high score detection boxes + strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks) + # Predict the current location with KF + self.multi_predict(strack_pool) + if hasattr(self, 'gmc') and img is not None: + warp = self.gmc.apply(img, dets) + STrack.multi_gmc(strack_pool, warp) + STrack.multi_gmc(unconfirmed, warp) + + dists = self.get_dists(strack_pool, detections) + matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh) + + for itracked, idet in matches: + track = strack_pool[itracked] + det = detections[idet] + if track.state == TrackState.Tracked: + track.update(det, self.frame_id) + activated_stracks.append(track) + else: + track.re_activate(det, self.frame_id, new_id=False) + refind_stracks.append(track) + # Step 3: Second association, with low score detection boxes + # association the untrack to the low score detections + detections_second = self.init_track(dets_second, scores_second, cls_second, img) + r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked] + # TODO + dists = matching.iou_distance(r_tracked_stracks, detections_second) + matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5) + for itracked, idet in matches: + track = r_tracked_stracks[itracked] + det = detections_second[idet] + if track.state == TrackState.Tracked: + track.update(det, self.frame_id) + activated_stracks.append(track) + else: + track.re_activate(det, self.frame_id, new_id=False) + refind_stracks.append(track) + + for it in u_track: + track = r_tracked_stracks[it] + if track.state != TrackState.Lost: + track.mark_lost() + lost_stracks.append(track) + # Deal with unconfirmed tracks, usually tracks with only one beginning frame + detections = [detections[i] for i in u_detection] + dists = self.get_dists(unconfirmed, detections) + matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7) + for itracked, idet in matches: + unconfirmed[itracked].update(detections[idet], self.frame_id) + activated_stracks.append(unconfirmed[itracked]) + for it in u_unconfirmed: + track = unconfirmed[it] + track.mark_removed() + removed_stracks.append(track) + # Step 4: Init new stracks + for inew in u_detection: + track = detections[inew] + if track.score < self.args.new_track_thresh: + continue + track.activate(self.kalman_filter, self.frame_id) + activated_stracks.append(track) + # Step 5: Update state + for track in self.lost_stracks: + if self.frame_id - track.end_frame > self.max_time_lost: + track.mark_removed() + removed_stracks.append(track) + + self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked] + self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks) + self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks) + self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks) + self.lost_stracks.extend(lost_stracks) + self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks) + self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks) + self.removed_stracks.extend(removed_stracks) + if len(self.removed_stracks) > 1000: + self.removed_stracks = self.removed_stracks[-999:] # clip remove stracks to 1000 maximum + return np.asarray( + [x.tlbr.tolist() + [x.track_id, x.score, x.cls, x.idx] for x in self.tracked_stracks if x.is_activated], + dtype=np.float32) + + def get_kalmanfilter(self): + """Returns a Kalman filter object for tracking bounding boxes.""" + return KalmanFilterXYAH() + + def init_track(self, dets, scores, cls, img=None): + """Initialize object tracking with detections and scores using STrack algorithm.""" + return [STrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] if len(dets) else [] # detections + + def get_dists(self, tracks, detections): + """Calculates the distance between tracks and detections using IOU and fuses scores.""" + dists = matching.iou_distance(tracks, detections) + # TODO: mot20 + # if not self.args.mot20: + dists = matching.fuse_score(dists, detections) + return dists + + def multi_predict(self, tracks): + """Returns the predicted tracks using the YOLOv8 network.""" + STrack.multi_predict(tracks) + + def reset_id(self): + """Resets the ID counter of STrack.""" + STrack.reset_id() + + @staticmethod + def joint_stracks(tlista, tlistb): + """Combine two lists of stracks into a single one.""" + exists = {} + res = [] + for t in tlista: + exists[t.track_id] = 1 + res.append(t) + for t in tlistb: + tid = t.track_id + if not exists.get(tid, 0): + exists[tid] = 1 + res.append(t) + return res + + @staticmethod + def sub_stracks(tlista, tlistb): + """DEPRECATED CODE in https://github.com/ultralytics/ultralytics/pull/1890/ + stracks = {t.track_id: t for t in tlista} + for t in tlistb: + tid = t.track_id + if stracks.get(tid, 0): + del stracks[tid] + return list(stracks.values()) + """ + track_ids_b = {t.track_id for t in tlistb} + return [t for t in tlista if t.track_id not in track_ids_b] + + @staticmethod + def remove_duplicate_stracks(stracksa, stracksb): + """Remove duplicate stracks with non-maximum IOU distance.""" + pdist = matching.iou_distance(stracksa, stracksb) + pairs = np.where(pdist < 0.15) + dupa, dupb = [], [] + for p, q in zip(*pairs): + timep = stracksa[p].frame_id - stracksa[p].start_frame + timeq = stracksb[q].frame_id - stracksb[q].start_frame + if timep > timeq: + dupb.append(q) + else: + dupa.append(p) + resa = [t for i, t in enumerate(stracksa) if i not in dupa] + resb = [t for i, t in enumerate(stracksb) if i not in dupb] + return resa, resb diff --git a/modules/ultralytics/tracker/utils/__init__.py b/modules/ultralytics/tracker/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/ultralytics/tracker/utils/gmc.py b/modules/ultralytics/tracker/utils/gmc.py new file mode 100644 index 0000000000000000000000000000000000000000..a5c910d3b55153deefd7b3de1bb53285594153e1 --- /dev/null +++ b/modules/ultralytics/tracker/utils/gmc.py @@ -0,0 +1,319 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import copy + +import cv2 +import numpy as np + +from ultralytics.yolo.utils import LOGGER + + +class GMC: + + def __init__(self, method='sparseOptFlow', downscale=2, verbose=None): + """Initialize a video tracker with specified parameters.""" + super().__init__() + + self.method = method + self.downscale = max(1, int(downscale)) + + if self.method == 'orb': + self.detector = cv2.FastFeatureDetector_create(20) + self.extractor = cv2.ORB_create() + self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING) + + elif self.method == 'sift': + self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20) + self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20) + self.matcher = cv2.BFMatcher(cv2.NORM_L2) + + elif self.method == 'ecc': + number_of_iterations = 5000 + termination_eps = 1e-6 + self.warp_mode = cv2.MOTION_EUCLIDEAN + self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps) + + elif self.method == 'sparseOptFlow': + self.feature_params = dict(maxCorners=1000, + qualityLevel=0.01, + minDistance=1, + blockSize=3, + useHarrisDetector=False, + k=0.04) + # self.gmc_file = open('GMC_results.txt', 'w') + + elif self.method in ['file', 'files']: + seqName = verbose[0] + ablation = verbose[1] + if ablation: + filePath = r'tracker/GMC_files/MOT17_ablation' + else: + filePath = r'tracker/GMC_files/MOTChallenge' + + if '-FRCNN' in seqName: + seqName = seqName[:-6] + elif '-DPM' in seqName or '-SDP' in seqName: + seqName = seqName[:-4] + self.gmcFile = open(f'{filePath}/GMC-{seqName}.txt') + + if self.gmcFile is None: + raise ValueError(f'Error: Unable to open GMC file in directory:{filePath}') + elif self.method in ['none', 'None']: + self.method = 'none' + else: + raise ValueError(f'Error: Unknown CMC method:{method}') + + self.prevFrame = None + self.prevKeyPoints = None + self.prevDescriptors = None + + self.initializedFirstFrame = False + + def apply(self, raw_frame, detections=None): + """Apply object detection on a raw frame using specified method.""" + if self.method in ['orb', 'sift']: + return self.applyFeatures(raw_frame, detections) + elif self.method == 'ecc': + return self.applyEcc(raw_frame, detections) + elif self.method == 'sparseOptFlow': + return self.applySparseOptFlow(raw_frame, detections) + elif self.method == 'file': + return self.applyFile(raw_frame, detections) + elif self.method == 'none': + return np.eye(2, 3) + else: + return np.eye(2, 3) + + def applyEcc(self, raw_frame, detections=None): + """Initialize.""" + height, width, _ = raw_frame.shape + frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) + H = np.eye(2, 3, dtype=np.float32) + + # Downscale image (TODO: consider using pyramids) + if self.downscale > 1.0: + frame = cv2.GaussianBlur(frame, (3, 3), 1.5) + frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) + width = width // self.downscale + height = height // self.downscale + + # Handle first frame + if not self.initializedFirstFrame: + # Initialize data + self.prevFrame = frame.copy() + + # Initialization done + self.initializedFirstFrame = True + + return H + + # Run the ECC algorithm. The results are stored in warp_matrix. + # (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria) + try: + (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1) + except Exception as e: + LOGGER.warning(f'WARNING: find transform failed. Set warp as identity {e}') + + return H + + def applyFeatures(self, raw_frame, detections=None): + """Initialize.""" + height, width, _ = raw_frame.shape + frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) + H = np.eye(2, 3) + + # Downscale image (TODO: consider using pyramids) + if self.downscale > 1.0: + # frame = cv2.GaussianBlur(frame, (3, 3), 1.5) + frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) + width = width // self.downscale + height = height // self.downscale + + # Find the keypoints + mask = np.zeros_like(frame) + # mask[int(0.05 * height): int(0.95 * height), int(0.05 * width): int(0.95 * width)] = 255 + mask[int(0.02 * height):int(0.98 * height), int(0.02 * width):int(0.98 * width)] = 255 + if detections is not None: + for det in detections: + tlbr = (det[:4] / self.downscale).astype(np.int_) + mask[tlbr[1]:tlbr[3], tlbr[0]:tlbr[2]] = 0 + + keypoints = self.detector.detect(frame, mask) + + # Compute the descriptors + keypoints, descriptors = self.extractor.compute(frame, keypoints) + + # Handle first frame + if not self.initializedFirstFrame: + # Initialize data + self.prevFrame = frame.copy() + self.prevKeyPoints = copy.copy(keypoints) + self.prevDescriptors = copy.copy(descriptors) + + # Initialization done + self.initializedFirstFrame = True + + return H + + # Match descriptors. + knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2) + + # Filtered matches based on smallest spatial distance + matches = [] + spatialDistances = [] + + maxSpatialDistance = 0.25 * np.array([width, height]) + + # Handle empty matches case + if len(knnMatches) == 0: + # Store to next iteration + self.prevFrame = frame.copy() + self.prevKeyPoints = copy.copy(keypoints) + self.prevDescriptors = copy.copy(descriptors) + + return H + + for m, n in knnMatches: + if m.distance < 0.9 * n.distance: + prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt + currKeyPointLocation = keypoints[m.trainIdx].pt + + spatialDistance = (prevKeyPointLocation[0] - currKeyPointLocation[0], + prevKeyPointLocation[1] - currKeyPointLocation[1]) + + if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and \ + (np.abs(spatialDistance[1]) < maxSpatialDistance[1]): + spatialDistances.append(spatialDistance) + matches.append(m) + + meanSpatialDistances = np.mean(spatialDistances, 0) + stdSpatialDistances = np.std(spatialDistances, 0) + + inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances + + goodMatches = [] + prevPoints = [] + currPoints = [] + for i in range(len(matches)): + if inliers[i, 0] and inliers[i, 1]: + goodMatches.append(matches[i]) + prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt) + currPoints.append(keypoints[matches[i].trainIdx].pt) + + prevPoints = np.array(prevPoints) + currPoints = np.array(currPoints) + + # Draw the keypoint matches on the output image + # if False: + # import matplotlib.pyplot as plt + # matches_img = np.hstack((self.prevFrame, frame)) + # matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR) + # W = np.size(self.prevFrame, 1) + # for m in goodMatches: + # prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_) + # curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_) + # curr_pt[0] += W + # color = np.random.randint(0, 255, 3) + # color = (int(color[0]), int(color[1]), int(color[2])) + # + # matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA) + # matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1) + # matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1) + # + # plt.figure() + # plt.imshow(matches_img) + # plt.show() + + # Find rigid matrix + if (np.size(prevPoints, 0) > 4) and (np.size(prevPoints, 0) == np.size(prevPoints, 0)): + H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC) + + # Handle downscale + if self.downscale > 1.0: + H[0, 2] *= self.downscale + H[1, 2] *= self.downscale + else: + LOGGER.warning('WARNING: not enough matching points') + + # Store to next iteration + self.prevFrame = frame.copy() + self.prevKeyPoints = copy.copy(keypoints) + self.prevDescriptors = copy.copy(descriptors) + + return H + + def applySparseOptFlow(self, raw_frame, detections=None): + """Initialize.""" + # t0 = time.time() + height, width, _ = raw_frame.shape + frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) + H = np.eye(2, 3) + + # Downscale image + if self.downscale > 1.0: + # frame = cv2.GaussianBlur(frame, (3, 3), 1.5) + frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) + + # Find the keypoints + keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params) + + # Handle first frame + if not self.initializedFirstFrame: + # Initialize data + self.prevFrame = frame.copy() + self.prevKeyPoints = copy.copy(keypoints) + + # Initialization done + self.initializedFirstFrame = True + + return H + + # Find correspondences + matchedKeypoints, status, err = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None) + + # Leave good correspondences only + prevPoints = [] + currPoints = [] + + for i in range(len(status)): + if status[i]: + prevPoints.append(self.prevKeyPoints[i]) + currPoints.append(matchedKeypoints[i]) + + prevPoints = np.array(prevPoints) + currPoints = np.array(currPoints) + + # Find rigid matrix + if (np.size(prevPoints, 0) > 4) and (np.size(prevPoints, 0) == np.size(prevPoints, 0)): + H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC) + + # Handle downscale + if self.downscale > 1.0: + H[0, 2] *= self.downscale + H[1, 2] *= self.downscale + else: + LOGGER.warning('WARNING: not enough matching points') + + # Store to next iteration + self.prevFrame = frame.copy() + self.prevKeyPoints = copy.copy(keypoints) + + # gmc_line = str(1000 * (time.time() - t0)) + "\t" + str(H[0, 0]) + "\t" + str(H[0, 1]) + "\t" + str( + # H[0, 2]) + "\t" + str(H[1, 0]) + "\t" + str(H[1, 1]) + "\t" + str(H[1, 2]) + "\n" + # self.gmc_file.write(gmc_line) + + return H + + def applyFile(self, raw_frame, detections=None): + """Return the homography matrix based on the GCPs in the next line of the input GMC file.""" + line = self.gmcFile.readline() + tokens = line.split('\t') + H = np.eye(2, 3, dtype=np.float_) + H[0, 0] = float(tokens[1]) + H[0, 1] = float(tokens[2]) + H[0, 2] = float(tokens[3]) + H[1, 0] = float(tokens[4]) + H[1, 1] = float(tokens[5]) + H[1, 2] = float(tokens[6]) + + return H diff --git a/modules/ultralytics/tracker/utils/kalman_filter.py b/modules/ultralytics/tracker/utils/kalman_filter.py new file mode 100644 index 0000000000000000000000000000000000000000..a0ee4980db9882add92ef15725ca3f86c18893c7 --- /dev/null +++ b/modules/ultralytics/tracker/utils/kalman_filter.py @@ -0,0 +1,462 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import numpy as np +import scipy.linalg + +# Table for the 0.95 quantile of the chi-square distribution with N degrees of freedom (contains values for N=1, ..., 9) +# Taken from MATLAB/Octave's chi2inv function and used as Mahalanobis gating threshold. +chi2inv95 = {1: 3.8415, 2: 5.9915, 3: 7.8147, 4: 9.4877, 5: 11.070, 6: 12.592, 7: 14.067, 8: 15.507, 9: 16.919} + + +class KalmanFilterXYAH: + """ + For bytetrack + A simple Kalman filter for tracking bounding boxes in image space. + + The 8-dimensional state space + + x, y, a, h, vx, vy, va, vh + + contains the bounding box center position (x, y), aspect ratio a, height h, + and their respective velocities. + + Object motion follows a constant velocity model. The bounding box location + (x, y, a, h) is taken as direct observation of the state space (linear + observation model). + + """ + + def __init__(self): + """Initialize Kalman filter model matrices with motion and observation uncertainty weights.""" + ndim, dt = 4, 1. + + # Create Kalman filter model matrices. + self._motion_mat = np.eye(2 * ndim, 2 * ndim) + for i in range(ndim): + self._motion_mat[i, ndim + i] = dt + self._update_mat = np.eye(ndim, 2 * ndim) + + # Motion and observation uncertainty are chosen relative to the current + # state estimate. These weights control the amount of uncertainty in + # the model. This is a bit hacky. + self._std_weight_position = 1. / 20 + self._std_weight_velocity = 1. / 160 + + def initiate(self, measurement): + """Create track from unassociated measurement. + + Parameters + ---------- + measurement : ndarray + Bounding box coordinates (x, y, a, h) with center position (x, y), + aspect ratio a, and height h. + + Returns + ------- + (ndarray, ndarray) + Returns the mean vector (8 dimensional) and covariance matrix (8x8 + dimensional) of the new track. Unobserved velocities are initialized + to 0 mean. + + """ + mean_pos = measurement + mean_vel = np.zeros_like(mean_pos) + mean = np.r_[mean_pos, mean_vel] + + std = [ + 2 * self._std_weight_position * measurement[3], 2 * self._std_weight_position * measurement[3], 1e-2, + 2 * self._std_weight_position * measurement[3], 10 * self._std_weight_velocity * measurement[3], + 10 * self._std_weight_velocity * measurement[3], 1e-5, 10 * self._std_weight_velocity * measurement[3]] + covariance = np.diag(np.square(std)) + return mean, covariance + + def predict(self, mean, covariance): + """Run Kalman filter prediction step. + + Parameters + ---------- + mean : ndarray + The 8 dimensional mean vector of the object state at the previous + time step. + covariance : ndarray + The 8x8 dimensional covariance matrix of the object state at the + previous time step. + + Returns + ------- + (ndarray, ndarray) + Returns the mean vector and covariance matrix of the predicted + state. Unobserved velocities are initialized to 0 mean. + + """ + std_pos = [ + self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-2, + self._std_weight_position * mean[3]] + std_vel = [ + self._std_weight_velocity * mean[3], self._std_weight_velocity * mean[3], 1e-5, + self._std_weight_velocity * mean[3]] + motion_cov = np.diag(np.square(np.r_[std_pos, std_vel])) + + # mean = np.dot(self._motion_mat, mean) + mean = np.dot(mean, self._motion_mat.T) + covariance = np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_cov + + return mean, covariance + + def project(self, mean, covariance): + """Project state distribution to measurement space. + + Parameters + ---------- + mean : ndarray + The state's mean vector (8 dimensional array). + covariance : ndarray + The state's covariance matrix (8x8 dimensional). + + Returns + ------- + (ndarray, ndarray) + Returns the projected mean and covariance matrix of the given state + estimate. + + """ + std = [ + self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-1, + self._std_weight_position * mean[3]] + innovation_cov = np.diag(np.square(std)) + + mean = np.dot(self._update_mat, mean) + covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T)) + return mean, covariance + innovation_cov + + def multi_predict(self, mean, covariance): + """Run Kalman filter prediction step (Vectorized version). + Parameters + ---------- + mean : ndarray + The Nx8 dimensional mean matrix of the object states at the previous + time step. + covariance : ndarray + The Nx8x8 dimensional covariance matrix of the object states at the + previous time step. + Returns + ------- + (ndarray, ndarray) + Returns the mean vector and covariance matrix of the predicted + state. Unobserved velocities are initialized to 0 mean. + """ + std_pos = [ + self._std_weight_position * mean[:, 3], self._std_weight_position * mean[:, 3], + 1e-2 * np.ones_like(mean[:, 3]), self._std_weight_position * mean[:, 3]] + std_vel = [ + self._std_weight_velocity * mean[:, 3], self._std_weight_velocity * mean[:, 3], + 1e-5 * np.ones_like(mean[:, 3]), self._std_weight_velocity * mean[:, 3]] + sqr = np.square(np.r_[std_pos, std_vel]).T + + motion_cov = [np.diag(sqr[i]) for i in range(len(mean))] + motion_cov = np.asarray(motion_cov) + + mean = np.dot(mean, self._motion_mat.T) + left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2)) + covariance = np.dot(left, self._motion_mat.T) + motion_cov + + return mean, covariance + + def update(self, mean, covariance, measurement): + """Run Kalman filter correction step. + + Parameters + ---------- + mean : ndarray + The predicted state's mean vector (8 dimensional). + covariance : ndarray + The state's covariance matrix (8x8 dimensional). + measurement : ndarray + The 4 dimensional measurement vector (x, y, a, h), where (x, y) + is the center position, a the aspect ratio, and h the height of the + bounding box. + + Returns + ------- + (ndarray, ndarray) + Returns the measurement-corrected state distribution. + + """ + projected_mean, projected_cov = self.project(mean, covariance) + + chol_factor, lower = scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False) + kalman_gain = scipy.linalg.cho_solve((chol_factor, lower), + np.dot(covariance, self._update_mat.T).T, + check_finite=False).T + innovation = measurement - projected_mean + + new_mean = mean + np.dot(innovation, kalman_gain.T) + new_covariance = covariance - np.linalg.multi_dot((kalman_gain, projected_cov, kalman_gain.T)) + return new_mean, new_covariance + + def gating_distance(self, mean, covariance, measurements, only_position=False, metric='maha'): + """Compute gating distance between state distribution and measurements. + A suitable distance threshold can be obtained from `chi2inv95`. If + `only_position` is False, the chi-square distribution has 4 degrees of + freedom, otherwise 2. + Parameters + ---------- + mean : ndarray + Mean vector over the state distribution (8 dimensional). + covariance : ndarray + Covariance of the state distribution (8x8 dimensional). + measurements : ndarray + An Nx4 dimensional matrix of N measurements, each in + format (x, y, a, h) where (x, y) is the bounding box center + position, a the aspect ratio, and h the height. + only_position : Optional[bool] + If True, distance computation is done with respect to the bounding + box center position only. + Returns + ------- + ndarray + Returns an array of length N, where the i-th element contains the + squared Mahalanobis distance between (mean, covariance) and + `measurements[i]`. + """ + mean, covariance = self.project(mean, covariance) + if only_position: + mean, covariance = mean[:2], covariance[:2, :2] + measurements = measurements[:, :2] + + d = measurements - mean + if metric == 'gaussian': + return np.sum(d * d, axis=1) + elif metric == 'maha': + cholesky_factor = np.linalg.cholesky(covariance) + z = scipy.linalg.solve_triangular(cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True) + return np.sum(z * z, axis=0) # square maha + else: + raise ValueError('invalid distance metric') + + +class KalmanFilterXYWH: + """ + For BoT-SORT + A simple Kalman filter for tracking bounding boxes in image space. + + The 8-dimensional state space + + x, y, w, h, vx, vy, vw, vh + + contains the bounding box center position (x, y), width w, height h, + and their respective velocities. + + Object motion follows a constant velocity model. The bounding box location + (x, y, w, h) is taken as direct observation of the state space (linear + observation model). + + """ + + def __init__(self): + """Initialize Kalman filter model matrices with motion and observation uncertainties.""" + ndim, dt = 4, 1. + + # Create Kalman filter model matrices. + self._motion_mat = np.eye(2 * ndim, 2 * ndim) + for i in range(ndim): + self._motion_mat[i, ndim + i] = dt + self._update_mat = np.eye(ndim, 2 * ndim) + + # Motion and observation uncertainty are chosen relative to the current + # state estimate. These weights control the amount of uncertainty in + # the model. This is a bit hacky. + self._std_weight_position = 1. / 20 + self._std_weight_velocity = 1. / 160 + + def initiate(self, measurement): + """Create track from unassociated measurement. + + Parameters + ---------- + measurement : ndarray + Bounding box coordinates (x, y, w, h) with center position (x, y), + width w, and height h. + + Returns + ------- + (ndarray, ndarray) + Returns the mean vector (8 dimensional) and covariance matrix (8x8 + dimensional) of the new track. Unobserved velocities are initialized + to 0 mean. + + """ + mean_pos = measurement + mean_vel = np.zeros_like(mean_pos) + mean = np.r_[mean_pos, mean_vel] + + std = [ + 2 * self._std_weight_position * measurement[2], 2 * self._std_weight_position * measurement[3], + 2 * self._std_weight_position * measurement[2], 2 * self._std_weight_position * measurement[3], + 10 * self._std_weight_velocity * measurement[2], 10 * self._std_weight_velocity * measurement[3], + 10 * self._std_weight_velocity * measurement[2], 10 * self._std_weight_velocity * measurement[3]] + covariance = np.diag(np.square(std)) + return mean, covariance + + def predict(self, mean, covariance): + """Run Kalman filter prediction step. + + Parameters + ---------- + mean : ndarray + The 8 dimensional mean vector of the object state at the previous + time step. + covariance : ndarray + The 8x8 dimensional covariance matrix of the object state at the + previous time step. + + Returns + ------- + (ndarray, ndarray) + Returns the mean vector and covariance matrix of the predicted + state. Unobserved velocities are initialized to 0 mean. + + """ + std_pos = [ + self._std_weight_position * mean[2], self._std_weight_position * mean[3], + self._std_weight_position * mean[2], self._std_weight_position * mean[3]] + std_vel = [ + self._std_weight_velocity * mean[2], self._std_weight_velocity * mean[3], + self._std_weight_velocity * mean[2], self._std_weight_velocity * mean[3]] + motion_cov = np.diag(np.square(np.r_[std_pos, std_vel])) + + mean = np.dot(mean, self._motion_mat.T) + covariance = np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_cov + + return mean, covariance + + def project(self, mean, covariance): + """Project state distribution to measurement space. + + Parameters + ---------- + mean : ndarray + The state's mean vector (8 dimensional array). + covariance : ndarray + The state's covariance matrix (8x8 dimensional). + + Returns + ------- + (ndarray, ndarray) + Returns the projected mean and covariance matrix of the given state + estimate. + + """ + std = [ + self._std_weight_position * mean[2], self._std_weight_position * mean[3], + self._std_weight_position * mean[2], self._std_weight_position * mean[3]] + innovation_cov = np.diag(np.square(std)) + + mean = np.dot(self._update_mat, mean) + covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T)) + return mean, covariance + innovation_cov + + def multi_predict(self, mean, covariance): + """Run Kalman filter prediction step (Vectorized version). + Parameters + ---------- + mean : ndarray + The Nx8 dimensional mean matrix of the object states at the previous + time step. + covariance : ndarray + The Nx8x8 dimensional covariance matrix of the object states at the + previous time step. + Returns + ------- + (ndarray, ndarray) + Returns the mean vector and covariance matrix of the predicted + state. Unobserved velocities are initialized to 0 mean. + """ + std_pos = [ + self._std_weight_position * mean[:, 2], self._std_weight_position * mean[:, 3], + self._std_weight_position * mean[:, 2], self._std_weight_position * mean[:, 3]] + std_vel = [ + self._std_weight_velocity * mean[:, 2], self._std_weight_velocity * mean[:, 3], + self._std_weight_velocity * mean[:, 2], self._std_weight_velocity * mean[:, 3]] + sqr = np.square(np.r_[std_pos, std_vel]).T + + motion_cov = [np.diag(sqr[i]) for i in range(len(mean))] + motion_cov = np.asarray(motion_cov) + + mean = np.dot(mean, self._motion_mat.T) + left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2)) + covariance = np.dot(left, self._motion_mat.T) + motion_cov + + return mean, covariance + + def update(self, mean, covariance, measurement): + """Run Kalman filter correction step. + + Parameters + ---------- + mean : ndarray + The predicted state's mean vector (8 dimensional). + covariance : ndarray + The state's covariance matrix (8x8 dimensional). + measurement : ndarray + The 4 dimensional measurement vector (x, y, w, h), where (x, y) + is the center position, w the width, and h the height of the + bounding box. + + Returns + ------- + (ndarray, ndarray) + Returns the measurement-corrected state distribution. + + """ + projected_mean, projected_cov = self.project(mean, covariance) + + chol_factor, lower = scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False) + kalman_gain = scipy.linalg.cho_solve((chol_factor, lower), + np.dot(covariance, self._update_mat.T).T, + check_finite=False).T + innovation = measurement - projected_mean + + new_mean = mean + np.dot(innovation, kalman_gain.T) + new_covariance = covariance - np.linalg.multi_dot((kalman_gain, projected_cov, kalman_gain.T)) + return new_mean, new_covariance + + def gating_distance(self, mean, covariance, measurements, only_position=False, metric='maha'): + """Compute gating distance between state distribution and measurements. + A suitable distance threshold can be obtained from `chi2inv95`. If + `only_position` is False, the chi-square distribution has 4 degrees of + freedom, otherwise 2. + Parameters + ---------- + mean : ndarray + Mean vector over the state distribution (8 dimensional). + covariance : ndarray + Covariance of the state distribution (8x8 dimensional). + measurements : ndarray + An Nx4 dimensional matrix of N measurements, each in + format (x, y, a, h) where (x, y) is the bounding box center + position, a the aspect ratio, and h the height. + only_position : Optional[bool] + If True, distance computation is done with respect to the bounding + box center position only. + Returns + ------- + ndarray + Returns an array of length N, where the i-th element contains the + squared Mahalanobis distance between (mean, covariance) and + `measurements[i]`. + """ + mean, covariance = self.project(mean, covariance) + if only_position: + mean, covariance = mean[:2], covariance[:2, :2] + measurements = measurements[:, :2] + + d = measurements - mean + if metric == 'gaussian': + return np.sum(d * d, axis=1) + elif metric == 'maha': + cholesky_factor = np.linalg.cholesky(covariance) + z = scipy.linalg.solve_triangular(cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True) + return np.sum(z * z, axis=0) # square maha + else: + raise ValueError('invalid distance metric') diff --git a/modules/ultralytics/tracker/utils/matching.py b/modules/ultralytics/tracker/utils/matching.py new file mode 100644 index 0000000000000000000000000000000000000000..f2d458eb78647fcb09a1fd6324dc990bf73caa20 --- /dev/null +++ b/modules/ultralytics/tracker/utils/matching.py @@ -0,0 +1,229 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import numpy as np +import scipy +from scipy.spatial.distance import cdist + +from .kalman_filter import chi2inv95 + +try: + import lap # for linear_assignment + + assert lap.__version__ # verify package is not directory +except (ImportError, AssertionError, AttributeError): + from ultralytics.yolo.utils.checks import check_requirements + + check_requirements('lap>=0.4') # install + import lap + + +def merge_matches(m1, m2, shape): + """Merge two sets of matches and return matched and unmatched indices.""" + O, P, Q = shape + m1 = np.asarray(m1) + m2 = np.asarray(m2) + + M1 = scipy.sparse.coo_matrix((np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P)) + M2 = scipy.sparse.coo_matrix((np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q)) + + mask = M1 * M2 + match = mask.nonzero() + match = list(zip(match[0], match[1])) + unmatched_O = tuple(set(range(O)) - {i for i, j in match}) + unmatched_Q = tuple(set(range(Q)) - {j for i, j in match}) + + return match, unmatched_O, unmatched_Q + + +def _indices_to_matches(cost_matrix, indices, thresh): + """_indices_to_matches: Return matched and unmatched indices given a cost matrix, indices, and a threshold.""" + matched_cost = cost_matrix[tuple(zip(*indices))] + matched_mask = (matched_cost <= thresh) + + matches = indices[matched_mask] + unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0])) + unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1])) + + return matches, unmatched_a, unmatched_b + + +def linear_assignment(cost_matrix, thresh, use_lap=True): + """Linear assignment implementations with scipy and lap.lapjv.""" + if cost_matrix.size == 0: + return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])) + + if use_lap: + _, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) + matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0] + unmatched_a = np.where(x < 0)[0] + unmatched_b = np.where(y < 0)[0] + else: + # Scipy linear sum assignment is NOT working correctly, DO NOT USE + y, x = scipy.optimize.linear_sum_assignment(cost_matrix) # row y, col x + matches = np.asarray([[i, x] for i, x in enumerate(x) if cost_matrix[i, x] <= thresh]) + unmatched = np.ones(cost_matrix.shape) + for i, xi in matches: + unmatched[i, xi] = 0.0 + unmatched_a = np.where(unmatched.all(1))[0] + unmatched_b = np.where(unmatched.all(0))[0] + + return matches, unmatched_a, unmatched_b + + +def ious(atlbrs, btlbrs): + """ + Compute cost based on IoU + :type atlbrs: list[tlbr] | np.ndarray + :type atlbrs: list[tlbr] | np.ndarray + + :rtype ious np.ndarray + """ + ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32) + if ious.size == 0: + return ious + + ious = bbox_ious(np.ascontiguousarray(atlbrs, dtype=np.float32), np.ascontiguousarray(btlbrs, dtype=np.float32)) + return ious + + +def iou_distance(atracks, btracks): + """ + Compute cost based on IoU + :type atracks: list[STrack] + :type btracks: list[STrack] + + :rtype cost_matrix np.ndarray + """ + + if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \ + or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): + atlbrs = atracks + btlbrs = btracks + else: + atlbrs = [track.tlbr for track in atracks] + btlbrs = [track.tlbr for track in btracks] + _ious = ious(atlbrs, btlbrs) + return 1 - _ious # cost matrix + + +def v_iou_distance(atracks, btracks): + """ + Compute cost based on IoU + :type atracks: list[STrack] + :type btracks: list[STrack] + + :rtype cost_matrix np.ndarray + """ + + if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \ + or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): + atlbrs = atracks + btlbrs = btracks + else: + atlbrs = [track.tlwh_to_tlbr(track.pred_bbox) for track in atracks] + btlbrs = [track.tlwh_to_tlbr(track.pred_bbox) for track in btracks] + _ious = ious(atlbrs, btlbrs) + return 1 - _ious # cost matrix + + +def embedding_distance(tracks, detections, metric='cosine'): + """ + :param tracks: list[STrack] + :param detections: list[BaseTrack] + :param metric: + :return: cost_matrix np.ndarray + """ + + cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32) + if cost_matrix.size == 0: + return cost_matrix + det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32) + # for i, track in enumerate(tracks): + # cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric)) + track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32) + cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features + return cost_matrix + + +def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False): + """Apply gating to the cost matrix based on predicted tracks and detected objects.""" + if cost_matrix.size == 0: + return cost_matrix + gating_dim = 2 if only_position else 4 + gating_threshold = chi2inv95[gating_dim] + measurements = np.asarray([det.to_xyah() for det in detections]) + for row, track in enumerate(tracks): + gating_distance = kf.gating_distance(track.mean, track.covariance, measurements, only_position) + cost_matrix[row, gating_distance > gating_threshold] = np.inf + return cost_matrix + + +def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98): + """Fuse motion between tracks and detections with gating and Kalman filtering.""" + if cost_matrix.size == 0: + return cost_matrix + gating_dim = 2 if only_position else 4 + gating_threshold = chi2inv95[gating_dim] + measurements = np.asarray([det.to_xyah() for det in detections]) + for row, track in enumerate(tracks): + gating_distance = kf.gating_distance(track.mean, track.covariance, measurements, only_position, metric='maha') + cost_matrix[row, gating_distance > gating_threshold] = np.inf + cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_) * gating_distance + return cost_matrix + + +def fuse_iou(cost_matrix, tracks, detections): + """Fuses ReID and IoU similarity matrices to yield a cost matrix for object tracking.""" + if cost_matrix.size == 0: + return cost_matrix + reid_sim = 1 - cost_matrix + iou_dist = iou_distance(tracks, detections) + iou_sim = 1 - iou_dist + fuse_sim = reid_sim * (1 + iou_sim) / 2 + # det_scores = np.array([det.score for det in detections]) + # det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) + return 1 - fuse_sim # fuse cost + + +def fuse_score(cost_matrix, detections): + """Fuses cost matrix with detection scores to produce a single similarity matrix.""" + if cost_matrix.size == 0: + return cost_matrix + iou_sim = 1 - cost_matrix + det_scores = np.array([det.score for det in detections]) + det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) + fuse_sim = iou_sim * det_scores + return 1 - fuse_sim # fuse_cost + + +def bbox_ious(box1, box2, eps=1e-7): + """ + Calculate the Intersection over Union (IoU) between pairs of bounding boxes. + + Args: + box1 (np.array): A numpy array of shape (n, 4) representing 'n' bounding boxes. + Each row is in the format (x1, y1, x2, y2). + box2 (np.array): A numpy array of shape (m, 4) representing 'm' bounding boxes. + Each row is in the format (x1, y1, x2, y2). + eps (float, optional): A small constant to prevent division by zero. Defaults to 1e-7. + + Returns: + (np.array): A numpy array of shape (n, m) representing the IoU scores for each pair + of bounding boxes from box1 and box2. + + Note: + The bounding box coordinates are expected to be in the format (x1, y1, x2, y2). + """ + + # Get the coordinates of bounding boxes + b1_x1, b1_y1, b1_x2, b1_y2 = box1.T + b2_x1, b2_y1, b2_x2, b2_y2 = box2.T + + # Intersection area + inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \ + (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0) + + # box2 area + box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1) + box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + return inter_area / (box2_area + box1_area[:, None] - inter_area + eps) diff --git a/modules/ultralytics/vit/__init__.py b/modules/ultralytics/vit/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..8e96f915d0d670a2140850d13e9d72ae78a7d3d8 --- /dev/null +++ b/modules/ultralytics/vit/__init__.py @@ -0,0 +1,6 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .rtdetr import RTDETR +from .sam import SAM + +__all__ = 'RTDETR', 'SAM' # allow simpler import diff --git a/modules/ultralytics/vit/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/vit/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3f3a4e9f4dbe748b7bd898f0ee0bab52714e83b4 Binary files /dev/null and b/modules/ultralytics/vit/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/rtdetr/__init__.py b/modules/ultralytics/vit/rtdetr/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4d12115616a9e637857da368d5ace3098bbb96d1 --- /dev/null +++ b/modules/ultralytics/vit/rtdetr/__init__.py @@ -0,0 +1,7 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .model import RTDETR +from .predict import RTDETRPredictor +from .val import RTDETRValidator + +__all__ = 'RTDETRPredictor', 'RTDETRValidator', 'RTDETR' diff --git a/modules/ultralytics/vit/rtdetr/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/vit/rtdetr/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a41e18bb0589889809d61d5969158f93a9aa3d4 Binary files /dev/null and b/modules/ultralytics/vit/rtdetr/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/rtdetr/__pycache__/model.cpython-312.pyc b/modules/ultralytics/vit/rtdetr/__pycache__/model.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2b0a55f86047153a3383e0b279195ad170de83fc Binary files /dev/null and b/modules/ultralytics/vit/rtdetr/__pycache__/model.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/rtdetr/__pycache__/predict.cpython-312.pyc b/modules/ultralytics/vit/rtdetr/__pycache__/predict.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0fc58ae7ba63c2e7e4049145417a8ae3f308aa40 Binary files /dev/null and b/modules/ultralytics/vit/rtdetr/__pycache__/predict.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/rtdetr/__pycache__/train.cpython-312.pyc b/modules/ultralytics/vit/rtdetr/__pycache__/train.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bfd8c87dd72d30345f7b48fb9656169b776592d9 Binary files /dev/null and b/modules/ultralytics/vit/rtdetr/__pycache__/train.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/rtdetr/__pycache__/val.cpython-312.pyc b/modules/ultralytics/vit/rtdetr/__pycache__/val.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9714582defbee74839e21ae67a3d8137b853c9c1 Binary files /dev/null and b/modules/ultralytics/vit/rtdetr/__pycache__/val.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/rtdetr/model.py b/modules/ultralytics/vit/rtdetr/model.py new file mode 100644 index 0000000000000000000000000000000000000000..259c7c97689b328348863f64c88a36fd078ef0be --- /dev/null +++ b/modules/ultralytics/vit/rtdetr/model.py @@ -0,0 +1,173 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +RT-DETR model interface +""" + +from pathlib import Path + +import torch.nn as nn + +from ultralytics.nn.tasks import RTDETRDetectionModel, attempt_load_one_weight, yaml_model_load +from ultralytics.yolo.cfg import get_cfg +from ultralytics.yolo.engine.exporter import Exporter +from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, RANK, ROOT, is_git_dir +from ultralytics.yolo.utils.checks import check_imgsz +from ultralytics.yolo.utils.torch_utils import model_info, smart_inference_mode + +from .predict import RTDETRPredictor +from .train import RTDETRTrainer +from .val import RTDETRValidator + + +class RTDETR: + + def __init__(self, model='rtdetr-l.pt') -> None: + if model and not model.endswith('.pt') and not model.endswith('.yaml'): + raise NotImplementedError('RT-DETR only supports creating from pt file or yaml file.') + # Load or create new YOLO model + self.predictor = None + self.ckpt = None + suffix = Path(model).suffix + if suffix == '.yaml': + self._new(model) + else: + self._load(model) + + def _new(self, cfg: str, verbose=True): + cfg_dict = yaml_model_load(cfg) + self.cfg = cfg + self.task = 'detect' + self.model = RTDETRDetectionModel(cfg_dict, verbose=verbose) # build model + + # Below added to allow export from YAMLs + self.model.args = DEFAULT_CFG_DICT # attach args to model + self.model.task = self.task + + @smart_inference_mode() + def _load(self, weights: str): + self.model, self.ckpt = attempt_load_one_weight(weights) + self.model.args = DEFAULT_CFG_DICT # attach args to model + self.task = self.model.args['task'] + + @smart_inference_mode() + def load(self, weights='yolov8n.pt'): + """ + Transfers parameters with matching names and shapes from 'weights' to model. + """ + if isinstance(weights, (str, Path)): + weights, self.ckpt = attempt_load_one_weight(weights) + self.model.load(weights) + return self + + @smart_inference_mode() + def predict(self, source=None, stream=False, **kwargs): + """ + Perform prediction using the YOLO model. + + Args: + source (str | int | PIL | np.ndarray): The source of the image to make predictions on. + Accepts all source types accepted by the YOLO model. + stream (bool): Whether to stream the predictions or not. Defaults to False. + **kwargs : Additional keyword arguments passed to the predictor. + Check the 'configuration' section in the documentation for all available options. + + Returns: + (List[ultralytics.yolo.engine.results.Results]): The prediction results. + """ + if source is None: + source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' + LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") + overrides = dict(conf=0.25, task='detect', mode='predict') + overrides.update(kwargs) # prefer kwargs + if not self.predictor: + self.predictor = RTDETRPredictor(overrides=overrides) + self.predictor.setup_model(model=self.model) + else: # only update args if predictor is already setup + self.predictor.args = get_cfg(self.predictor.args, overrides) + return self.predictor(source, stream=stream) + + def train(self, **kwargs): + """ + Trains the model on a given dataset. + + Args: + **kwargs (Any): Any number of arguments representing the training configuration. + """ + overrides = dict(task='detect', mode='train') + overrides.update(kwargs) + overrides['deterministic'] = False + if not overrides.get('data'): + raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'") + if overrides.get('resume'): + overrides['resume'] = self.ckpt_path + self.task = overrides.get('task') or self.task + self.trainer = RTDETRTrainer(overrides=overrides) + if not overrides.get('resume'): # manually set model only if not resuming + self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) + self.model = self.trainer.model + self.trainer.train() + # Update model and cfg after training + if RANK in (-1, 0): + self.model, _ = attempt_load_one_weight(str(self.trainer.best)) + self.overrides = self.model.args + self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP + + def val(self, **kwargs): + """Run validation given dataset.""" + overrides = dict(task='detect', mode='val') + overrides.update(kwargs) # prefer kwargs + args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) + args.imgsz = check_imgsz(args.imgsz, max_dim=1) + validator = RTDETRValidator(args=args) + validator(model=self.model) + self.metrics = validator.metrics + return validator.metrics + + def info(self, verbose=True): + """Get model info""" + return model_info(self.model, verbose=verbose) + + def _check_is_pytorch_model(self): + """ + Raises TypeError is model is not a PyTorch model + """ + pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt' + pt_module = isinstance(self.model, nn.Module) + if not (pt_module or pt_str): + raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. " + f'PyTorch models can be used to train, val, predict and export, i.e. ' + f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only " + f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.") + + def fuse(self): + """Fuse PyTorch Conv2d and BatchNorm2d layers.""" + self._check_is_pytorch_model() + self.model.fuse() + + @smart_inference_mode() + def export(self, **kwargs): + """ + Export model. + + Args: + **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs + """ + overrides = dict(task='detect') + overrides.update(kwargs) + overrides['mode'] = 'export' + args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) + args.task = self.task + if args.imgsz == DEFAULT_CFG.imgsz: + args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed + if args.batch == DEFAULT_CFG.batch: + args.batch = 1 # default to 1 if not modified + return Exporter(overrides=args)(model=self.model) + + def __call__(self, source=None, stream=False, **kwargs): + """Calls the 'predict' function with given arguments to perform object detection.""" + return self.predict(source, stream, **kwargs) + + def __getattr__(self, attr): + """Raises error if object has no requested attribute.""" + name = self.__class__.__name__ + raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") diff --git a/modules/ultralytics/vit/rtdetr/predict.py b/modules/ultralytics/vit/rtdetr/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..78219b2eac17c9b0c816d14c7744fb0411cb4e6e --- /dev/null +++ b/modules/ultralytics/vit/rtdetr/predict.py @@ -0,0 +1,44 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch + +from ultralytics.yolo.data.augment import LetterBox +from ultralytics.yolo.engine.predictor import BasePredictor +from ultralytics.yolo.engine.results import Results +from ultralytics.yolo.utils import ops + + +class RTDETRPredictor(BasePredictor): + + def postprocess(self, preds, img, orig_imgs): + """Postprocess predictions and returns a list of Results objects.""" + bboxes, scores = preds[:2] # (1, bs, 300, 4), (1, bs, 300, nc) + bboxes, scores = bboxes.squeeze_(0), scores.squeeze_(0) + results = [] + for i, bbox in enumerate(bboxes): # (300, 4) + bbox = ops.xywh2xyxy(bbox) + score, cls = scores[i].max(-1, keepdim=True) # (300, 1) + idx = score.squeeze(-1) > self.args.conf # (300, ) + if self.args.classes is not None: + idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx + pred = torch.cat([bbox, score, cls], dim=-1)[idx] # filter + orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs + oh, ow = orig_img.shape[:2] + if not isinstance(orig_imgs, torch.Tensor): + pred[..., [0, 2]] *= ow + pred[..., [1, 3]] *= oh + path = self.batch[0] + img_path = path[i] if isinstance(path, list) else path + results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) + return results + + def pre_transform(self, im): + """Pre-transform input image before inference. + + Args: + im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. + + Return: A list of transformed imgs. + """ + # The size must be square(640) and scaleFilled. + return [LetterBox(self.imgsz, auto=False, scaleFill=True)(image=x) for x in im] diff --git a/modules/ultralytics/vit/rtdetr/train.py b/modules/ultralytics/vit/rtdetr/train.py new file mode 100644 index 0000000000000000000000000000000000000000..54eeaf4aa79a9f22fd5d04d60482d52d7155cfc8 --- /dev/null +++ b/modules/ultralytics/vit/rtdetr/train.py @@ -0,0 +1,80 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from copy import copy + +import torch + +from ultralytics.nn.tasks import RTDETRDetectionModel +from ultralytics.yolo.utils import DEFAULT_CFG, RANK, colorstr +from ultralytics.yolo.v8.detect import DetectionTrainer + +from .val import RTDETRDataset, RTDETRValidator + + +class RTDETRTrainer(DetectionTrainer): + + def get_model(self, cfg=None, weights=None, verbose=True): + """Return a YOLO detection model.""" + model = RTDETRDetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1) + if weights: + model.load(weights) + return model + + def build_dataset(self, img_path, mode='val', batch=None): + """Build RTDETR Dataset + + Args: + img_path (str): Path to the folder containing images. + mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. + batch (int, optional): Size of batches, this is for `rect`. Defaults to None. + """ + return RTDETRDataset( + img_path=img_path, + imgsz=self.args.imgsz, + batch_size=batch, + augment=mode == 'train', # no augmentation + hyp=self.args, + rect=False, # no rect + cache=self.args.cache or None, + prefix=colorstr(f'{mode}: '), + data=self.data) + + def get_validator(self): + """Returns a DetectionValidator for RTDETR model validation.""" + self.loss_names = 'giou_loss', 'cls_loss', 'l1_loss' + return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) + + def preprocess_batch(self, batch): + """Preprocesses a batch of images by scaling and converting to float.""" + batch = super().preprocess_batch(batch) + bs = len(batch['img']) + batch_idx = batch['batch_idx'] + gt_bbox, gt_class = [], [] + for i in range(bs): + gt_bbox.append(batch['bboxes'][batch_idx == i].to(batch_idx.device)) + gt_class.append(batch['cls'][batch_idx == i].to(device=batch_idx.device, dtype=torch.long)) + return batch + + +def train(cfg=DEFAULT_CFG, use_python=False): + """Train and optimize RTDETR model given training data and device.""" + model = 'rtdetr-l.yaml' + data = cfg.data or 'coco128.yaml' # or yolo.ClassificationDataset("mnist") + device = cfg.device if cfg.device is not None else '' + + # NOTE: F.grid_sample which is in rt-detr does not support deterministic=True + # NOTE: amp training causes nan outputs and end with error while doing bipartite graph matching + args = dict(model=model, + data=data, + device=device, + imgsz=640, + exist_ok=True, + batch=4, + deterministic=False, + amp=False) + trainer = RTDETRTrainer(overrides=args) + trainer.train() + + +if __name__ == '__main__': + train() diff --git a/modules/ultralytics/vit/rtdetr/val.py b/modules/ultralytics/vit/rtdetr/val.py new file mode 100644 index 0000000000000000000000000000000000000000..57376a6ce91097a259ae51ed5522b50bbe32c73c --- /dev/null +++ b/modules/ultralytics/vit/rtdetr/val.py @@ -0,0 +1,151 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from pathlib import Path + +import cv2 +import numpy as np +import torch + +from ultralytics.yolo.data import YOLODataset +from ultralytics.yolo.data.augment import Compose, Format, v8_transforms +from ultralytics.yolo.utils import colorstr, ops +from ultralytics.yolo.v8.detect import DetectionValidator + +__all__ = 'RTDETRValidator', # tuple or list + + +# TODO: Temporarily, RT-DETR does not need padding. +class RTDETRDataset(YOLODataset): + + def __init__(self, *args, data=None, **kwargs): + super().__init__(*args, data=data, use_segments=False, use_keypoints=False, **kwargs) + + # NOTE: add stretch version load_image for rtdetr mosaic + def load_image(self, i): + """Loads 1 image from dataset index 'i', returns (im, resized hw).""" + im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i] + if im is None: # not cached in RAM + if fn.exists(): # load npy + im = np.load(fn) + else: # read image + im = cv2.imread(f) # BGR + if im is None: + raise FileNotFoundError(f'Image Not Found {f}') + h0, w0 = im.shape[:2] # orig hw + im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR) + + # Add to buffer if training with augmentations + if self.augment: + self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized + self.buffer.append(i) + if len(self.buffer) >= self.max_buffer_length: + j = self.buffer.pop(0) + self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None + + return im, (h0, w0), im.shape[:2] + + return self.ims[i], self.im_hw0[i], self.im_hw[i] + + def build_transforms(self, hyp=None): + """Temporarily, only for evaluation.""" + if self.augment: + hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 + hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 + transforms = v8_transforms(self, self.imgsz, hyp, stretch=True) + else: + # transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)]) + transforms = Compose([]) + transforms.append( + Format(bbox_format='xywh', + normalize=True, + return_mask=self.use_segments, + return_keypoint=self.use_keypoints, + batch_idx=True, + mask_ratio=hyp.mask_ratio, + mask_overlap=hyp.overlap_mask)) + return transforms + + +class RTDETRValidator(DetectionValidator): + + def build_dataset(self, img_path, mode='val', batch=None): + """Build YOLO Dataset + + Args: + img_path (str): Path to the folder containing images. + mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. + batch (int, optional): Size of batches, this is for `rect`. Defaults to None. + """ + return RTDETRDataset( + img_path=img_path, + imgsz=self.args.imgsz, + batch_size=batch, + augment=False, # no augmentation + hyp=self.args, + rect=False, # no rect + cache=self.args.cache or None, + prefix=colorstr(f'{mode}: '), + data=self.data) + + def postprocess(self, preds): + """Apply Non-maximum suppression to prediction outputs.""" + bboxes, scores = preds[:2] # (1, bs, 300, 4), (1, bs, 300, nc) + bboxes, scores = bboxes.squeeze_(0), scores.squeeze_(0) # (bs, 300, 4) + bs = len(bboxes) + outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs + for i, bbox in enumerate(bboxes): # (300, 4) + bbox = ops.xywh2xyxy(bbox) + score, cls = scores[i].max(-1) # (300, ) + # Do not need threshold for evaluation as only got 300 boxes here. + # idx = score > self.args.conf + pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter + # sort by confidence to correctly get internal metrics. + pred = pred[score.argsort(descending=True)] + outputs[i] = pred # [idx] + + return outputs + + def update_metrics(self, preds, batch): + """Metrics.""" + for si, pred in enumerate(preds): + idx = batch['batch_idx'] == si + cls = batch['cls'][idx] + bbox = batch['bboxes'][idx] + nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions + shape = batch['ori_shape'][si] + correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init + self.seen += 1 + + if npr == 0: + if nl: + self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1))) + if self.args.plots: + self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) + continue + + # Predictions + if self.args.single_cls: + pred[:, 5] = 0 + predn = pred.clone() + predn[..., [0, 2]] *= shape[1] # native-space pred + predn[..., [1, 3]] *= shape[0] # native-space pred + + # Evaluate + if nl: + tbox = ops.xywh2xyxy(bbox) # target boxes + tbox[..., [0, 2]] *= shape[1] # native-space pred + tbox[..., [1, 3]] *= shape[0] # native-space pred + labelsn = torch.cat((cls, tbox), 1) # native-space labels + # NOTE: To get correct metrics, the inputs of `_process_batch` should always be float32 type. + correct_bboxes = self._process_batch(predn.float(), labelsn) + # TODO: maybe remove these `self.` arguments as they already are member variable + if self.args.plots: + self.confusion_matrix.process_batch(predn, labelsn) + self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls) + + # Save + if self.args.save_json: + self.pred_to_json(predn, batch['im_file'][si]) + if self.args.save_txt: + file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt' + self.save_one_txt(predn, self.args.save_conf, shape, file) diff --git a/modules/ultralytics/vit/sam/__init__.py b/modules/ultralytics/vit/sam/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b47c04364e5f9d344b767a349864f3970130d6b9 --- /dev/null +++ b/modules/ultralytics/vit/sam/__init__.py @@ -0,0 +1,5 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .build import build_sam # noqa +from .model import SAM # noqa +from .modules.prompt_predictor import PromptPredictor # noqa diff --git a/modules/ultralytics/vit/sam/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/vit/sam/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f368f8d99b1eadcb2dfda4ad6bcbc2f2ccb89e08 Binary files /dev/null and b/modules/ultralytics/vit/sam/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/__pycache__/amg.cpython-312.pyc b/modules/ultralytics/vit/sam/__pycache__/amg.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7da625ec84a339f091f67a8308d085d9ff1b6306 Binary files /dev/null and b/modules/ultralytics/vit/sam/__pycache__/amg.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/__pycache__/autosize.cpython-312.pyc b/modules/ultralytics/vit/sam/__pycache__/autosize.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0067234d3d36223475418f059941d49e79cec0ef Binary files /dev/null and b/modules/ultralytics/vit/sam/__pycache__/autosize.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/__pycache__/build.cpython-312.pyc b/modules/ultralytics/vit/sam/__pycache__/build.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fb8adaafa4d6ea0bfce5d54c0a5240fd09543350 Binary files /dev/null and b/modules/ultralytics/vit/sam/__pycache__/build.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/__pycache__/model.cpython-312.pyc b/modules/ultralytics/vit/sam/__pycache__/model.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bfdd20e5f4346e780fceb89e0f99d6270065e6cf Binary files /dev/null and b/modules/ultralytics/vit/sam/__pycache__/model.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/__pycache__/predict.cpython-312.pyc b/modules/ultralytics/vit/sam/__pycache__/predict.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b606202f5a787c6d0c160983a3c46e0d3b347166 Binary files /dev/null and b/modules/ultralytics/vit/sam/__pycache__/predict.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/amg.py b/modules/ultralytics/vit/sam/amg.py new file mode 100644 index 0000000000000000000000000000000000000000..29f0bcf84d041cf7c00963156d04408a955152d8 --- /dev/null +++ b/modules/ultralytics/vit/sam/amg.py @@ -0,0 +1,311 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import math +from copy import deepcopy +from itertools import product +from typing import Any, Dict, Generator, ItemsView, List, Tuple + +import numpy as np +import torch + + +class MaskData: + """ + A structure for storing masks and their related data in batched format. + Implements basic filtering and concatenation. + """ + + def __init__(self, **kwargs) -> None: + """Initialize a MaskData object, ensuring all values are supported types.""" + for v in kwargs.values(): + assert isinstance( + v, (list, np.ndarray, torch.Tensor)), 'MaskData only supports list, numpy arrays, and torch tensors.' + self._stats = dict(**kwargs) + + def __setitem__(self, key: str, item: Any) -> None: + """Set an item in the MaskData object, ensuring it is a supported type.""" + assert isinstance( + item, (list, np.ndarray, torch.Tensor)), 'MaskData only supports list, numpy arrays, and torch tensors.' + self._stats[key] = item + + def __delitem__(self, key: str) -> None: + """Delete an item from the MaskData object.""" + del self._stats[key] + + def __getitem__(self, key: str) -> Any: + """Get an item from the MaskData object.""" + return self._stats[key] + + def items(self) -> ItemsView[str, Any]: + """Return an ItemsView of the MaskData object.""" + return self._stats.items() + + def filter(self, keep: torch.Tensor) -> None: + """Filter the MaskData object based on the given boolean tensor.""" + for k, v in self._stats.items(): + if v is None: + self._stats[k] = None + elif isinstance(v, torch.Tensor): + self._stats[k] = v[torch.as_tensor(keep, device=v.device)] + elif isinstance(v, np.ndarray): + self._stats[k] = v[keep.detach().cpu().numpy()] + elif isinstance(v, list) and keep.dtype == torch.bool: + self._stats[k] = [a for i, a in enumerate(v) if keep[i]] + elif isinstance(v, list): + self._stats[k] = [v[i] for i in keep] + else: + raise TypeError(f'MaskData key {k} has an unsupported type {type(v)}.') + + def cat(self, new_stats: 'MaskData') -> None: + """Concatenate a new MaskData object to the current one.""" + for k, v in new_stats.items(): + if k not in self._stats or self._stats[k] is None: + self._stats[k] = deepcopy(v) + elif isinstance(v, torch.Tensor): + self._stats[k] = torch.cat([self._stats[k], v], dim=0) + elif isinstance(v, np.ndarray): + self._stats[k] = np.concatenate([self._stats[k], v], axis=0) + elif isinstance(v, list): + self._stats[k] = self._stats[k] + deepcopy(v) + else: + raise TypeError(f'MaskData key {k} has an unsupported type {type(v)}.') + + def to_numpy(self) -> None: + """Convert all torch tensors in the MaskData object to numpy arrays.""" + for k, v in self._stats.items(): + if isinstance(v, torch.Tensor): + self._stats[k] = v.detach().cpu().numpy() + + +def is_box_near_crop_edge(boxes: torch.Tensor, + crop_box: List[int], + orig_box: List[int], + atol: float = 20.0) -> torch.Tensor: + """Return a boolean tensor indicating if boxes are near the crop edge.""" + crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) + orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) + boxes = uncrop_boxes_xyxy(boxes, crop_box).float() + near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) + near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) + near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) + return torch.any(near_crop_edge, dim=1) + + +def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: + """Convert bounding boxes from XYXY format to XYWH format.""" + box_xywh = deepcopy(box_xyxy) + box_xywh[2] = box_xywh[2] - box_xywh[0] + box_xywh[3] = box_xywh[3] - box_xywh[1] + return box_xywh + + +def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: + """Yield batches of data from the input arguments.""" + assert args and all(len(a) == len(args[0]) for a in args), 'Batched iteration must have same-size inputs.' + n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) + for b in range(n_batches): + yield [arg[b * batch_size:(b + 1) * batch_size] for arg in args] + + +def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: + """Encode masks as uncompressed RLEs in the format expected by pycocotools.""" + # Put in fortran order and flatten h,w + b, h, w = tensor.shape + tensor = tensor.permute(0, 2, 1).flatten(1) + + # Compute change indices + diff = tensor[:, 1:] ^ tensor[:, :-1] + change_indices = diff.nonzero() + + # Encode run length + out = [] + for i in range(b): + cur_idxs = change_indices[change_indices[:, 0] == i, 1] + cur_idxs = torch.cat([ + torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), + cur_idxs + 1, + torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), ]) + btw_idxs = cur_idxs[1:] - cur_idxs[:-1] + counts = [] if tensor[i, 0] == 0 else [0] + counts.extend(btw_idxs.detach().cpu().tolist()) + out.append({'size': [h, w], 'counts': counts}) + return out + + +def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: + """Compute a binary mask from an uncompressed RLE.""" + h, w = rle['size'] + mask = np.empty(h * w, dtype=bool) + idx = 0 + parity = False + for count in rle['counts']: + mask[idx:idx + count] = parity + idx += count + parity ^= True + mask = mask.reshape(w, h) + return mask.transpose() # Put in C order + + +def area_from_rle(rle: Dict[str, Any]) -> int: + """Calculate the area of a mask from its uncompressed RLE.""" + return sum(rle['counts'][1::2]) + + +def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor: + """ + Computes the stability score for a batch of masks. The stability + score is the IoU between the binary masks obtained by thresholding + the predicted mask logits at high and low values. + """ + # One mask is always contained inside the other. + # Save memory by preventing unnecessary cast to torch.int64 + intersections = ((masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, + dtype=torch.int32)) + unions = ((masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)) + return intersections / unions + + +def build_point_grid(n_per_side: int) -> np.ndarray: + """Generate a 2D grid of evenly spaced points in the range [0,1]x[0,1].""" + offset = 1 / (2 * n_per_side) + points_one_side = np.linspace(offset, 1 - offset, n_per_side) + points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) + points_y = np.tile(points_one_side[:, None], (1, n_per_side)) + return np.stack([points_x, points_y], axis=-1).reshape(-1, 2) + + +def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]: + """Generate point grids for all crop layers.""" + return [build_point_grid(int(n_per_side / (scale_per_layer ** i))) for i in range(n_layers + 1)] + + +def generate_crop_boxes(im_size: Tuple[int, ...], n_layers: int, + overlap_ratio: float) -> Tuple[List[List[int]], List[int]]: + """Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer.""" + crop_boxes, layer_idxs = [], [] + im_h, im_w = im_size + short_side = min(im_h, im_w) + + # Original image + crop_boxes.append([0, 0, im_w, im_h]) + layer_idxs.append(0) + + def crop_len(orig_len, n_crops, overlap): + """Crops bounding boxes to the size of the input image.""" + return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) + + for i_layer in range(n_layers): + n_crops_per_side = 2 ** (i_layer + 1) + overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) + + crop_w = crop_len(im_w, n_crops_per_side, overlap) + crop_h = crop_len(im_h, n_crops_per_side, overlap) + + crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] + crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] + + # Crops in XYWH format + for x0, y0 in product(crop_box_x0, crop_box_y0): + box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] + crop_boxes.append(box) + layer_idxs.append(i_layer + 1) + + return crop_boxes, layer_idxs + + +def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + """Uncrop bounding boxes by adding the crop box offset.""" + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) + # Check if boxes has a channel dimension + if len(boxes.shape) == 3: + offset = offset.unsqueeze(1) + return boxes + offset + + +def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + """Uncrop points by adding the crop box offset.""" + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0]], device=points.device) + # Check if points has a channel dimension + if len(points.shape) == 3: + offset = offset.unsqueeze(1) + return points + offset + + +def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor: + """Uncrop masks by padding them to the original image size.""" + x0, y0, x1, y1 = crop_box + if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: + return masks + # Coordinate transform masks + pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) + pad = (x0, pad_x - x0, y0, pad_y - y0) + return torch.nn.functional.pad(masks, pad, value=0) + + +def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]: + """Remove small disconnected regions or holes in a mask, returning the mask and a modification indicator.""" + import cv2 # type: ignore + + assert mode in {'holes', 'islands'} + correct_holes = mode == 'holes' + working_mask = (correct_holes ^ mask).astype(np.uint8) + n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) + sizes = stats[:, -1][1:] # Row 0 is background label + small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] + if not small_regions: + return mask, False + fill_labels = [0] + small_regions + if not correct_holes: + # If every region is below threshold, keep largest + fill_labels = [i for i in range(n_labels) if i not in fill_labels] or [int(np.argmax(sizes)) + 1] + mask = np.isin(regions, fill_labels) + return mask, True + + +def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: + """Encode uncompressed RLE (run-length encoding) to COCO RLE format.""" + from pycocotools import mask as mask_utils # type: ignore + + h, w = uncompressed_rle['size'] + rle = mask_utils.frPyObjects(uncompressed_rle, h, w) + rle['counts'] = rle['counts'].decode('utf-8') # Necessary to serialize with json + return rle + + +def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: + """ + Calculates boxes in XYXY format around masks. Return [0,0,0,0] for + an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. + """ + # torch.max below raises an error on empty inputs, just skip in this case + if torch.numel(masks) == 0: + return torch.zeros(*masks.shape[:-2], 4, device=masks.device) + + # Normalize shape to CxHxW + shape = masks.shape + h, w = shape[-2:] + masks = masks.flatten(0, -3) if len(shape) > 2 else masks.unsqueeze(0) + # Get top and bottom edges + in_height, _ = torch.max(masks, dim=-1) + in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] + bottom_edges, _ = torch.max(in_height_coords, dim=-1) + in_height_coords = in_height_coords + h * (~in_height) + top_edges, _ = torch.min(in_height_coords, dim=-1) + + # Get left and right edges + in_width, _ = torch.max(masks, dim=-2) + in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] + right_edges, _ = torch.max(in_width_coords, dim=-1) + in_width_coords = in_width_coords + w * (~in_width) + left_edges, _ = torch.min(in_width_coords, dim=-1) + + # If the mask is empty the right edge will be to the left of the left edge. + # Replace these boxes with [0, 0, 0, 0] + empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) + out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) + out = out * (~empty_filter).unsqueeze(-1) + + # Return to original shape + return out.reshape(*shape[:-2], 4) if len(shape) > 2 else out[0] diff --git a/modules/ultralytics/vit/sam/autosize.py b/modules/ultralytics/vit/sam/autosize.py new file mode 100644 index 0000000000000000000000000000000000000000..ef3364454022edc85ae9b856aeaf8aaf4bc187b2 --- /dev/null +++ b/modules/ultralytics/vit/sam/autosize.py @@ -0,0 +1,94 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from copy import deepcopy +from typing import Tuple + +import numpy as np +import torch +from torch.nn import functional as F +from torchvision.transforms.functional import resize, to_pil_image # type: ignore + + +class ResizeLongestSide: + """ + Resizes images to the longest side 'target_length', as well as provides + methods for resizing coordinates and boxes. Provides methods for + transforming both numpy array and batched torch tensors. + """ + + def __init__(self, target_length: int) -> None: + self.target_length = target_length + + def apply_image(self, image: np.ndarray) -> np.ndarray: + """ + Expects a numpy array with shape HxWxC in uint8 format. + """ + target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) + return np.array(resize(to_pil_image(image), target_size)) + + def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: + """ + Expects a numpy array of length 2 in the final dimension. Requires the + original image size in (H, W) format. + """ + old_h, old_w = original_size + new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length) + coords = deepcopy(coords).astype(float) + coords[..., 0] = coords[..., 0] * (new_w / old_w) + coords[..., 1] = coords[..., 1] * (new_h / old_h) + return coords + + def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: + """ + Expects a numpy array shape Bx4. Requires the original image size + in (H, W) format. + """ + boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) + return boxes.reshape(-1, 4) + + def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: + """ + Expects batched images with shape BxCxHxW and float format. This + transformation may not exactly match apply_image. apply_image is + the transformation expected by the model. + """ + # Expects an image in BCHW format. May not exactly match apply_image. + target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length) + return F.interpolate(image, target_size, mode='bilinear', align_corners=False, antialias=True) + + def apply_coords_torch(self, coords: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor: + """ + Expects a torch tensor with length 2 in the last dimension. Requires the + original image size in (H, W) format. + """ + old_h, old_w = original_size + new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length) + coords = deepcopy(coords).to(torch.float) + coords[..., 0] = coords[..., 0] * (new_w / old_w) + coords[..., 1] = coords[..., 1] * (new_h / old_h) + return coords + + def apply_boxes_torch(self, boxes: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor: + """ + Expects a torch tensor with shape Bx4. Requires the original image + size in (H, W) format. + """ + boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) + return boxes.reshape(-1, 4) + + @staticmethod + def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]: + """ + Compute the output size given input size and target long side length. + """ + scale = long_side_length * 1.0 / max(oldh, oldw) + newh, neww = oldh * scale, oldw * scale + neww = int(neww + 0.5) + newh = int(newh + 0.5) + return (newh, neww) diff --git a/modules/ultralytics/vit/sam/build.py b/modules/ultralytics/vit/sam/build.py new file mode 100644 index 0000000000000000000000000000000000000000..b2e098649d08d44c9542cfd63cee803d4247d11f --- /dev/null +++ b/modules/ultralytics/vit/sam/build.py @@ -0,0 +1,127 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from functools import partial + +import torch + +from ...yolo.utils.downloads import attempt_download_asset +from .modules.decoders import MaskDecoder +from .modules.encoders import ImageEncoderViT, PromptEncoder +from .modules.sam import Sam +from .modules.transformer import TwoWayTransformer + + +def build_sam_vit_h(checkpoint=None): + """Build and return a Segment Anything Model (SAM) h-size model.""" + return _build_sam( + encoder_embed_dim=1280, + encoder_depth=32, + encoder_num_heads=16, + encoder_global_attn_indexes=[7, 15, 23, 31], + checkpoint=checkpoint, + ) + + +def build_sam_vit_l(checkpoint=None): + """Build and return a Segment Anything Model (SAM) l-size model.""" + return _build_sam( + encoder_embed_dim=1024, + encoder_depth=24, + encoder_num_heads=16, + encoder_global_attn_indexes=[5, 11, 17, 23], + checkpoint=checkpoint, + ) + + +def build_sam_vit_b(checkpoint=None): + """Build and return a Segment Anything Model (SAM) b-size model.""" + return _build_sam( + encoder_embed_dim=768, + encoder_depth=12, + encoder_num_heads=12, + encoder_global_attn_indexes=[2, 5, 8, 11], + checkpoint=checkpoint, + ) + + +def _build_sam( + encoder_embed_dim, + encoder_depth, + encoder_num_heads, + encoder_global_attn_indexes, + checkpoint=None, +): + """Builds the selected SAM model architecture.""" + prompt_embed_dim = 256 + image_size = 1024 + vit_patch_size = 16 + image_embedding_size = image_size // vit_patch_size + sam = Sam( + image_encoder=ImageEncoderViT( + depth=encoder_depth, + embed_dim=encoder_embed_dim, + img_size=image_size, + mlp_ratio=4, + norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), + num_heads=encoder_num_heads, + patch_size=vit_patch_size, + qkv_bias=True, + use_rel_pos=True, + global_attn_indexes=encoder_global_attn_indexes, + window_size=14, + out_chans=prompt_embed_dim, + ), + prompt_encoder=PromptEncoder( + embed_dim=prompt_embed_dim, + image_embedding_size=(image_embedding_size, image_embedding_size), + input_image_size=(image_size, image_size), + mask_in_chans=16, + ), + mask_decoder=MaskDecoder( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=prompt_embed_dim, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=prompt_embed_dim, + iou_head_depth=3, + iou_head_hidden_dim=256, + ), + pixel_mean=[123.675, 116.28, 103.53], + pixel_std=[58.395, 57.12, 57.375], + ) + sam.eval() + if checkpoint is not None: + attempt_download_asset(checkpoint) + with open(checkpoint, 'rb') as f: + state_dict = torch.load(f) + sam.load_state_dict(state_dict) + return sam + + +sam_model_map = { + # "default": build_sam_vit_h, + 'sam_h.pt': build_sam_vit_h, + 'sam_l.pt': build_sam_vit_l, + 'sam_b.pt': build_sam_vit_b, } + + +def build_sam(ckpt='sam_b.pt'): + """Build a SAM model specified by ckpt.""" + model_builder = None + for k in sam_model_map.keys(): + if ckpt.endswith(k): + model_builder = sam_model_map.get(k) + + if not model_builder: + raise FileNotFoundError(f'{ckpt} is not a supported sam model. Available models are: \n {sam_model_map.keys()}') + + return model_builder(ckpt) diff --git a/modules/ultralytics/vit/sam/model.py b/modules/ultralytics/vit/sam/model.py new file mode 100644 index 0000000000000000000000000000000000000000..83861f4b9cafaf323a1a690b3443ffeb6c891fbd --- /dev/null +++ b/modules/ultralytics/vit/sam/model.py @@ -0,0 +1,59 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +SAM model interface +""" + +from ultralytics.yolo.cfg import get_cfg + +from ...yolo.utils.torch_utils import model_info +from .build import build_sam +from .predict import Predictor + + +class SAM: + + def __init__(self, model='sam_b.pt') -> None: + if model and not model.endswith('.pt') and not model.endswith('.pth'): + # Should raise AssertionError instead? + raise NotImplementedError('Segment anything prediction requires pre-trained checkpoint') + self.model = build_sam(model) + self.task = 'segment' # required + self.predictor = None # reuse predictor + + def predict(self, source, stream=False, **kwargs): + """Predicts and returns segmentation masks for given image or video source.""" + overrides = dict(conf=0.25, task='segment', mode='predict') + overrides.update(kwargs) # prefer kwargs + if not self.predictor: + self.predictor = Predictor(overrides=overrides) + self.predictor.setup_model(model=self.model) + else: # only update args if predictor is already setup + self.predictor.args = get_cfg(self.predictor.args, overrides) + return self.predictor(source, stream=stream) + + def train(self, **kwargs): + """Function trains models but raises an error as SAM models do not support training.""" + raise NotImplementedError("SAM models don't support training") + + def val(self, **kwargs): + """Run validation given dataset.""" + raise NotImplementedError("SAM models don't support validation") + + def __call__(self, source=None, stream=False, **kwargs): + """Calls the 'predict' function with given arguments to perform object detection.""" + return self.predict(source, stream, **kwargs) + + def __getattr__(self, attr): + """Raises error if object has no requested attribute.""" + name = self.__class__.__name__ + raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") + + def info(self, detailed=False, verbose=True): + """ + Logs model info. + + Args: + detailed (bool): Show detailed information about model. + verbose (bool): Controls verbosity. + """ + return model_info(self.model, detailed=detailed, verbose=verbose) diff --git a/modules/ultralytics/vit/sam/modules/__init__.py b/modules/ultralytics/vit/sam/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9e68dc12245afb4f72ba5f7c1227df74613a427d --- /dev/null +++ b/modules/ultralytics/vit/sam/modules/__init__.py @@ -0,0 +1 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license diff --git a/modules/ultralytics/vit/sam/modules/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/vit/sam/modules/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c87005f0156310f01c3372ae21e3d09bc533aa73 Binary files /dev/null and b/modules/ultralytics/vit/sam/modules/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/modules/__pycache__/decoders.cpython-312.pyc b/modules/ultralytics/vit/sam/modules/__pycache__/decoders.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cb01e2540965e8b7e7099af03ed2f9e2daf81d42 Binary files /dev/null and b/modules/ultralytics/vit/sam/modules/__pycache__/decoders.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/modules/__pycache__/encoders.cpython-312.pyc b/modules/ultralytics/vit/sam/modules/__pycache__/encoders.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d786ae9b7599c8a05d9e2325bb9feb8e5ccc0498 Binary files /dev/null and b/modules/ultralytics/vit/sam/modules/__pycache__/encoders.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/modules/__pycache__/mask_generator.cpython-312.pyc b/modules/ultralytics/vit/sam/modules/__pycache__/mask_generator.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e283b69017156047e3b1e630e6841e892efc9f04 Binary files /dev/null and b/modules/ultralytics/vit/sam/modules/__pycache__/mask_generator.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/modules/__pycache__/prompt_predictor.cpython-312.pyc b/modules/ultralytics/vit/sam/modules/__pycache__/prompt_predictor.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2310902f0c8e700f3366d5b8a14f3d76d5e1ab67 Binary files /dev/null and b/modules/ultralytics/vit/sam/modules/__pycache__/prompt_predictor.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/modules/__pycache__/sam.cpython-312.pyc b/modules/ultralytics/vit/sam/modules/__pycache__/sam.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e8f9dfd76e8114868263052163928dc2f3aa572 Binary files /dev/null and b/modules/ultralytics/vit/sam/modules/__pycache__/sam.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/modules/__pycache__/transformer.cpython-312.pyc b/modules/ultralytics/vit/sam/modules/__pycache__/transformer.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6952a3dd5b8f9b72d461e52953d11882b87fc5b5 Binary files /dev/null and b/modules/ultralytics/vit/sam/modules/__pycache__/transformer.cpython-312.pyc differ diff --git a/modules/ultralytics/vit/sam/modules/decoders.py b/modules/ultralytics/vit/sam/modules/decoders.py new file mode 100644 index 0000000000000000000000000000000000000000..cadc0f0fc29bb0e36a7385bcc8cbedde9cb87b62 --- /dev/null +++ b/modules/ultralytics/vit/sam/modules/decoders.py @@ -0,0 +1,159 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from typing import List, Tuple, Type + +import torch +from torch import nn +from torch.nn import functional as F + +from ultralytics.nn.modules import LayerNorm2d + + +class MaskDecoder(nn.Module): + + def __init__( + self, + *, + transformer_dim: int, + transformer: nn.Module, + num_multimask_outputs: int = 3, + activation: Type[nn.Module] = nn.GELU, + iou_head_depth: int = 3, + iou_head_hidden_dim: int = 256, + ) -> None: + """ + Predicts masks given an image and prompt embeddings, using a transformer architecture. + + Arguments: + transformer_dim (int): the channel dimension of the transformer module + transformer (nn.Module): the transformer used to predict masks + num_multimask_outputs (int): the number of masks to predict when disambiguating masks + activation (nn.Module): the type of activation to use when upscaling masks + iou_head_depth (int): the depth of the MLP used to predict mask quality + iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality + """ + super().__init__() + self.transformer_dim = transformer_dim + self.transformer = transformer + + self.num_multimask_outputs = num_multimask_outputs + + self.iou_token = nn.Embedding(1, transformer_dim) + self.num_mask_tokens = num_multimask_outputs + 1 + self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) + + self.output_upscaling = nn.Sequential( + nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), + LayerNorm2d(transformer_dim // 4), + activation(), + nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), + activation(), + ) + self.output_hypernetworks_mlps = nn.ModuleList([ + MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]) + + self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth) + + def forward( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + multimask_output: bool, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Predict masks given image and prompt embeddings. + + Arguments: + image_embeddings (torch.Tensor): the embeddings from the image encoder + image_pe (torch.Tensor): positional encoding with the shape of image_embeddings + sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes + dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs + multimask_output (bool): Whether to return multiple masks or a single mask. + + Returns: + torch.Tensor: batched predicted masks + torch.Tensor: batched predictions of mask quality + """ + masks, iou_pred = self.predict_masks( + image_embeddings=image_embeddings, + image_pe=image_pe, + sparse_prompt_embeddings=sparse_prompt_embeddings, + dense_prompt_embeddings=dense_prompt_embeddings, + ) + + # Select the correct mask or masks for output + mask_slice = slice(1, None) if multimask_output else slice(0, 1) + masks = masks[:, mask_slice, :, :] + iou_pred = iou_pred[:, mask_slice] + + # Prepare output + return masks, iou_pred + + def predict_masks( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + # Concatenate output tokens + output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) + output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) + + # Expand per-image data in batch direction to be per-mask + src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) + src = src + dense_prompt_embeddings + pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) + b, c, h, w = src.shape + + # Run the transformer + hs, src = self.transformer(src, pos_src, tokens) + iou_token_out = hs[:, 0, :] + mask_tokens_out = hs[:, 1:(1 + self.num_mask_tokens), :] + + # Upscale mask embeddings and predict masks using the mask tokens + src = src.transpose(1, 2).view(b, c, h, w) + upscaled_embedding = self.output_upscaling(src) + hyper_in_list: List[torch.Tensor] = [ + self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)] + hyper_in = torch.stack(hyper_in_list, dim=1) + b, c, h, w = upscaled_embedding.shape + masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) + + # Generate mask quality predictions + iou_pred = self.iou_prediction_head(iou_token_out) + + return masks, iou_pred + + +class MLP(nn.Module): + """ + Lightly adapted from + https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py + """ + + def __init__( + self, + input_dim: int, + hidden_dim: int, + output_dim: int, + num_layers: int, + sigmoid_output: bool = False, + ) -> None: + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) + self.sigmoid_output = sigmoid_output + + def forward(self, x): + """Executes feedforward within the neural network module and applies activation.""" + for i, layer in enumerate(self.layers): + x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + if self.sigmoid_output: + x = torch.sigmoid(x) + return x diff --git a/modules/ultralytics/vit/sam/modules/encoders.py b/modules/ultralytics/vit/sam/modules/encoders.py new file mode 100644 index 0000000000000000000000000000000000000000..0da032dddb15d3d104b2173e5835189dfa72f1b6 --- /dev/null +++ b/modules/ultralytics/vit/sam/modules/encoders.py @@ -0,0 +1,583 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from typing import Any, Optional, Tuple, Type + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ultralytics.nn.modules import LayerNorm2d, MLPBlock + + +# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa +class ImageEncoderViT(nn.Module): + + def __init__( + self, + img_size: int = 1024, + patch_size: int = 16, + in_chans: int = 3, + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + mlp_ratio: float = 4.0, + out_chans: int = 256, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_abs_pos: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + global_attn_indexes: Tuple[int, ...] = (), + ) -> None: + """ + Args: + img_size (int): Input image size. + patch_size (int): Patch size. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + depth (int): Depth of ViT. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_abs_pos (bool): If True, use absolute positional embeddings. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. + global_attn_indexes (list): Indexes for blocks using global attention. + """ + super().__init__() + self.img_size = img_size + + self.patch_embed = PatchEmbed( + kernel_size=(patch_size, patch_size), + stride=(patch_size, patch_size), + in_chans=in_chans, + embed_dim=embed_dim, + ) + + self.pos_embed: Optional[nn.Parameter] = None + if use_abs_pos: + # Initialize absolute positional embedding with pretrain image size. + self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)) + + self.blocks = nn.ModuleList() + for i in range(depth): + block = Block( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + norm_layer=norm_layer, + act_layer=act_layer, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + window_size=window_size if i not in global_attn_indexes else 0, + input_size=(img_size // patch_size, img_size // patch_size), + ) + self.blocks.append(block) + + self.neck = nn.Sequential( + nn.Conv2d( + embed_dim, + out_chans, + kernel_size=1, + bias=False, + ), + LayerNorm2d(out_chans), + nn.Conv2d( + out_chans, + out_chans, + kernel_size=3, + padding=1, + bias=False, + ), + LayerNorm2d(out_chans), + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) + if self.pos_embed is not None: + x = x + self.pos_embed + + for blk in self.blocks: + x = blk(x) + + x = self.neck(x.permute(0, 3, 1, 2)) + + return x + + +class PromptEncoder(nn.Module): + + def __init__( + self, + embed_dim: int, + image_embedding_size: Tuple[int, int], + input_image_size: Tuple[int, int], + mask_in_chans: int, + activation: Type[nn.Module] = nn.GELU, + ) -> None: + """ + Encodes prompts for input to SAM's mask decoder. + + Arguments: + embed_dim (int): The prompts' embedding dimension + image_embedding_size (tuple(int, int)): The spatial size of the + image embedding, as (H, W). + input_image_size (int): The padded size of the image as input + to the image encoder, as (H, W). + mask_in_chans (int): The number of hidden channels used for + encoding input masks. + activation (nn.Module): The activation to use when encoding + input masks. + """ + super().__init__() + self.embed_dim = embed_dim + self.input_image_size = input_image_size + self.image_embedding_size = image_embedding_size + self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) + + self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners + point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)] + self.point_embeddings = nn.ModuleList(point_embeddings) + self.not_a_point_embed = nn.Embedding(1, embed_dim) + + self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) + self.mask_downscaling = nn.Sequential( + nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans // 4), + activation(), + nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans), + activation(), + nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), + ) + self.no_mask_embed = nn.Embedding(1, embed_dim) + + def get_dense_pe(self) -> torch.Tensor: + """ + Returns the positional encoding used to encode point prompts, + applied to a dense set of points the shape of the image encoding. + + Returns: + torch.Tensor: Positional encoding with shape + 1x(embed_dim)x(embedding_h)x(embedding_w) + """ + return self.pe_layer(self.image_embedding_size).unsqueeze(0) + + def _embed_points( + self, + points: torch.Tensor, + labels: torch.Tensor, + pad: bool, + ) -> torch.Tensor: + """Embeds point prompts.""" + points = points + 0.5 # Shift to center of pixel + if pad: + padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) + padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) + points = torch.cat([points, padding_point], dim=1) + labels = torch.cat([labels, padding_label], dim=1) + point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) + point_embedding[labels == -1] = 0.0 + point_embedding[labels == -1] += self.not_a_point_embed.weight + point_embedding[labels == 0] += self.point_embeddings[0].weight + point_embedding[labels == 1] += self.point_embeddings[1].weight + return point_embedding + + def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: + """Embeds box prompts.""" + boxes = boxes + 0.5 # Shift to center of pixel + coords = boxes.reshape(-1, 2, 2) + corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) + corner_embedding[:, 0, :] += self.point_embeddings[2].weight + corner_embedding[:, 1, :] += self.point_embeddings[3].weight + return corner_embedding + + def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: + """Embeds mask inputs.""" + return self.mask_downscaling(masks) + + def _get_batch_size( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> int: + """ + Gets the batch size of the output given the batch size of the input prompts. + """ + if points is not None: + return points[0].shape[0] + elif boxes is not None: + return boxes.shape[0] + elif masks is not None: + return masks.shape[0] + else: + return 1 + + def _get_device(self) -> torch.device: + return self.point_embeddings[0].weight.device + + def forward( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Embeds different types of prompts, returning both sparse and dense + embeddings. + + Arguments: + points (tuple(torch.Tensor, torch.Tensor), None): point coordinates + and labels to embed. + boxes (torch.Tensor, None): boxes to embed + masks (torch.Tensor, None): masks to embed + + Returns: + torch.Tensor: sparse embeddings for the points and boxes, with shape + BxNx(embed_dim), where N is determined by the number of input points + and boxes. + torch.Tensor: dense embeddings for the masks, in the shape + Bx(embed_dim)x(embed_H)x(embed_W) + """ + bs = self._get_batch_size(points, boxes, masks) + sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) + if points is not None: + coords, labels = points + point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) + sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) + if boxes is not None: + box_embeddings = self._embed_boxes(boxes) + sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) + + if masks is not None: + dense_embeddings = self._embed_masks(masks) + else: + dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, + 1).expand(bs, -1, self.image_embedding_size[0], + self.image_embedding_size[1]) + + return sparse_embeddings, dense_embeddings + + +class PositionEmbeddingRandom(nn.Module): + """ + Positional encoding using random spatial frequencies. + """ + + def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: + super().__init__() + if scale is None or scale <= 0.0: + scale = 1.0 + self.register_buffer( + 'positional_encoding_gaussian_matrix', + scale * torch.randn((2, num_pos_feats)), + ) + + def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: + """Positionally encode points that are normalized to [0,1].""" + # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape + coords = 2 * coords - 1 + coords = coords @ self.positional_encoding_gaussian_matrix + coords = 2 * np.pi * coords + # outputs d_1 x ... x d_n x C shape + return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) + + def forward(self, size: Tuple[int, int]) -> torch.Tensor: + """Generate positional encoding for a grid of the specified size.""" + h, w = size + device: Any = self.positional_encoding_gaussian_matrix.device + grid = torch.ones((h, w), device=device, dtype=torch.float32) + y_embed = grid.cumsum(dim=0) - 0.5 + x_embed = grid.cumsum(dim=1) - 0.5 + y_embed = y_embed / h + x_embed = x_embed / w + + pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) + return pe.permute(2, 0, 1) # C x H x W + + def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor: + """Positionally encode points that are not normalized to [0,1].""" + coords = coords_input.clone() + coords[:, :, 0] = coords[:, :, 0] / image_size[1] + coords[:, :, 1] = coords[:, :, 1] / image_size[0] + return self._pe_encoding(coords.to(torch.float)) # B x N x C + + +class Block(nn.Module): + """Transformer blocks with support of window attention and residual propagation blocks""" + + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4.0, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. If it equals 0, then + use global attention. + input_size (tuple(int, int), None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + input_size=input_size if window_size == 0 else (window_size, window_size), + ) + + self.norm2 = norm_layer(dim) + self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) + + self.window_size = window_size + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.norm1(x) + # Window partition + if self.window_size > 0: + H, W = x.shape[1], x.shape[2] + x, pad_hw = window_partition(x, self.window_size) + + x = self.attn(x) + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, self.window_size, pad_hw, (H, W)) + + x = shortcut + x + x = x + self.mlp(self.norm2(x)) + + return x + + +class Attention(nn.Module): + """Multi-head Attention block with relative position embeddings.""" + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + input_size (tuple(int, int), None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + self.use_rel_pos = use_rel_pos + if self.use_rel_pos: + assert (input_size is not None), 'Input size must be provided if using relative positional encoding.' + # initialize relative positional embeddings + self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + # qkv with shape (3, B, nHead, H * W, C) + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + # q, k, v with shape (B * nHead, H * W, C) + q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) + + attn = (q * self.scale) @ k.transpose(-2, -1) + + if self.use_rel_pos: + attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) + + attn = attn.softmax(dim=-1) + x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) + x = self.proj(x) + + return x + + +def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + if pad_h > 0 or pad_w > 0: + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows, (Hp, Wp) + + +def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], + hw: Tuple[int, int]) -> torch.Tensor: + """ + Window unpartition into original sequences and removing padding. + Args: + windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + + if Hp > H or Wp > W: + x = x[:, :H, :W, :].contiguous() + return x + + +def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: + """ + Get relative positional embeddings according to the relative positions of + query and key sizes. + Args: + q_size (int): size of query q. + k_size (int): size of key k. + rel_pos (Tensor): relative position embeddings (L, C). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos if needed. + if rel_pos.shape[0] != max_rel_dist: + # Interpolate rel pos. + rel_pos_resized = F.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=max_rel_dist, + mode='linear', + ) + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + else: + rel_pos_resized = rel_pos + + # Scale the coords with short length if shapes for q and k are different. + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return rel_pos_resized[relative_coords.long()] + + +def add_decomposed_rel_pos( + attn: torch.Tensor, + q: torch.Tensor, + rel_pos_h: torch.Tensor, + rel_pos_w: torch.Tensor, + q_size: Tuple[int, int], + k_size: Tuple[int, int], +) -> torch.Tensor: + """ + Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. + https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 + Args: + attn (Tensor): attention map. + q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). + rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. + rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. + q_size (Tuple): spatial sequence size of query q with (q_h, q_w). + k_size (Tuple): spatial sequence size of key k with (k_h, k_w). + + Returns: + attn (Tensor): attention map with added relative positional embeddings. + """ + q_h, q_w = q_size + k_h, k_w = k_size + Rh = get_rel_pos(q_h, k_h, rel_pos_h) + Rw = get_rel_pos(q_w, k_w, rel_pos_w) + + B, _, dim = q.shape + r_q = q.reshape(B, q_h, q_w, dim) + rel_h = torch.einsum('bhwc,hkc->bhwk', r_q, Rh) + rel_w = torch.einsum('bhwc,wkc->bhwk', r_q, Rw) + + attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view( + B, q_h * q_w, k_h * k_w) + + return attn + + +class PatchEmbed(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + kernel_size: Tuple[int, int] = (16, 16), + stride: Tuple[int, int] = (16, 16), + padding: Tuple[int, int] = (0, 0), + in_chans: int = 3, + embed_dim: int = 768, + ) -> None: + """ + Args: + kernel_size (Tuple): kernel size of the projection layer. + stride (Tuple): stride of the projection layer. + padding (Tuple): padding size of the projection layer. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + """ + super().__init__() + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # B C H W -> B H W C + x = x.permute(0, 2, 3, 1) + return x diff --git a/modules/ultralytics/vit/sam/modules/mask_generator.py b/modules/ultralytics/vit/sam/modules/mask_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..8c1e00ea172d28bb7f0bb3fe92e32a482924f7e7 --- /dev/null +++ b/modules/ultralytics/vit/sam/modules/mask_generator.py @@ -0,0 +1,353 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Any, Dict, List, Optional, Tuple + +import numpy as np +import torch +from torchvision.ops.boxes import batched_nms, box_area # type: ignore + +from ..amg import (MaskData, area_from_rle, batch_iterator, batched_mask_to_box, box_xyxy_to_xywh, + build_all_layer_point_grids, calculate_stability_score, coco_encode_rle, generate_crop_boxes, + is_box_near_crop_edge, mask_to_rle_pytorch, remove_small_regions, rle_to_mask, uncrop_boxes_xyxy, + uncrop_masks, uncrop_points) +from .prompt_predictor import PromptPredictor +from .sam import Sam + + +class SamAutomaticMaskGenerator: + + def __init__( + self, + model: Sam, + points_per_side: Optional[int] = 32, + points_per_batch: int = 64, + pred_iou_thresh: float = 0.88, + stability_score_thresh: float = 0.95, + stability_score_offset: float = 1.0, + box_nms_thresh: float = 0.7, + crop_n_layers: int = 0, + crop_nms_thresh: float = 0.7, + crop_overlap_ratio: float = 512 / 1500, + crop_n_points_downscale_factor: int = 1, + point_grids: Optional[List[np.ndarray]] = None, + min_mask_region_area: int = 0, + output_mode: str = 'binary_mask', + ) -> None: + """ + Using a SAM model, generates masks for the entire image. + Generates a grid of point prompts over the image, then filters + low quality and duplicate masks. The default settings are chosen + for SAM with a ViT-H backbone. + + Arguments: + model (Sam): The SAM model to use for mask prediction. + points_per_side (int, None): The number of points to be sampled + along one side of the image. The total number of points is + points_per_side**2. If None, 'point_grids' must provide explicit + point sampling. + points_per_batch (int): Sets the number of points run simultaneously + by the model. Higher numbers may be faster but use more GPU memory. + pred_iou_thresh (float): A filtering threshold in [0,1], using the + model's predicted mask quality. + stability_score_thresh (float): A filtering threshold in [0,1], using + the stability of the mask under changes to the cutoff used to binarize + the model's mask predictions. + stability_score_offset (float): The amount to shift the cutoff when + calculated the stability score. + box_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks. + crop_n_layers (int): If >0, mask prediction will be run again on + crops of the image. Sets the number of layers to run, where each + layer has 2**i_layer number of image crops. + crop_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks between different crops. + crop_overlap_ratio (float): Sets the degree to which crops overlap. + In the first crop layer, crops will overlap by this fraction of + the image length. Later layers with more crops scale down this overlap. + crop_n_points_downscale_factor (int): The number of points-per-side + sampled in layer n is scaled down by crop_n_points_downscale_factor**n. + point_grids (list(np.ndarray), None): A list over explicit grids + of points used for sampling, normalized to [0,1]. The nth grid in the + list is used in the nth crop layer. Exclusive with points_per_side. + min_mask_region_area (int): If >0, postprocessing will be applied + to remove disconnected regions and holes in masks with area smaller + than min_mask_region_area. Requires opencv. + output_mode (str): The form masks are returned in. Can be 'binary_mask', + 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. + For large resolutions, 'binary_mask' may consume large amounts of + memory. + """ + + assert (points_per_side is None) != (point_grids is None), \ + 'Exactly one of points_per_side or point_grid must be provided.' + if points_per_side is not None: + self.point_grids = build_all_layer_point_grids( + points_per_side, + crop_n_layers, + crop_n_points_downscale_factor, + ) + elif point_grids is not None: + self.point_grids = point_grids + else: + raise ValueError("Can't have both points_per_side and point_grid be None.") + + assert output_mode in {'binary_mask', 'uncompressed_rle', 'coco_rle'}, f'Unknown output_mode {output_mode}.' + if output_mode == 'coco_rle': + from pycocotools import mask as mask_utils # type: ignore # noqa: F401 + + if min_mask_region_area > 0: + import cv2 # type: ignore # noqa: F401 + + self.predictor = PromptPredictor(model) + self.points_per_batch = points_per_batch + self.pred_iou_thresh = pred_iou_thresh + self.stability_score_thresh = stability_score_thresh + self.stability_score_offset = stability_score_offset + self.box_nms_thresh = box_nms_thresh + self.crop_n_layers = crop_n_layers + self.crop_nms_thresh = crop_nms_thresh + self.crop_overlap_ratio = crop_overlap_ratio + self.crop_n_points_downscale_factor = crop_n_points_downscale_factor + self.min_mask_region_area = min_mask_region_area + self.output_mode = output_mode + + # TODO: Temporary implementation for compatibility + def __call__(self, image: np.ndarray, augment=False, visualize=False) -> List[Dict[str, Any]]: + return self.generate(image) + + @torch.no_grad() + def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: + """ + Generates masks for the given image. + + Arguments: + image (np.ndarray): The image to generate masks for, in HWC uint8 format. + + Returns: + list(dict(str, any)): A list over records for masks. Each record is a dict containing the following keys: + segmentation (dict(str, any), np.ndarray): The mask. If + output_mode='binary_mask', is an array of shape HW. Otherwise, + is a dictionary containing the RLE. + bbox (list(float)): The box around the mask, in XYWH format. + area (int): The area in pixels of the mask. + predicted_iou (float): The model's own prediction of the mask's + quality. This is filtered by the pred_iou_thresh parameter. + point_coords (list(list(float))): The point coordinates input + to the model to generate this mask. + stability_score (float): A measure of the mask's quality. This + is filtered on using the stability_score_thresh parameter. + crop_box (list(float)): The crop of the image used to generate + the mask, given in XYWH format. + """ + + # Generate masks + mask_data = self._generate_masks(image) + + # Filter small disconnected regions and holes in masks + if self.min_mask_region_area > 0: + mask_data = self.postprocess_small_regions( + mask_data, + self.min_mask_region_area, + max(self.box_nms_thresh, self.crop_nms_thresh), + ) + + # Encode masks + if self.output_mode == 'coco_rle': + mask_data['segmentations'] = [coco_encode_rle(rle) for rle in mask_data['rles']] + elif self.output_mode == 'binary_mask': + mask_data['segmentations'] = [rle_to_mask(rle) for rle in mask_data['rles']] + else: + mask_data['segmentations'] = mask_data['rles'] + + # Write mask records + curr_anns = [] + for idx in range(len(mask_data['segmentations'])): + ann = { + 'segmentation': mask_data['segmentations'][idx], + 'area': area_from_rle(mask_data['rles'][idx]), + 'bbox': box_xyxy_to_xywh(mask_data['boxes'][idx]).tolist(), + 'predicted_iou': mask_data['iou_preds'][idx].item(), + 'point_coords': [mask_data['points'][idx].tolist()], + 'stability_score': mask_data['stability_score'][idx].item(), + 'crop_box': box_xyxy_to_xywh(mask_data['crop_boxes'][idx]).tolist(), } + curr_anns.append(ann) + + return curr_anns + + def _generate_masks(self, image: np.ndarray) -> MaskData: + orig_size = image.shape[:2] + crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio) + + # Iterate over image crops + data = MaskData() + for crop_box, layer_idx in zip(crop_boxes, layer_idxs): + crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) + data.cat(crop_data) + + # Remove duplicate masks between crops + if len(crop_boxes) > 1: + # Prefer masks from smaller crops + scores = 1 / box_area(data['crop_boxes']) + scores = scores.to(data['boxes'].device) + keep_by_nms = batched_nms( + data['boxes'].float(), + scores, + torch.zeros_like(data['boxes'][:, 0]), # categories + iou_threshold=self.crop_nms_thresh, + ) + data.filter(keep_by_nms) + + data.to_numpy() + return data + + def _process_crop( + self, + image: np.ndarray, + crop_box: List[int], + crop_layer_idx: int, + orig_size: Tuple[int, ...], + ) -> MaskData: + # Crop the image and calculate embeddings + x0, y0, x1, y1 = crop_box + cropped_im = image[y0:y1, x0:x1, :] + cropped_im_size = cropped_im.shape[:2] + self.predictor.set_image(cropped_im) + + # Get points for this crop + points_scale = np.array(cropped_im_size)[None, ::-1] + points_for_image = self.point_grids[crop_layer_idx] * points_scale + + # Generate masks for this crop in batches + data = MaskData() + for (points, ) in batch_iterator(self.points_per_batch, points_for_image): + batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size) + data.cat(batch_data) + del batch_data + self.predictor.reset_image() + + # Remove duplicates within this crop. + keep_by_nms = batched_nms( + data['boxes'].float(), + data['iou_preds'], + torch.zeros_like(data['boxes'][:, 0]), # categories + iou_threshold=self.box_nms_thresh, + ) + data.filter(keep_by_nms) + + # Return to the original image frame + data['boxes'] = uncrop_boxes_xyxy(data['boxes'], crop_box) + data['points'] = uncrop_points(data['points'], crop_box) + data['crop_boxes'] = torch.tensor([crop_box for _ in range(len(data['rles']))]) + + return data + + def _process_batch( + self, + points: np.ndarray, + im_size: Tuple[int, ...], + crop_box: List[int], + orig_size: Tuple[int, ...], + ) -> MaskData: + orig_h, orig_w = orig_size + + # Run model on this batch + transformed_points = self.predictor.transform.apply_coords(points, im_size) + in_points = torch.as_tensor(transformed_points, device=self.predictor.device) + in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) + masks, iou_preds, _ = self.predictor.predict_torch( + in_points[:, None, :], + in_labels[:, None], + multimask_output=True, + return_logits=True, + ) + + # Serialize predictions and store in MaskData + data = MaskData( + masks=masks.flatten(0, 1), + iou_preds=iou_preds.flatten(0, 1), + points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)), + ) + del masks + + # Filter by predicted IoU + if self.pred_iou_thresh > 0.0: + keep_mask = data['iou_preds'] > self.pred_iou_thresh + data.filter(keep_mask) + + # Calculate stability score + data['stability_score'] = calculate_stability_score(data['masks'], self.predictor.model.mask_threshold, + self.stability_score_offset) + if self.stability_score_thresh > 0.0: + keep_mask = data['stability_score'] >= self.stability_score_thresh + data.filter(keep_mask) + + # Threshold masks and calculate boxes + data['masks'] = data['masks'] > self.predictor.model.mask_threshold + data['boxes'] = batched_mask_to_box(data['masks']) + + # Filter boxes that touch crop boundaries + keep_mask = ~is_box_near_crop_edge(data['boxes'], crop_box, [0, 0, orig_w, orig_h]) + if not torch.all(keep_mask): + data.filter(keep_mask) + + # Compress to RLE + data['masks'] = uncrop_masks(data['masks'], crop_box, orig_h, orig_w) + data['rles'] = mask_to_rle_pytorch(data['masks']) + del data['masks'] + + return data + + @staticmethod + def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData: + """ + Removes small disconnected regions and holes in masks, then reruns + box NMS to remove any new duplicates. + + Edits mask_data in place. + + Requires open-cv as a dependency. + """ + if len(mask_data['rles']) == 0: + return mask_data + + # Filter small disconnected regions and holes + new_masks = [] + scores = [] + for rle in mask_data['rles']: + mask = rle_to_mask(rle) + + mask, changed = remove_small_regions(mask, min_area, mode='holes') + unchanged = not changed + mask, changed = remove_small_regions(mask, min_area, mode='islands') + unchanged = unchanged and not changed + + new_masks.append(torch.as_tensor(mask).unsqueeze(0)) + # Give score=0 to changed masks and score=1 to unchanged masks + # so NMS will prefer ones that didn't need postprocessing + scores.append(float(unchanged)) + + # Recalculate boxes and remove any new duplicates + masks = torch.cat(new_masks, dim=0) + boxes = batched_mask_to_box(masks) + keep_by_nms = batched_nms( + boxes.float(), + torch.as_tensor(scores), + torch.zeros_like(boxes[:, 0]), # categories + iou_threshold=nms_thresh, + ) + + # Only recalculate RLEs for masks that have changed + for i_mask in keep_by_nms: + if scores[i_mask] == 0.0: + mask_torch = masks[i_mask].unsqueeze(0) + mask_data['rles'][i_mask] = mask_to_rle_pytorch(mask_torch)[0] + mask_data['boxes'][i_mask] = boxes[i_mask] # update res directly + mask_data.filter(keep_by_nms) + + return mask_data diff --git a/modules/ultralytics/vit/sam/modules/prompt_predictor.py b/modules/ultralytics/vit/sam/modules/prompt_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..bf89893458532c928568693707b16312f19237f7 --- /dev/null +++ b/modules/ultralytics/vit/sam/modules/prompt_predictor.py @@ -0,0 +1,242 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from typing import Optional, Tuple + +import numpy as np +import torch + +from ..autosize import ResizeLongestSide +from .sam import Sam + + +class PromptPredictor: + + def __init__(self, sam_model: Sam) -> None: + """ + Uses SAM to calculate the image embedding for an image, and then + allow repeated, efficient mask prediction given prompts. + + Arguments: + sam_model (Sam): The model to use for mask prediction. + """ + super().__init__() + self.model = sam_model + self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) + self.reset_image() + + def set_image(self, image: np.ndarray, image_format: str = 'RGB') -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + + Arguments: + image (np.ndarray): The image for calculating masks. Expects an + image in HWC uint8 format, with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + assert image_format in {'RGB', 'BGR'}, f"image_format must be in ['RGB', 'BGR'], is {image_format}." + if image_format != self.model.image_format: + image = image[..., ::-1] + + # Transform the image to the form expected by the model + input_image = self.transform.apply_image(image) + input_image_torch = torch.as_tensor(input_image, device=self.device) + input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] + + self.set_torch_image(input_image_torch, image.shape[:2]) + + @torch.no_grad() + def set_torch_image(self, transformed_image: torch.Tensor, original_image_size: Tuple[int, ...]) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. Expects the input + image to be already transformed to the format expected by the model. + + Arguments: + transformed_image (torch.Tensor): The input image, with shape + 1x3xHxW, which has been transformed with ResizeLongestSide. + original_image_size (tuple(int, int)): The size of the image + before transformation, in (H, W) format. + """ + if len(transformed_image.shape) != 4 \ + or transformed_image.shape[1] != 3 \ + or max(*transformed_image.shape[2:]) != self.model.image_encoder.img_size: + raise ValueError('set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}.') + self.reset_image() + + self.original_size = original_image_size + self.input_size = tuple(transformed_image.shape[-2:]) + input_image = self.model.preprocess(transformed_image) + self.features = self.model.image_encoder(input_image) + self.is_image_set = True + + def predict( + self, + point_coords: Optional[np.ndarray] = None, + point_labels: Optional[np.ndarray] = None, + box: Optional[np.ndarray] = None, + mask_input: Optional[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """ + Predict masks for the given input prompts, using the currently set image. + + Arguments: + point_coords (np.ndarray, None): A Nx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (np.ndarray, None): A length N array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray, None): A length 4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form 1xHxW, where + for SAM, H=W=256. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (np.ndarray): The output masks in CxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (np.ndarray): An array of length C containing the model's + predictions for the quality of each mask. + (np.ndarray): An array of shape CxHxW, where C is the number + of masks and H=W=256. These low resolution logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError('An image must be set with .set_image(...) before mask prediction.') + + # Transform input prompts + coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None + if point_coords is not None: + assert (point_labels is not None), 'point_labels must be supplied if point_coords is supplied.' + point_coords = self.transform.apply_coords(point_coords, self.original_size) + coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) + labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) + coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] + if box is not None: + box = self.transform.apply_boxes(box, self.original_size) + box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) + box_torch = box_torch[None, :] + if mask_input is not None: + mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) + mask_input_torch = mask_input_torch[None, :, :, :] + + masks, iou_predictions, low_res_masks = self.predict_torch( + coords_torch, + labels_torch, + box_torch, + mask_input_torch, + multimask_output, + return_logits=return_logits, + ) + + masks_np = masks[0].detach().cpu().numpy() + iou_predictions_np = iou_predictions[0].detach().cpu().numpy() + low_res_masks_np = low_res_masks[0].detach().cpu().numpy() + return masks_np, iou_predictions_np, low_res_masks_np + + @torch.no_grad() + def predict_torch( + self, + point_coords: Optional[torch.Tensor], + point_labels: Optional[torch.Tensor], + boxes: Optional[torch.Tensor] = None, + mask_input: Optional[torch.Tensor] = None, + multimask_output: bool = True, + return_logits: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + Input prompts are batched torch tensors and are expected to already be + transformed to the input frame using ResizeLongestSide. + + Arguments: + point_coords (torch.Tensor, None): A BxNx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (torch.Tensor, None): A BxN array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + boxes (np.ndarray, None): A Bx4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form Bx1xHxW, where + for SAM, H=W=256. Masks returned by a previous iteration of the + predict method do not need further transformation. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (torch.Tensor): The output masks in BxCxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (torch.Tensor): An array of shape BxC containing the model's + predictions for the quality of each mask. + (torch.Tensor): An array of shape BxCxHxW, where C is the number + of masks and H=W=256. These low res logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError('An image must be set with .set_image(...) before mask prediction.') + + points = (point_coords, point_labels) if point_coords is not None else None + # Embed prompts + sparse_embeddings, dense_embeddings = self.model.prompt_encoder( + points=points, + boxes=boxes, + masks=mask_input, + ) + + # Predict masks + low_res_masks, iou_predictions = self.model.mask_decoder( + image_embeddings=self.features, + image_pe=self.model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + ) + + # Upscale the masks to the original image resolution + masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) + + if not return_logits: + masks = masks > self.model.mask_threshold + + return masks, iou_predictions, low_res_masks + + def get_image_embedding(self) -> torch.Tensor: + """ + Returns the image embeddings for the currently set image, with + shape 1xCxHxW, where C is the embedding dimension and (H,W) are + the embedding spatial dimension of SAM (typically C=256, H=W=64). + """ + if not self.is_image_set: + raise RuntimeError('An image must be set with .set_image(...) to generate an embedding.') + assert self.features is not None, 'Features must exist if an image has been set.' + return self.features + + @property + def device(self) -> torch.device: + return self.model.device + + def reset_image(self) -> None: + """Resets the currently set image.""" + self.is_image_set = False + self.features = None + self.orig_h = None + self.orig_w = None + self.input_h = None + self.input_w = None diff --git a/modules/ultralytics/vit/sam/modules/sam.py b/modules/ultralytics/vit/sam/modules/sam.py new file mode 100644 index 0000000000000000000000000000000000000000..49f4bfcb0f502b8014972473a8925b2da89d482c --- /dev/null +++ b/modules/ultralytics/vit/sam/modules/sam.py @@ -0,0 +1,173 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Any, Dict, List, Tuple + +import torch +from torch import nn +from torch.nn import functional as F + +from .decoders import MaskDecoder +from .encoders import ImageEncoderViT, PromptEncoder + + +class Sam(nn.Module): + mask_threshold: float = 0.0 + image_format: str = 'RGB' + + def __init__(self, + image_encoder: ImageEncoderViT, + prompt_encoder: PromptEncoder, + mask_decoder: MaskDecoder, + pixel_mean: List[float] = None, + pixel_std: List[float] = None) -> None: + """ + SAM predicts object masks from an image and input prompts. + + Arguments: + image_encoder (ImageEncoderViT): The backbone used to encode the + image into image embeddings that allow for efficient mask prediction. + prompt_encoder (PromptEncoder): Encodes various types of input prompts. + mask_decoder (MaskDecoder): Predicts masks from the image embeddings + and encoded prompts. + pixel_mean (list(float)): Mean values for normalizing pixels in the input image. + pixel_std (list(float)): Std values for normalizing pixels in the input image. + """ + if pixel_mean is None: + pixel_mean = [123.675, 116.28, 103.53] + if pixel_std is None: + pixel_std = [58.395, 57.12, 57.375] + super().__init__() + self.image_encoder = image_encoder + self.prompt_encoder = prompt_encoder + self.mask_decoder = mask_decoder + self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(-1, 1, 1), False) + self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(-1, 1, 1), False) + + @property + def device(self) -> Any: + return self.pixel_mean.device + + @torch.no_grad() + def forward( + self, + batched_input: List[Dict[str, Any]], + multimask_output: bool, + ) -> List[Dict[str, torch.Tensor]]: + """ + Predicts masks end-to-end from provided images and prompts. + If prompts are not known in advance, using SamPredictor is + recommended over calling the model directly. + + Arguments: + batched_input (list(dict)): A list over input images, each a + dictionary with the following keys. A prompt key can be + excluded if it is not present. + 'image': The image as a torch tensor in 3xHxW format, + already transformed for input to the model. + 'original_size': (tuple(int, int)) The original size of + the image before transformation, as (H, W). + 'point_coords': (torch.Tensor) Batched point prompts for + this image, with shape BxNx2. Already transformed to the + input frame of the model. + 'point_labels': (torch.Tensor) Batched labels for point prompts, + with shape BxN. + 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. + Already transformed to the input frame of the model. + 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, + in the form Bx1xHxW. + multimask_output (bool): Whether the model should predict multiple + disambiguating masks, or return a single mask. + + Returns: + (list(dict)): A list over input images, where each element is + as dictionary with the following keys. + 'masks': (torch.Tensor) Batched binary mask predictions, + with shape BxCxHxW, where B is the number of input prompts, + C is determined by multimask_output, and (H, W) is the + original size of the image. + 'iou_predictions': (torch.Tensor) The model's predictions + of mask quality, in shape BxC. + 'low_res_logits': (torch.Tensor) Low resolution logits with + shape BxCxHxW, where H=W=256. Can be passed as mask input + to subsequent iterations of prediction. + """ + input_images = torch.stack([self.preprocess(x['image']) for x in batched_input], dim=0) + image_embeddings = self.image_encoder(input_images) + + outputs = [] + for image_record, curr_embedding in zip(batched_input, image_embeddings): + if 'point_coords' in image_record: + points = (image_record['point_coords'], image_record['point_labels']) + else: + points = None + sparse_embeddings, dense_embeddings = self.prompt_encoder( + points=points, + boxes=image_record.get('boxes', None), + masks=image_record.get('mask_inputs', None), + ) + low_res_masks, iou_predictions = self.mask_decoder( + image_embeddings=curr_embedding.unsqueeze(0), + image_pe=self.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + ) + masks = self.postprocess_masks( + low_res_masks, + input_size=image_record['image'].shape[-2:], + original_size=image_record['original_size'], + ) + masks = masks > self.mask_threshold + outputs.append({ + 'masks': masks, + 'iou_predictions': iou_predictions, + 'low_res_logits': low_res_masks, }) + return outputs + + def postprocess_masks( + self, + masks: torch.Tensor, + input_size: Tuple[int, ...], + original_size: Tuple[int, ...], + ) -> torch.Tensor: + """ + Remove padding and upscale masks to the original image size. + + Arguments: + masks (torch.Tensor): Batched masks from the mask_decoder, + in BxCxHxW format. + input_size (tuple(int, int)): The size of the image input to the + model, in (H, W) format. Used to remove padding. + original_size (tuple(int, int)): The original size of the image + before resizing for input to the model, in (H, W) format. + + Returns: + (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) + is given by original_size. + """ + masks = F.interpolate( + masks, + (self.image_encoder.img_size, self.image_encoder.img_size), + mode='bilinear', + align_corners=False, + ) + masks = masks[..., :input_size[0], :input_size[1]] + masks = F.interpolate(masks, original_size, mode='bilinear', align_corners=False) + return masks + + def preprocess(self, x: torch.Tensor) -> torch.Tensor: + """Normalize pixel values and pad to a square input.""" + # Normalize colors + x = (x - self.pixel_mean) / self.pixel_std + + # Pad + h, w = x.shape[-2:] + padh = self.image_encoder.img_size - h + padw = self.image_encoder.img_size - w + return F.pad(x, (0, padw, 0, padh)) diff --git a/modules/ultralytics/vit/sam/modules/transformer.py b/modules/ultralytics/vit/sam/modules/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..d5275bf9836410f41c89e20c3cb07003c486d727 --- /dev/null +++ b/modules/ultralytics/vit/sam/modules/transformer.py @@ -0,0 +1,235 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import math +from typing import Tuple, Type + +import torch +from torch import Tensor, nn + +from ultralytics.nn.modules import MLPBlock + + +class TwoWayTransformer(nn.Module): + + def __init__( + self, + depth: int, + embedding_dim: int, + num_heads: int, + mlp_dim: int, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + ) -> None: + """ + A transformer decoder that attends to an input image using + queries whose positional embedding is supplied. + + Args: + depth (int): number of layers in the transformer + embedding_dim (int): the channel dimension for the input embeddings + num_heads (int): the number of heads for multihead attention. Must + divide embedding_dim + mlp_dim (int): the channel dimension internal to the MLP block + activation (nn.Module): the activation to use in the MLP block + """ + super().__init__() + self.depth = depth + self.embedding_dim = embedding_dim + self.num_heads = num_heads + self.mlp_dim = mlp_dim + self.layers = nn.ModuleList() + + for i in range(depth): + self.layers.append( + TwoWayAttentionBlock( + embedding_dim=embedding_dim, + num_heads=num_heads, + mlp_dim=mlp_dim, + activation=activation, + attention_downsample_rate=attention_downsample_rate, + skip_first_layer_pe=(i == 0), + )) + + self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) + self.norm_final_attn = nn.LayerNorm(embedding_dim) + + def forward( + self, + image_embedding: Tensor, + image_pe: Tensor, + point_embedding: Tensor, + ) -> Tuple[Tensor, Tensor]: + """ + Args: + image_embedding (torch.Tensor): image to attend to. Should be shape + B x embedding_dim x h x w for any h and w. + image_pe (torch.Tensor): the positional encoding to add to the image. Must + have the same shape as image_embedding. + point_embedding (torch.Tensor): the embedding to add to the query points. + Must have shape B x N_points x embedding_dim for any N_points. + + Returns: + torch.Tensor: the processed point_embedding + torch.Tensor: the processed image_embedding + """ + # BxCxHxW -> BxHWxC == B x N_image_tokens x C + bs, c, h, w = image_embedding.shape + image_embedding = image_embedding.flatten(2).permute(0, 2, 1) + image_pe = image_pe.flatten(2).permute(0, 2, 1) + + # Prepare queries + queries = point_embedding + keys = image_embedding + + # Apply transformer blocks and final layernorm + for layer in self.layers: + queries, keys = layer( + queries=queries, + keys=keys, + query_pe=point_embedding, + key_pe=image_pe, + ) + + # Apply the final attention layer from the points to the image + q = queries + point_embedding + k = keys + image_pe + attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm_final_attn(queries) + + return queries, keys + + +class TwoWayAttentionBlock(nn.Module): + + def __init__( + self, + embedding_dim: int, + num_heads: int, + mlp_dim: int = 2048, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + skip_first_layer_pe: bool = False, + ) -> None: + """ + A transformer block with four layers: (1) self-attention of sparse + inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp + block on sparse inputs, and (4) cross attention of dense inputs to sparse + inputs. + + Arguments: + embedding_dim (int): the channel dimension of the embeddings + num_heads (int): the number of heads in the attention layers + mlp_dim (int): the hidden dimension of the mlp block + activation (nn.Module): the activation of the mlp block + skip_first_layer_pe (bool): skip the PE on the first layer + """ + super().__init__() + self.self_attn = Attention(embedding_dim, num_heads) + self.norm1 = nn.LayerNorm(embedding_dim) + + self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) + self.norm2 = nn.LayerNorm(embedding_dim) + + self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) + self.norm3 = nn.LayerNorm(embedding_dim) + + self.norm4 = nn.LayerNorm(embedding_dim) + self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) + + self.skip_first_layer_pe = skip_first_layer_pe + + def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]: + """Apply self-attention and cross-attention to queries and keys and return the processed embeddings.""" + + # Self attention block + if self.skip_first_layer_pe: + queries = self.self_attn(q=queries, k=queries, v=queries) + else: + q = queries + query_pe + attn_out = self.self_attn(q=q, k=q, v=queries) + queries = queries + attn_out + queries = self.norm1(queries) + + # Cross attention block, tokens attending to image embedding + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm2(queries) + + # MLP block + mlp_out = self.mlp(queries) + queries = queries + mlp_out + queries = self.norm3(queries) + + # Cross attention block, image embedding attending to tokens + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) + keys = keys + attn_out + keys = self.norm4(keys) + + return queries, keys + + +class Attention(nn.Module): + """ + An attention layer that allows for downscaling the size of the embedding + after projection to queries, keys, and values. + """ + + def __init__( + self, + embedding_dim: int, + num_heads: int, + downsample_rate: int = 1, + ) -> None: + super().__init__() + self.embedding_dim = embedding_dim + self.internal_dim = embedding_dim // downsample_rate + self.num_heads = num_heads + assert self.internal_dim % num_heads == 0, 'num_heads must divide embedding_dim.' + + self.q_proj = nn.Linear(embedding_dim, self.internal_dim) + self.k_proj = nn.Linear(embedding_dim, self.internal_dim) + self.v_proj = nn.Linear(embedding_dim, self.internal_dim) + self.out_proj = nn.Linear(self.internal_dim, embedding_dim) + + def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: + """Separate the input tensor into the specified number of attention heads.""" + b, n, c = x.shape + x = x.reshape(b, n, num_heads, c // num_heads) + return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head + + def _recombine_heads(self, x: Tensor) -> Tensor: + """Recombine the separated attention heads into a single tensor.""" + b, n_heads, n_tokens, c_per_head = x.shape + x = x.transpose(1, 2) + return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C + + def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: + """Compute the attention output given the input query, key, and value tensors.""" + + # Input projections + q = self.q_proj(q) + k = self.k_proj(k) + v = self.v_proj(v) + + # Separate into heads + q = self._separate_heads(q, self.num_heads) + k = self._separate_heads(k, self.num_heads) + v = self._separate_heads(v, self.num_heads) + + # Attention + _, _, _, c_per_head = q.shape + attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens + attn = attn / math.sqrt(c_per_head) + attn = torch.softmax(attn, dim=-1) + + # Get output + out = attn @ v + out = self._recombine_heads(out) + out = self.out_proj(out) + + return out diff --git a/modules/ultralytics/vit/sam/predict.py b/modules/ultralytics/vit/sam/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..063955de798f7dc43077ff3331b3c04bc3377e7a --- /dev/null +++ b/modules/ultralytics/vit/sam/predict.py @@ -0,0 +1,54 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import numpy as np +import torch + +from ultralytics.yolo.engine.predictor import BasePredictor +from ultralytics.yolo.engine.results import Results +from ultralytics.yolo.utils.torch_utils import select_device + +from .modules.mask_generator import SamAutomaticMaskGenerator + + +class Predictor(BasePredictor): + + def preprocess(self, im): + """Prepares input image for inference.""" + # TODO: Only support bs=1 for now + # im = ResizeLongestSide(1024).apply_image(im[0]) + # im = torch.as_tensor(im, device=self.device) + # im = im.permute(2, 0, 1).contiguous()[None, :, :, :] + return im[0] + + def setup_model(self, model): + """Set up YOLO model with specified thresholds and device.""" + device = select_device(self.args.device) + model.eval() + self.model = SamAutomaticMaskGenerator(model.to(device), + pred_iou_thresh=self.args.conf, + box_nms_thresh=self.args.iou) + self.device = device + # TODO: Temporary settings for compatibility + self.model.pt = False + self.model.triton = False + self.model.stride = 32 + self.model.fp16 = False + self.done_warmup = True + + def postprocess(self, preds, path, orig_imgs): + """Postprocesses inference output predictions to create detection masks for objects.""" + names = dict(enumerate(list(range(len(preds))))) + results = [] + # TODO + for i, pred in enumerate([preds]): + masks = torch.from_numpy(np.stack([p['segmentation'] for p in pred], axis=0)) + orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs + path = self.batch[0] + img_path = path[i] if isinstance(path, list) else path + results.append(Results(orig_img=orig_img, path=img_path, names=names, masks=masks)) + return results + + # def __call__(self, source=None, model=None, stream=False): + # frame = cv2.imread(source) + # preds = self.model.generate(frame) + # return self.postprocess(preds, source, frame) diff --git a/modules/ultralytics/vit/utils/__init__.py b/modules/ultralytics/vit/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9e68dc12245afb4f72ba5f7c1227df74613a427d --- /dev/null +++ b/modules/ultralytics/vit/utils/__init__.py @@ -0,0 +1 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license diff --git a/modules/ultralytics/vit/utils/loss.py b/modules/ultralytics/vit/utils/loss.py new file mode 100644 index 0000000000000000000000000000000000000000..6ba24c2de43389fad0f009d42b064e43efa6b449 --- /dev/null +++ b/modules/ultralytics/vit/utils/loss.py @@ -0,0 +1,294 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ultralytics.vit.utils.ops import HungarianMatcher +from ultralytics.yolo.utils.loss import FocalLoss, VarifocalLoss +from ultralytics.yolo.utils.metrics import bbox_iou + + +class DETRLoss(nn.Module): + + def __init__(self, + nc=80, + loss_gain=None, + aux_loss=True, + use_fl=True, + use_vfl=False, + use_uni_match=False, + uni_match_ind=0): + """ + DETR loss function. + + Args: + nc (int): The number of classes. + loss_gain (dict): The coefficient of loss. + aux_loss (bool): If 'aux_loss = True', loss at each decoder layer are to be used. + use_vfl (bool): Use VarifocalLoss or not. + use_uni_match (bool): Whether to use a fixed layer to assign labels for auxiliary branch. + uni_match_ind (int): The fixed indices of a layer. + """ + super().__init__() + + if loss_gain is None: + loss_gain = {'class': 1, 'bbox': 5, 'giou': 2, 'no_object': 0.1, 'mask': 1, 'dice': 1} + self.nc = nc + self.matcher = HungarianMatcher(cost_gain={'class': 2, 'bbox': 5, 'giou': 2}) + self.loss_gain = loss_gain + self.aux_loss = aux_loss + self.fl = FocalLoss() if use_fl else None + self.vfl = VarifocalLoss() if use_vfl else None + + self.use_uni_match = use_uni_match + self.uni_match_ind = uni_match_ind + self.device = None + + def _get_loss_class(self, pred_scores, targets, gt_scores, num_gts, postfix=''): + # logits: [b, query, num_classes], gt_class: list[[n, 1]] + name_class = f'loss_class{postfix}' + bs, nq = pred_scores.shape[:2] + # one_hot = F.one_hot(targets, self.nc + 1)[..., :-1] # (bs, num_queries, num_classes) + one_hot = torch.zeros((bs, nq, self.nc + 1), dtype=torch.int64, device=targets.device) + one_hot.scatter_(2, targets.unsqueeze(-1), 1) + one_hot = one_hot[..., :-1] + gt_scores = gt_scores.view(bs, nq, 1) * one_hot + + if self.fl: + if num_gts and self.vfl: + loss_cls = self.vfl(pred_scores, gt_scores, one_hot) + else: + loss_cls = self.fl(pred_scores, one_hot.float()) + loss_cls /= max(num_gts, 1) / nq + else: + loss_cls = nn.BCEWithLogitsLoss(reduction='none')(pred_scores, gt_scores).mean(1).sum() # YOLO CLS loss + + return {name_class: loss_cls.squeeze() * self.loss_gain['class']} + + def _get_loss_bbox(self, pred_bboxes, gt_bboxes, postfix=''): + # boxes: [b, query, 4], gt_bbox: list[[n, 4]] + name_bbox = f'loss_bbox{postfix}' + name_giou = f'loss_giou{postfix}' + + loss = {} + if len(gt_bboxes) == 0: + loss[name_bbox] = torch.tensor(0., device=self.device) + loss[name_giou] = torch.tensor(0., device=self.device) + return loss + + loss[name_bbox] = self.loss_gain['bbox'] * F.l1_loss(pred_bboxes, gt_bboxes, reduction='sum') / len(gt_bboxes) + loss[name_giou] = 1.0 - bbox_iou(pred_bboxes, gt_bboxes, xywh=True, GIoU=True) + loss[name_giou] = loss[name_giou].sum() / len(gt_bboxes) + loss[name_giou] = self.loss_gain['giou'] * loss[name_giou] + loss = {k: v.squeeze() for k, v in loss.items()} + return loss + + def _get_loss_mask(self, masks, gt_mask, match_indices, postfix=''): + # masks: [b, query, h, w], gt_mask: list[[n, H, W]] + name_mask = f'loss_mask{postfix}' + name_dice = f'loss_dice{postfix}' + + loss = {} + if sum(len(a) for a in gt_mask) == 0: + loss[name_mask] = torch.tensor(0., device=self.device) + loss[name_dice] = torch.tensor(0., device=self.device) + return loss + + num_gts = len(gt_mask) + src_masks, target_masks = self._get_assigned_bboxes(masks, gt_mask, match_indices) + src_masks = F.interpolate(src_masks.unsqueeze(0), size=target_masks.shape[-2:], mode='bilinear')[0] + # TODO: torch does not have `sigmoid_focal_loss`, but it's not urgent since we don't use mask branch for now. + loss[name_mask] = self.loss_gain['mask'] * F.sigmoid_focal_loss(src_masks, target_masks, + torch.tensor([num_gts], dtype=torch.float32)) + loss[name_dice] = self.loss_gain['dice'] * self._dice_loss(src_masks, target_masks, num_gts) + return loss + + def _dice_loss(self, inputs, targets, num_gts): + inputs = F.sigmoid(inputs) + inputs = inputs.flatten(1) + targets = targets.flatten(1) + numerator = 2 * (inputs * targets).sum(1) + denominator = inputs.sum(-1) + targets.sum(-1) + loss = 1 - (numerator + 1) / (denominator + 1) + return loss.sum() / num_gts + + def _get_loss_aux(self, + pred_bboxes, + pred_scores, + gt_bboxes, + gt_cls, + gt_groups, + match_indices=None, + postfix='', + masks=None, + gt_mask=None): + """Get auxiliary losses""" + # NOTE: loss class, bbox, giou, mask, dice + loss = torch.zeros(5 if masks is not None else 3, device=pred_bboxes.device) + if match_indices is None and self.use_uni_match: + match_indices = self.matcher(pred_bboxes[self.uni_match_ind], + pred_scores[self.uni_match_ind], + gt_bboxes, + gt_cls, + gt_groups, + masks=masks[self.uni_match_ind] if masks is not None else None, + gt_mask=gt_mask) + for i, (aux_bboxes, aux_scores) in enumerate(zip(pred_bboxes, pred_scores)): + aux_masks = masks[i] if masks is not None else None + loss_ = self._get_loss(aux_bboxes, + aux_scores, + gt_bboxes, + gt_cls, + gt_groups, + masks=aux_masks, + gt_mask=gt_mask, + postfix=postfix, + match_indices=match_indices) + loss[0] += loss_[f'loss_class{postfix}'] + loss[1] += loss_[f'loss_bbox{postfix}'] + loss[2] += loss_[f'loss_giou{postfix}'] + # if masks is not None and gt_mask is not None: + # loss_ = self._get_loss_mask(aux_masks, gt_mask, match_indices, postfix) + # loss[3] += loss_[f'loss_mask{postfix}'] + # loss[4] += loss_[f'loss_dice{postfix}'] + + loss = { + f'loss_class_aux{postfix}': loss[0], + f'loss_bbox_aux{postfix}': loss[1], + f'loss_giou_aux{postfix}': loss[2]} + # if masks is not None and gt_mask is not None: + # loss[f'loss_mask_aux{postfix}'] = loss[3] + # loss[f'loss_dice_aux{postfix}'] = loss[4] + return loss + + def _get_index(self, match_indices): + batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(match_indices)]) + src_idx = torch.cat([src for (src, _) in match_indices]) + dst_idx = torch.cat([dst for (_, dst) in match_indices]) + return (batch_idx, src_idx), dst_idx + + def _get_assigned_bboxes(self, pred_bboxes, gt_bboxes, match_indices): + pred_assigned = torch.cat([ + t[I] if len(I) > 0 else torch.zeros(0, t.shape[-1], device=self.device) + for t, (I, _) in zip(pred_bboxes, match_indices)]) + gt_assigned = torch.cat([ + t[J] if len(J) > 0 else torch.zeros(0, t.shape[-1], device=self.device) + for t, (_, J) in zip(gt_bboxes, match_indices)]) + return pred_assigned, gt_assigned + + def _get_loss(self, + pred_bboxes, + pred_scores, + gt_bboxes, + gt_cls, + gt_groups, + masks=None, + gt_mask=None, + postfix='', + match_indices=None): + """Get losses""" + if match_indices is None: + match_indices = self.matcher(pred_bboxes, + pred_scores, + gt_bboxes, + gt_cls, + gt_groups, + masks=masks, + gt_mask=gt_mask) + + idx, gt_idx = self._get_index(match_indices) + pred_bboxes, gt_bboxes = pred_bboxes[idx], gt_bboxes[gt_idx] + + bs, nq = pred_scores.shape[:2] + targets = torch.full((bs, nq), self.nc, device=pred_scores.device, dtype=gt_cls.dtype) + targets[idx] = gt_cls[gt_idx] + + gt_scores = torch.zeros([bs, nq], device=pred_scores.device) + if len(gt_bboxes): + gt_scores[idx] = bbox_iou(pred_bboxes.detach(), gt_bboxes, xywh=True).squeeze(-1) + + loss = {} + loss.update(self._get_loss_class(pred_scores, targets, gt_scores, len(gt_bboxes), postfix)) + loss.update(self._get_loss_bbox(pred_bboxes, gt_bboxes, postfix)) + # if masks is not None and gt_mask is not None: + # loss.update(self._get_loss_mask(masks, gt_mask, match_indices, postfix)) + return loss + + def forward(self, pred_bboxes, pred_scores, batch, postfix='', **kwargs): + """ + Args: + pred_bboxes (torch.Tensor): [l, b, query, 4] + pred_scores (torch.Tensor): [l, b, query, num_classes] + batch (dict): A dict includes: + gt_cls (torch.Tensor) with shape [num_gts, ], + gt_bboxes (torch.Tensor): [num_gts, 4], + gt_groups (List(int)): a list of batch size length includes the number of gts of each image. + postfix (str): postfix of loss name. + """ + self.device = pred_bboxes.device + match_indices = kwargs.get('match_indices', None) + gt_cls, gt_bboxes, gt_groups = batch['cls'], batch['bboxes'], batch['gt_groups'] + + total_loss = self._get_loss(pred_bboxes[-1], + pred_scores[-1], + gt_bboxes, + gt_cls, + gt_groups, + postfix=postfix, + match_indices=match_indices) + + if self.aux_loss: + total_loss.update( + self._get_loss_aux(pred_bboxes[:-1], pred_scores[:-1], gt_bboxes, gt_cls, gt_groups, match_indices, + postfix)) + + return total_loss + + +class RTDETRDetectionLoss(DETRLoss): + + def forward(self, preds, batch, dn_bboxes=None, dn_scores=None, dn_meta=None): + pred_bboxes, pred_scores = preds + total_loss = super().forward(pred_bboxes, pred_scores, batch) + + if dn_meta is not None: + dn_pos_idx, dn_num_group = dn_meta['dn_pos_idx'], dn_meta['dn_num_group'] + assert len(batch['gt_groups']) == len(dn_pos_idx) + + # denoising match indices + match_indices = self.get_dn_match_indices(dn_pos_idx, dn_num_group, batch['gt_groups']) + + # compute denoising training loss + dn_loss = super().forward(dn_bboxes, dn_scores, batch, postfix='_dn', match_indices=match_indices) + total_loss.update(dn_loss) + else: + total_loss.update({f'{k}_dn': torch.tensor(0., device=self.device) for k in total_loss.keys()}) + + return total_loss + + @staticmethod + def get_dn_match_indices(dn_pos_idx, dn_num_group, gt_groups): + """Get the match indices for denoising. + + Args: + dn_pos_idx (List[torch.Tensor]): A list includes positive indices of denoising. + dn_num_group (int): The number of groups of denoising. + gt_groups (List(int)): a list of batch size length includes the number of gts of each image. + + Returns: + dn_match_indices (List(tuple)): Matched indices. + + """ + dn_match_indices = [] + idx_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0) + for i, num_gt in enumerate(gt_groups): + if num_gt > 0: + gt_idx = torch.arange(end=num_gt, dtype=torch.int32) + idx_groups[i] + gt_idx = gt_idx.repeat(dn_num_group) + assert len(dn_pos_idx[i]) == len(gt_idx), 'Expected the same length, ' + f'but got {len(dn_pos_idx[i])} and {len(gt_idx)} respectively.' + dn_match_indices.append((dn_pos_idx[i], gt_idx)) + else: + dn_match_indices.append((torch.zeros([0], dtype=torch.int32), torch.zeros([0], dtype=torch.int32))) + return dn_match_indices diff --git a/modules/ultralytics/vit/utils/ops.py b/modules/ultralytics/vit/utils/ops.py new file mode 100644 index 0000000000000000000000000000000000000000..e8978a5ad51eef0c6bd4c2334fbd43070ed4adab --- /dev/null +++ b/modules/ultralytics/vit/utils/ops.py @@ -0,0 +1,260 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch +import torch.nn as nn +import torch.nn.functional as F +from scipy.optimize import linear_sum_assignment + +from ultralytics.yolo.utils.metrics import bbox_iou +from ultralytics.yolo.utils.ops import xywh2xyxy, xyxy2xywh + + +class HungarianMatcher(nn.Module): + """ + A module implementing the HungarianMatcher, which is a differentiable module to solve the assignment problem in + an end-to-end fashion. + + HungarianMatcher performs optimal assignment over predicted and ground truth bounding boxes using a cost function + that considers classification scores, bounding box coordinates, and optionally, mask predictions. + + Attributes: + cost_gain (dict): Dictionary of cost coefficients for different components: 'class', 'bbox', 'giou', 'mask', and 'dice'. + use_fl (bool): Indicates whether to use Focal Loss for the classification cost calculation. + with_mask (bool): Indicates whether the model makes mask predictions. + num_sample_points (int): The number of sample points used in mask cost calculation. + alpha (float): The alpha factor in Focal Loss calculation. + gamma (float): The gamma factor in Focal Loss calculation. + + Methods: + forward(pred_bboxes, pred_scores, gt_bboxes, gt_cls, gt_groups, masks=None, gt_mask=None): Computes the assignment + between predictions and ground truths for a batch. + _cost_mask(bs, num_gts, masks=None, gt_mask=None): Computes the mask cost and dice cost if masks are predicted. + """ + + def __init__(self, cost_gain=None, use_fl=True, with_mask=False, num_sample_points=12544, alpha=0.25, gamma=2.0): + super().__init__() + if cost_gain is None: + cost_gain = {'class': 1, 'bbox': 5, 'giou': 2, 'mask': 1, 'dice': 1} + self.cost_gain = cost_gain + self.use_fl = use_fl + self.with_mask = with_mask + self.num_sample_points = num_sample_points + self.alpha = alpha + self.gamma = gamma + + def forward(self, pred_bboxes, pred_scores, gt_bboxes, gt_cls, gt_groups, masks=None, gt_mask=None): + """ + Forward pass for HungarianMatcher. This function computes costs based on prediction and ground truth + (classification cost, L1 cost between boxes and GIoU cost between boxes) and finds the optimal matching + between predictions and ground truth based on these costs. + + Args: + pred_bboxes (Tensor): Predicted bounding boxes with shape [batch_size, num_queries, 4]. + pred_scores (Tensor): Predicted scores with shape [batch_size, num_queries, num_classes]. + gt_cls (torch.Tensor): Ground truth classes with shape [num_gts, ]. + gt_bboxes (torch.Tensor): Ground truth bounding boxes with shape [num_gts, 4]. + gt_groups (List[int]): List of length equal to batch size, containing the number of ground truths for + each image. + masks (Tensor, optional): Predicted masks with shape [batch_size, num_queries, height, width]. + Defaults to None. + gt_mask (List[Tensor], optional): List of ground truth masks, each with shape [num_masks, Height, Width]. + Defaults to None. + + Returns: + (List[Tuple[Tensor, Tensor]]): A list of size batch_size, each element is a tuple (index_i, index_j), where: + - index_i is the tensor of indices of the selected predictions (in order) + - index_j is the tensor of indices of the corresponding selected ground truth targets (in order) + For each batch element, it holds: + len(index_i) = len(index_j) = min(num_queries, num_target_boxes) + """ + + bs, nq, nc = pred_scores.shape + + if sum(gt_groups) == 0: + return [(torch.tensor([], dtype=torch.int32), torch.tensor([], dtype=torch.int32)) for _ in range(bs)] + + # We flatten to compute the cost matrices in a batch + # [batch_size * num_queries, num_classes] + pred_scores = pred_scores.detach().view(-1, nc) + pred_scores = F.sigmoid(pred_scores) if self.use_fl else F.softmax(pred_scores, dim=-1) + # [batch_size * num_queries, 4] + pred_bboxes = pred_bboxes.detach().view(-1, 4) + + # Compute the classification cost + pred_scores = pred_scores[:, gt_cls] + if self.use_fl: + neg_cost_class = (1 - self.alpha) * (pred_scores ** self.gamma) * (-(1 - pred_scores + 1e-8).log()) + pos_cost_class = self.alpha * ((1 - pred_scores) ** self.gamma) * (-(pred_scores + 1e-8).log()) + cost_class = pos_cost_class - neg_cost_class + else: + cost_class = -pred_scores + + # Compute the L1 cost between boxes + cost_bbox = (pred_bboxes.unsqueeze(1) - gt_bboxes.unsqueeze(0)).abs().sum(-1) # (bs*num_queries, num_gt) + + # Compute the GIoU cost between boxes, (bs*num_queries, num_gt) + cost_giou = 1.0 - bbox_iou(pred_bboxes.unsqueeze(1), gt_bboxes.unsqueeze(0), xywh=True, GIoU=True).squeeze(-1) + + # Final cost matrix + C = self.cost_gain['class'] * cost_class + \ + self.cost_gain['bbox'] * cost_bbox + \ + self.cost_gain['giou'] * cost_giou + # Compute the mask cost and dice cost + if self.with_mask: + C += self._cost_mask(bs, gt_groups, masks, gt_mask) + + C = C.view(bs, nq, -1).cpu() + indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(gt_groups, -1))] + gt_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0) + # (idx for queries, idx for gt) + return [(torch.tensor(i, dtype=torch.int32), torch.tensor(j, dtype=torch.int32) + gt_groups[k]) + for k, (i, j) in enumerate(indices)] + + def _cost_mask(self, bs, num_gts, masks=None, gt_mask=None): + assert masks is not None and gt_mask is not None, 'Make sure the input has `mask` and `gt_mask`' + # all masks share the same set of points for efficient matching + sample_points = torch.rand([bs, 1, self.num_sample_points, 2]) + sample_points = 2.0 * sample_points - 1.0 + + out_mask = F.grid_sample(masks.detach(), sample_points, align_corners=False).squeeze(-2) + out_mask = out_mask.flatten(0, 1) + + tgt_mask = torch.cat(gt_mask).unsqueeze(1) + sample_points = torch.cat([a.repeat(b, 1, 1, 1) for a, b in zip(sample_points, num_gts) if b > 0]) + tgt_mask = F.grid_sample(tgt_mask, sample_points, align_corners=False).squeeze([1, 2]) + + with torch.cuda.amp.autocast(False): + # binary cross entropy cost + pos_cost_mask = F.binary_cross_entropy_with_logits(out_mask, torch.ones_like(out_mask), reduction='none') + neg_cost_mask = F.binary_cross_entropy_with_logits(out_mask, torch.zeros_like(out_mask), reduction='none') + cost_mask = torch.matmul(pos_cost_mask, tgt_mask.T) + torch.matmul(neg_cost_mask, 1 - tgt_mask.T) + cost_mask /= self.num_sample_points + + # dice cost + out_mask = F.sigmoid(out_mask) + numerator = 2 * torch.matmul(out_mask, tgt_mask.T) + denominator = out_mask.sum(-1, keepdim=True) + tgt_mask.sum(-1).unsqueeze(0) + cost_dice = 1 - (numerator + 1) / (denominator + 1) + + C = self.cost_gain['mask'] * cost_mask + self.cost_gain['dice'] * cost_dice + return C + + +def get_cdn_group(batch, + num_classes, + num_queries, + class_embed, + num_dn=100, + cls_noise_ratio=0.5, + box_noise_scale=1.0, + training=False): + """ + Get contrastive denoising training group. This function creates a contrastive denoising training group with + positive and negative samples from the ground truths (gt). It applies noise to the class labels and bounding + box coordinates, and returns the modified labels, bounding boxes, attention mask and meta information. + + Args: + batch (dict): A dict that includes 'gt_cls' (torch.Tensor with shape [num_gts, ]), 'gt_bboxes' + (torch.Tensor with shape [num_gts, 4]), 'gt_groups' (List(int)) which is a list of batch size length + indicating the number of gts of each image. + num_classes (int): Number of classes. + num_queries (int): Number of queries. + class_embed (torch.Tensor): Embedding weights to map class labels to embedding space. + num_dn (int, optional): Number of denoising. Defaults to 100. + cls_noise_ratio (float, optional): Noise ratio for class labels. Defaults to 0.5. + box_noise_scale (float, optional): Noise scale for bounding box coordinates. Defaults to 1.0. + training (bool, optional): If it's in training mode. Defaults to False. + + Returns: + (Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Dict]]): The modified class embeddings, + bounding boxes, attention mask and meta information for denoising. If not in training mode or 'num_dn' + is less than or equal to 0, the function returns None for all elements in the tuple. + """ + + if (not training) or num_dn <= 0: + return None, None, None, None + gt_groups = batch['gt_groups'] + total_num = sum(gt_groups) + max_nums = max(gt_groups) + if max_nums == 0: + return None, None, None, None + + num_group = num_dn // max_nums + num_group = 1 if num_group == 0 else num_group + # pad gt to max_num of a batch + bs = len(gt_groups) + gt_cls = batch['cls'] # (bs*num, ) + gt_bbox = batch['bboxes'] # bs*num, 4 + b_idx = batch['batch_idx'] + + # each group has positive and negative queries. + dn_cls = gt_cls.repeat(2 * num_group) # (2*num_group*bs*num, ) + dn_bbox = gt_bbox.repeat(2 * num_group, 1) # 2*num_group*bs*num, 4 + dn_b_idx = b_idx.repeat(2 * num_group).view(-1) # (2*num_group*bs*num, ) + + # positive and negative mask + # (bs*num*num_group, ), the second total_num*num_group part as negative samples + neg_idx = torch.arange(total_num * num_group, dtype=torch.long, device=gt_bbox.device) + num_group * total_num + + if cls_noise_ratio > 0: + # half of bbox prob + mask = torch.rand(dn_cls.shape) < (cls_noise_ratio * 0.5) + idx = torch.nonzero(mask).squeeze(-1) + # randomly put a new one here + new_label = torch.randint_like(idx, 0, num_classes, dtype=dn_cls.dtype, device=dn_cls.device) + dn_cls[idx] = new_label + + if box_noise_scale > 0: + known_bbox = xywh2xyxy(dn_bbox) + + diff = (dn_bbox[..., 2:] * 0.5).repeat(1, 2) * box_noise_scale # 2*num_group*bs*num, 4 + + rand_sign = torch.randint_like(dn_bbox, 0, 2) * 2.0 - 1.0 + rand_part = torch.rand_like(dn_bbox) + rand_part[neg_idx] += 1.0 + rand_part *= rand_sign + known_bbox += rand_part * diff + known_bbox.clip_(min=0.0, max=1.0) + dn_bbox = xyxy2xywh(known_bbox) + dn_bbox = inverse_sigmoid(dn_bbox) + + # total denoising queries + num_dn = int(max_nums * 2 * num_group) + # class_embed = torch.cat([class_embed, torch.zeros([1, class_embed.shape[-1]], device=class_embed.device)]) + dn_cls_embed = class_embed[dn_cls] # bs*num * 2 * num_group, 256 + padding_cls = torch.zeros(bs, num_dn, dn_cls_embed.shape[-1], device=gt_cls.device) + padding_bbox = torch.zeros(bs, num_dn, 4, device=gt_bbox.device) + + map_indices = torch.cat([torch.tensor(range(num), dtype=torch.long) for num in gt_groups]) + pos_idx = torch.stack([map_indices + max_nums * i for i in range(num_group)], dim=0) + + map_indices = torch.cat([map_indices + max_nums * i for i in range(2 * num_group)]) + padding_cls[(dn_b_idx, map_indices)] = dn_cls_embed + padding_bbox[(dn_b_idx, map_indices)] = dn_bbox + + tgt_size = num_dn + num_queries + attn_mask = torch.zeros([tgt_size, tgt_size], dtype=torch.bool) + # match query cannot see the reconstruct + attn_mask[num_dn:, :num_dn] = True + # reconstruct cannot see each other + for i in range(num_group): + if i == 0: + attn_mask[max_nums * 2 * i:max_nums * 2 * (i + 1), max_nums * 2 * (i + 1):num_dn] = True + if i == num_group - 1: + attn_mask[max_nums * 2 * i:max_nums * 2 * (i + 1), :max_nums * i * 2] = True + else: + attn_mask[max_nums * 2 * i:max_nums * 2 * (i + 1), max_nums * 2 * (i + 1):num_dn] = True + attn_mask[max_nums * 2 * i:max_nums * 2 * (i + 1), :max_nums * 2 * i] = True + dn_meta = { + 'dn_pos_idx': [p.reshape(-1) for p in pos_idx.cpu().split(list(gt_groups), dim=1)], + 'dn_num_group': num_group, + 'dn_num_split': [num_dn, num_queries]} + + return padding_cls.to(class_embed.device), padding_bbox.to(class_embed.device), attn_mask.to( + class_embed.device), dn_meta + + +def inverse_sigmoid(x, eps=1e-6): + """Inverse sigmoid function.""" + x = x.clip(min=0., max=1.) + return torch.log(x / (1 - x + eps) + eps) diff --git a/modules/ultralytics/yolo/__init__.py b/modules/ultralytics/yolo/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d1fa55845814759a36b040edb2cfcd930d2229f3 --- /dev/null +++ b/modules/ultralytics/yolo/__init__.py @@ -0,0 +1,5 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from . import v8 + +__all__ = 'v8', # tuple or list diff --git a/modules/ultralytics/yolo/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5a05d76b733a89ff90a06020e360375169305e09 Binary files /dev/null and b/modules/ultralytics/yolo/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/cfg/__init__.py b/modules/ultralytics/yolo/cfg/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..746e458ec585de70f538cc6081881ac5c1da91e9 --- /dev/null +++ b/modules/ultralytics/yolo/cfg/__init__.py @@ -0,0 +1,419 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import contextlib +import re +import shutil +import sys +from difflib import get_close_matches +from pathlib import Path +from types import SimpleNamespace +from typing import Dict, List, Union + +from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_PATH, LOGGER, ROOT, USER_CONFIG_DIR, + IterableSimpleNamespace, __version__, checks, colorstr, deprecation_warn, + get_settings, yaml_load, yaml_print) + +# Define valid tasks and modes +MODES = 'train', 'val', 'predict', 'export', 'track', 'benchmark' +TASKS = 'detect', 'segment', 'classify', 'pose' +TASK2DATA = { + 'detect': 'coco128.yaml', + 'segment': 'coco128-seg.yaml', + 'classify': 'imagenet100', + 'pose': 'coco8-pose.yaml'} +TASK2MODEL = { + 'detect': 'yolov8n.pt', + 'segment': 'yolov8n-seg.pt', + 'classify': 'yolov8n-cls.pt', + 'pose': 'yolov8n-pose.pt'} + +CLI_HELP_MSG = \ + f""" + Arguments received: {str(['yolo'] + sys.argv[1:])}. Ultralytics 'yolo' commands use the following syntax: + + yolo TASK MODE ARGS + + Where TASK (optional) is one of {TASKS} + MODE (required) is one of {MODES} + ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. + See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg' + + 1. Train a detection model for 10 epochs with an initial learning_rate of 0.01 + yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 + + 2. Predict a YouTube video using a pretrained segmentation model at image size 320: + yolo predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320 + + 3. Val a pretrained detection model at batch-size 1 and image size 640: + yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 + + 4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) + yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 + + 5. Run special commands: + yolo help + yolo checks + yolo version + yolo settings + yolo copy-cfg + yolo cfg + + Docs: https://docs.ultralytics.com + Community: https://community.ultralytics.com + GitHub: https://github.com/ultralytics/ultralytics + """ + +# Define keys for arg type checks +CFG_FLOAT_KEYS = 'warmup_epochs', 'box', 'cls', 'dfl', 'degrees', 'shear' +CFG_FRACTION_KEYS = ('dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay', 'warmup_momentum', 'warmup_bias_lr', + 'label_smoothing', 'hsv_h', 'hsv_s', 'hsv_v', 'translate', 'scale', 'perspective', 'flipud', + 'fliplr', 'mosaic', 'mixup', 'copy_paste', 'conf', 'iou', 'fraction') # fraction floats 0.0 - 1.0 +CFG_INT_KEYS = ('epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic', 'mask_ratio', 'max_det', 'vid_stride', + 'line_width', 'workspace', 'nbs', 'save_period') +CFG_BOOL_KEYS = ('save', 'exist_ok', 'verbose', 'deterministic', 'single_cls', 'rect', 'cos_lr', 'overlap_mask', 'val', + 'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf', 'save_crop', + 'show_labels', 'show_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras', + 'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader', 'profile') + + +def cfg2dict(cfg): + """ + Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object. + + Args: + cfg (str | Path | SimpleNamespace): Configuration object to be converted to a dictionary. + + Returns: + cfg (dict): Configuration object in dictionary format. + """ + if isinstance(cfg, (str, Path)): + cfg = yaml_load(cfg) # load dict + elif isinstance(cfg, SimpleNamespace): + cfg = vars(cfg) # convert to dict + return cfg + + +def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None): + """ + Load and merge configuration data from a file or dictionary. + + Args: + cfg (str | Path | Dict | SimpleNamespace): Configuration data. + overrides (str | Dict | optional): Overrides in the form of a file name or a dictionary. Default is None. + + Returns: + (SimpleNamespace): Training arguments namespace. + """ + cfg = cfg2dict(cfg) + + # Merge overrides + if overrides: + overrides = cfg2dict(overrides) + check_cfg_mismatch(cfg, overrides) + cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides) + + # Special handling for numeric project/name + for k in 'project', 'name': + if k in cfg and isinstance(cfg[k], (int, float)): + cfg[k] = str(cfg[k]) + if cfg.get('name') == 'model': # assign model to 'name' arg + cfg['name'] = cfg.get('model', '').split('.')[0] + LOGGER.warning(f"WARNING ⚠️ 'name=model' automatically updated to 'name={cfg['name']}'.") + + # Type and Value checks + for k, v in cfg.items(): + if v is not None: # None values may be from optional args + if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)): + raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. " + f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')") + elif k in CFG_FRACTION_KEYS: + if not isinstance(v, (int, float)): + raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. " + f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')") + if not (0.0 <= v <= 1.0): + raise ValueError(f"'{k}={v}' is an invalid value. " + f"Valid '{k}' values are between 0.0 and 1.0.") + elif k in CFG_INT_KEYS and not isinstance(v, int): + raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. " + f"'{k}' must be an int (i.e. '{k}=8')") + elif k in CFG_BOOL_KEYS and not isinstance(v, bool): + raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. " + f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')") + + # Return instance + return IterableSimpleNamespace(**cfg) + + +def _handle_deprecation(custom): + """ + Hardcoded function to handle deprecated config keys + """ + + for key in custom.copy().keys(): + if key == 'hide_labels': + deprecation_warn(key, 'show_labels') + custom['show_labels'] = custom.pop('hide_labels') == 'False' + if key == 'hide_conf': + deprecation_warn(key, 'show_conf') + custom['show_conf'] = custom.pop('hide_conf') == 'False' + if key == 'line_thickness': + deprecation_warn(key, 'line_width') + custom['line_width'] = custom.pop('line_thickness') + + return custom + + +def check_cfg_mismatch(base: Dict, custom: Dict, e=None): + """ + This function checks for any mismatched keys between a custom configuration list and a base configuration list. + If any mismatched keys are found, the function prints out similar keys from the base list and exits the program. + + Args: + custom (Dict): a dictionary of custom configuration options + base (Dict): a dictionary of base configuration options + """ + custom = _handle_deprecation(custom) + base, custom = (set(x.keys()) for x in (base, custom)) + mismatched = [x for x in custom if x not in base] + if mismatched: + string = '' + for x in mismatched: + matches = get_close_matches(x, base) # key list + matches = [f'{k}={DEFAULT_CFG_DICT[k]}' if DEFAULT_CFG_DICT.get(k) is not None else k for k in matches] + match_str = f'Similar arguments are i.e. {matches}.' if matches else '' + string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n" + raise SyntaxError(string + CLI_HELP_MSG) from e + + +def merge_equals_args(args: List[str]) -> List[str]: + """ + Merges arguments around isolated '=' args in a list of strings. + The function considers cases where the first argument ends with '=' or the second starts with '=', + as well as when the middle one is an equals sign. + + Args: + args (List[str]): A list of strings where each element is an argument. + + Returns: + List[str]: A list of strings where the arguments around isolated '=' are merged. + """ + new_args = [] + for i, arg in enumerate(args): + if arg == '=' and 0 < i < len(args) - 1: # merge ['arg', '=', 'val'] + new_args[-1] += f'={args[i + 1]}' + del args[i + 1] + elif arg.endswith('=') and i < len(args) - 1 and '=' not in args[i + 1]: # merge ['arg=', 'val'] + new_args.append(f'{arg}{args[i + 1]}') + del args[i + 1] + elif arg.startswith('=') and i > 0: # merge ['arg', '=val'] + new_args[-1] += arg + else: + new_args.append(arg) + return new_args + + +def handle_yolo_hub(args: List[str]) -> None: + """ + Handle Ultralytics HUB command-line interface (CLI) commands. + + This function processes Ultralytics HUB CLI commands such as login and logout. + It should be called when executing a script with arguments related to HUB authentication. + + Args: + args (List[str]): A list of command line arguments + + Example: + python my_script.py hub login your_api_key + """ + from ultralytics import hub + + if args[0] == 'login': + key = args[1] if len(args) > 1 else '' + # Log in to Ultralytics HUB using the provided API key + hub.login(key) + elif args[0] == 'logout': + # Log out from Ultralytics HUB + hub.logout() + + +def handle_yolo_settings(args: List[str]) -> None: + """ + Handle YOLO settings command-line interface (CLI) commands. + + This function processes YOLO settings CLI commands such as reset. + It should be called when executing a script with arguments related to YOLO settings management. + + Args: + args (List[str]): A list of command line arguments for YOLO settings management. + + Example: + python my_script.py yolo settings reset + """ + path = USER_CONFIG_DIR / 'settings.yaml' # get SETTINGS YAML file path + if any(args) and args[0] == 'reset': + path.unlink() # delete the settings file + get_settings() # create new settings + LOGGER.info('Settings reset successfully') # inform the user that settings have been reset + yaml_print(path) # print the current settings + + +def entrypoint(debug=''): + """ + This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed + to the package. + + This function allows for: + - passing mandatory YOLO args as a list of strings + - specifying the task to be performed, either 'detect', 'segment' or 'classify' + - specifying the mode, either 'train', 'val', 'test', or 'predict' + - running special modes like 'checks' + - passing overrides to the package's configuration + + It uses the package's default cfg and initializes it using the passed overrides. + Then it calls the CLI function with the composed cfg + """ + args = (debug.split(' ') if debug else sys.argv)[1:] + if not args: # no arguments passed + LOGGER.info(CLI_HELP_MSG) + return + + special = { + 'help': lambda: LOGGER.info(CLI_HELP_MSG), + 'checks': checks.check_yolo, + 'version': lambda: LOGGER.info(__version__), + 'settings': lambda: handle_yolo_settings(args[1:]), + 'cfg': lambda: yaml_print(DEFAULT_CFG_PATH), + 'hub': lambda: handle_yolo_hub(args[1:]), + 'login': lambda: handle_yolo_hub(args), + 'copy-cfg': copy_default_cfg} + full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special} + + # Define common mis-uses of special commands, i.e. -h, -help, --help + special.update({k[0]: v for k, v in special.items()}) # singular + special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith('s')}) # singular + special = {**special, **{f'-{k}': v for k, v in special.items()}, **{f'--{k}': v for k, v in special.items()}} + + overrides = {} # basic overrides, i.e. imgsz=320 + for a in merge_equals_args(args): # merge spaces around '=' sign + if a.startswith('--'): + LOGGER.warning(f"WARNING ⚠️ '{a}' does not require leading dashes '--', updating to '{a[2:]}'.") + a = a[2:] + if a.endswith(','): + LOGGER.warning(f"WARNING ⚠️ '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.") + a = a[:-1] + if '=' in a: + try: + re.sub(r' *= *', '=', a) # remove spaces around equals sign + k, v = a.split('=', 1) # split on first '=' sign + assert v, f"missing '{k}' value" + if k == 'cfg': # custom.yaml passed + LOGGER.info(f'Overriding {DEFAULT_CFG_PATH} with {v}') + overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != 'cfg'} + else: + if v.lower() == 'none': + v = None + elif v.lower() == 'true': + v = True + elif v.lower() == 'false': + v = False + else: + with contextlib.suppress(Exception): + v = eval(v) + overrides[k] = v + except (NameError, SyntaxError, ValueError, AssertionError) as e: + check_cfg_mismatch(full_args_dict, {a: ''}, e) + + elif a in TASKS: + overrides['task'] = a + elif a in MODES: + overrides['mode'] = a + elif a.lower() in special: + special[a.lower()]() + return + elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool): + overrides[a] = True # auto-True for default bool args, i.e. 'yolo show' sets show=True + elif a in DEFAULT_CFG_DICT: + raise SyntaxError(f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign " + f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}") + else: + check_cfg_mismatch(full_args_dict, {a: ''}) + + # Check keys + check_cfg_mismatch(full_args_dict, overrides) + + # Mode + mode = overrides.get('mode', None) + if mode is None: + mode = DEFAULT_CFG.mode or 'predict' + LOGGER.warning(f"WARNING ⚠️ 'mode' is missing. Valid modes are {MODES}. Using default 'mode={mode}'.") + elif mode not in MODES: + if mode not in ('checks', checks): + raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {MODES}.\n{CLI_HELP_MSG}") + LOGGER.warning("WARNING ⚠️ 'yolo mode=checks' is deprecated. Use 'yolo checks' instead.") + checks.check_yolo() + return + + # Task + task = overrides.pop('task', None) + if task: + if task not in TASKS: + raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}") + if 'model' not in overrides: + overrides['model'] = TASK2MODEL[task] + + # Model + model = overrides.pop('model', DEFAULT_CFG.model) + if model is None: + model = 'yolov8n.pt' + LOGGER.warning(f"WARNING ⚠️ 'model' is missing. Using default 'model={model}'.") + overrides['model'] = model + if 'rtdetr' in model.lower(): # guess architecture + from ultralytics import RTDETR + model = RTDETR(model) # no task argument + elif 'sam' in model.lower(): + from ultralytics import SAM + model = SAM(model) + else: + from ultralytics import YOLO + model = YOLO(model, task=task) + if isinstance(overrides.get('pretrained'), str): + model.load(overrides['pretrained']) + + # Task Update + if task != model.task: + if task: + LOGGER.warning(f"WARNING ⚠️ conflicting 'task={task}' passed with 'task={model.task}' model. " + f"Ignoring 'task={task}' and updating to 'task={model.task}' to match model.") + task = model.task + + # Mode + if mode in ('predict', 'track') and 'source' not in overrides: + overrides['source'] = DEFAULT_CFG.source or ROOT / 'assets' if (ROOT / 'assets').exists() \ + else 'https://ultralytics.com/images/bus.jpg' + LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using default 'source={overrides['source']}'.") + elif mode in ('train', 'val'): + if 'data' not in overrides: + overrides['data'] = TASK2DATA.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data) + LOGGER.warning(f"WARNING ⚠️ 'data' is missing. Using default 'data={overrides['data']}'.") + elif mode == 'export': + if 'format' not in overrides: + overrides['format'] = DEFAULT_CFG.format or 'torchscript' + LOGGER.warning(f"WARNING ⚠️ 'format' is missing. Using default 'format={overrides['format']}'.") + + # Run command in python + # getattr(model, mode)(**vars(get_cfg(overrides=overrides))) # default args using default.yaml + getattr(model, mode)(**overrides) # default args from model + + +# Special modes -------------------------------------------------------------------------------------------------------- +def copy_default_cfg(): + """Copy and create a new default configuration file with '_copy' appended to its name.""" + new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace('.yaml', '_copy.yaml') + shutil.copy2(DEFAULT_CFG_PATH, new_file) + LOGGER.info(f'{DEFAULT_CFG_PATH} copied to {new_file}\n' + f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8") + + +if __name__ == '__main__': + # Example Usage: entrypoint(debug='yolo predict model=yolov8n.pt') + entrypoint(debug='') diff --git a/modules/ultralytics/yolo/cfg/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/cfg/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9accf1b8c9597c407372e9e03cfe512ae88412fa Binary files /dev/null and b/modules/ultralytics/yolo/cfg/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/cfg/default.yaml b/modules/ultralytics/yolo/cfg/default.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8645f34ca10f1670310d1634a2e374dc0837e4be --- /dev/null +++ b/modules/ultralytics/yolo/cfg/default.yaml @@ -0,0 +1,117 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# Default training settings and hyperparameters for medium-augmentation COCO training + +task: detect # (str) YOLO task, i.e. detect, segment, classify, pose +mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark + +# Train settings ------------------------------------------------------------------------------------------------------- +model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml +data: # (str, optional) path to data file, i.e. coco128.yaml +epochs: 100 # (int) number of epochs to train for +patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training +batch: 16 # (int) number of images per batch (-1 for AutoBatch) +imgsz: 640 # (int) size of input images as integer or w,h +save: True # (bool) save train checkpoints and predict results +save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1) +cache: False # (bool) True/ram, disk or False. Use cache for data loading +device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu +workers: 8 # (int) number of worker threads for data loading (per RANK if DDP) +project: # (str, optional) project name +name: # (str, optional) experiment name, results saved to 'project/name' directory +exist_ok: False # (bool) whether to overwrite existing experiment +pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) +optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] +verbose: True # (bool) whether to print verbose output +seed: 0 # (int) random seed for reproducibility +deterministic: True # (bool) whether to enable deterministic mode +single_cls: False # (bool) train multi-class data as single-class +rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val' +cos_lr: False # (bool) use cosine learning rate scheduler +close_mosaic: 0 # (int) disable mosaic augmentation for final epochs +resume: False # (bool) resume training from last checkpoint +amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check +fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) +profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers +# Segmentation +overlap_mask: False # (bool) masks should overlap during training (segment train only) +mask_ratio: 4 # (int) mask downsample ratio (segment train only) +# Classification +dropout: 0.0 # (float) use dropout regularization (classify train only) + +# Val/Test settings ---------------------------------------------------------------------------------------------------- +val: True # (bool) validate/test during training +split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train' +save_json: False # (bool) save results to JSON file +save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions) +conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val) +iou: 0.7 # (float) intersection over union (IoU) threshold for NMS +max_det: 300 # (int) maximum number of detections per image +half: False # (bool) use half precision (FP16) +dnn: False # (bool) use OpenCV DNN for ONNX inference +plots: True # (bool) save plots during train/val + +# Prediction settings -------------------------------------------------------------------------------------------------- +source: # (str, optional) source directory for images or videos +show: False # (bool) show results if possible +save_txt: False # (bool) save results as .txt file +save_conf: False # (bool) save results with confidence scores +save_crop: False # (bool) save cropped images with results +show_labels: True # (bool) show object labels in plots +show_conf: True # (bool) show object confidence scores in plots +vid_stride: 1 # (int) video frame-rate stride +line_width: # (int, optional) line width of the bounding boxes, auto if missing +visualize: False # (bool) visualize model features +augment: False # (bool) apply image augmentation to prediction sources +agnostic_nms: False # (bool) class-agnostic NMS +classes: # (int | list[int], optional) filter results by class, i.e. class=0, or class=[0,2,3] +retina_masks: False # (bool) use high-resolution segmentation masks +boxes: True # (bool) Show boxes in segmentation predictions + +# Export settings ------------------------------------------------------------------------------------------------------ +format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats +keras: False # (bool) use Kera=s +optimize: False # (bool) TorchScript: optimize for mobile +int8: False # (bool) CoreML/TF INT8 quantization +dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes +simplify: False # (bool) ONNX: simplify model +opset: # (int, optional) ONNX: opset version +workspace: 4 # (int) TensorRT: workspace size (GB) +nms: False # (bool) CoreML: add NMS + +# Hyperparameters ------------------------------------------------------------------------------------------------------ +lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3) +lrf: 0.01 # (float) final learning rate (lr0 * lrf) +momentum: 0.937 # (float) SGD momentum/Adam beta1 +weight_decay: 0.0005 # (float) optimizer weight decay 5e-4 +warmup_epochs: 3.0 # (float) warmup epochs (fractions ok) +warmup_momentum: 0.8 # (float) warmup initial momentum +warmup_bias_lr: 0.1 # (float) warmup initial bias lr +box: 7.5 # (float) box loss gain +cls: 0.5 # (float) cls loss gain (scale with pixels) +dfl: 1.5 # (float) dfl loss gain +pose: 12.0 # (float) pose loss gain +kobj: 1.0 # (float) keypoint obj loss gain +label_smoothing: 0.0 # (float) label smoothing (fraction) +nbs: 64 # (int) nominal batch size +hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction) +hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction) +hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction) +degrees: 0.0 # (float) image rotation (+/- deg) +translate: 0.1 # (float) image translation (+/- fraction) +scale: 0.5 # (float) image scale (+/- gain) +shear: 0.0 # (float) image shear (+/- deg) +perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001 +flipud: 0.0 # (float) image flip up-down (probability) +fliplr: 0.5 # (float) image flip left-right (probability) +mosaic: 1.0 # (float) image mosaic (probability) +mixup: 0.0 # (float) image mixup (probability) +copy_paste: 0.0 # (float) segment copy-paste (probability) + +# Custom config.yaml --------------------------------------------------------------------------------------------------- +cfg: # (str, optional) for overriding defaults.yaml + +# Debug, do not modify ------------------------------------------------------------------------------------------------- +v5loader: False # (bool) use legacy YOLOv5 dataloader (deprecated) + +# Tracker settings ------------------------------------------------------------------------------------------------------ +tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml] diff --git a/modules/ultralytics/yolo/data/__init__.py b/modules/ultralytics/yolo/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f1d9deeed93b8cfbf167930016ef0702208c6a0b --- /dev/null +++ b/modules/ultralytics/yolo/data/__init__.py @@ -0,0 +1,9 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .base import BaseDataset +from .build import build_dataloader, build_yolo_dataset, load_inference_source +from .dataset import ClassificationDataset, SemanticDataset, YOLODataset +from .dataset_wrappers import MixAndRectDataset + +__all__ = ('BaseDataset', 'ClassificationDataset', 'MixAndRectDataset', 'SemanticDataset', 'YOLODataset', + 'build_yolo_dataset', 'build_dataloader', 'load_inference_source') diff --git a/modules/ultralytics/yolo/data/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/data/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..49a82b13a7fb0544d00d553a3eed85e32d0c2297 Binary files /dev/null and b/modules/ultralytics/yolo/data/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/__pycache__/augment.cpython-312.pyc b/modules/ultralytics/yolo/data/__pycache__/augment.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c3f3508306a2a37ec930ed837582a19518bab00a Binary files /dev/null and b/modules/ultralytics/yolo/data/__pycache__/augment.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/__pycache__/base.cpython-312.pyc b/modules/ultralytics/yolo/data/__pycache__/base.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8fc8ef834e8e5657a8010ef201de436b00ac0fba Binary files /dev/null and b/modules/ultralytics/yolo/data/__pycache__/base.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/__pycache__/build.cpython-312.pyc b/modules/ultralytics/yolo/data/__pycache__/build.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..644c65e76061f7975cedd5121f29748a07b24fae Binary files /dev/null and b/modules/ultralytics/yolo/data/__pycache__/build.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/__pycache__/dataset.cpython-312.pyc b/modules/ultralytics/yolo/data/__pycache__/dataset.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..43169700022a1784c9339c4358606095bf43ba60 Binary files /dev/null and b/modules/ultralytics/yolo/data/__pycache__/dataset.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/__pycache__/dataset_wrappers.cpython-312.pyc b/modules/ultralytics/yolo/data/__pycache__/dataset_wrappers.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f7f7c4233b88f619ad544d59db98674d50bff6a8 Binary files /dev/null and b/modules/ultralytics/yolo/data/__pycache__/dataset_wrappers.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/__pycache__/utils.cpython-312.pyc b/modules/ultralytics/yolo/data/__pycache__/utils.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a2d53932bb2d1ca79678ff3f2c9d9841e7966144 Binary files /dev/null and b/modules/ultralytics/yolo/data/__pycache__/utils.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/annotator.py b/modules/ultralytics/yolo/data/annotator.py new file mode 100644 index 0000000000000000000000000000000000000000..e841df631aeef6b3c25b62f5f8e0052e42df32bf --- /dev/null +++ b/modules/ultralytics/yolo/data/annotator.py @@ -0,0 +1,53 @@ +from pathlib import Path + +from ultralytics import YOLO +from ultralytics.vit.sam import PromptPredictor, build_sam +from ultralytics.yolo.utils.torch_utils import select_device + + +def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None): + """ + Automatically annotates images using a YOLO object detection model and a SAM segmentation model. + Args: + data (str): Path to a folder containing images to be annotated. + det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. + sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. + device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available). + output_dir (str | None | optional): Directory to save the annotated results. + Defaults to a 'labels' folder in the same directory as 'data'. + """ + device = select_device(device) + det_model = YOLO(det_model) + sam_model = build_sam(sam_model) + det_model.to(device) + sam_model.to(device) + + if not output_dir: + output_dir = Path(str(data)).parent / 'labels' + Path(output_dir).mkdir(exist_ok=True, parents=True) + + prompt_predictor = PromptPredictor(sam_model) + det_results = det_model(data, stream=True) + + for result in det_results: + boxes = result.boxes.xyxy # Boxes object for bbox outputs + class_ids = result.boxes.cls.int().tolist() # noqa + if len(class_ids): + prompt_predictor.set_image(result.orig_img) + masks, _, _ = prompt_predictor.predict_torch( + point_coords=None, + point_labels=None, + boxes=prompt_predictor.transform.apply_boxes_torch(boxes, result.orig_shape[:2]), + multimask_output=False, + ) + + result.update(masks=masks.squeeze(1)) + segments = result.masks.xyn # noqa + + with open(str(Path(output_dir) / Path(result.path).stem) + '.txt', 'w') as f: + for i in range(len(segments)): + s = segments[i] + if len(s) == 0: + continue + segment = map(str, segments[i].reshape(-1).tolist()) + f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n') diff --git a/modules/ultralytics/yolo/data/augment.py b/modules/ultralytics/yolo/data/augment.py new file mode 100644 index 0000000000000000000000000000000000000000..42688c97c5067a4c59fa49ac787111562d5eb66a --- /dev/null +++ b/modules/ultralytics/yolo/data/augment.py @@ -0,0 +1,899 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import math +import random +from copy import deepcopy + +import cv2 +import numpy as np +import torch +import torchvision.transforms as T + +from ..utils import LOGGER, colorstr +from ..utils.checks import check_version +from ..utils.instance import Instances +from ..utils.metrics import bbox_ioa +from ..utils.ops import segment2box +from .utils import polygons2masks, polygons2masks_overlap + +POSE_FLIPLR_INDEX = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] + + +# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic +class BaseTransform: + + def __init__(self) -> None: + pass + + def apply_image(self, labels): + """Applies image transformation to labels.""" + pass + + def apply_instances(self, labels): + """Applies transformations to input 'labels' and returns object instances.""" + pass + + def apply_semantic(self, labels): + """Applies semantic segmentation to an image.""" + pass + + def __call__(self, labels): + """Applies label transformations to an image, instances and semantic masks.""" + self.apply_image(labels) + self.apply_instances(labels) + self.apply_semantic(labels) + + +class Compose: + + def __init__(self, transforms): + """Initializes the Compose object with a list of transforms.""" + self.transforms = transforms + + def __call__(self, data): + """Applies a series of transformations to input data.""" + for t in self.transforms: + data = t(data) + return data + + def append(self, transform): + """Appends a new transform to the existing list of transforms.""" + self.transforms.append(transform) + + def tolist(self): + """Converts list of transforms to a standard Python list.""" + return self.transforms + + def __repr__(self): + """Return string representation of object.""" + format_string = f'{self.__class__.__name__}(' + for t in self.transforms: + format_string += '\n' + format_string += f' {t}' + format_string += '\n)' + return format_string + + +class BaseMixTransform: + """This implementation is from mmyolo.""" + + def __init__(self, dataset, pre_transform=None, p=0.0) -> None: + self.dataset = dataset + self.pre_transform = pre_transform + self.p = p + + def __call__(self, labels): + """Applies pre-processing transforms and mixup/mosaic transforms to labels data.""" + if random.uniform(0, 1) > self.p: + return labels + + # Get index of one or three other images + indexes = self.get_indexes() + if isinstance(indexes, int): + indexes = [indexes] + + # Get images information will be used for Mosaic or MixUp + mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] + + if self.pre_transform is not None: + for i, data in enumerate(mix_labels): + mix_labels[i] = self.pre_transform(data) + labels['mix_labels'] = mix_labels + + # Mosaic or MixUp + labels = self._mix_transform(labels) + labels.pop('mix_labels', None) + return labels + + def _mix_transform(self, labels): + """Applies MixUp or Mosaic augmentation to the label dictionary.""" + raise NotImplementedError + + def get_indexes(self): + """Gets a list of shuffled indexes for mosaic augmentation.""" + raise NotImplementedError + + +class Mosaic(BaseMixTransform): + """ + Mosaic augmentation. + + This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. + The augmentation is applied to a dataset with a given probability. + + Attributes: + dataset: The dataset on which the mosaic augmentation is applied. + imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640. + p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0. + n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3). + """ + + def __init__(self, dataset, imgsz=640, p=1.0, n=4): + """Initializes the object with a dataset, image size, probability, and border.""" + assert 0 <= p <= 1.0, f'The probability should be in range [0, 1], but got {p}.' + assert n in (4, 9), 'grid must be equal to 4 or 9.' + super().__init__(dataset=dataset, p=p) + self.dataset = dataset + self.imgsz = imgsz + self.border = (-imgsz // 2, -imgsz // 2) # width, height + self.n = n + + def get_indexes(self, buffer=True): + """Return a list of random indexes from the dataset.""" + if buffer: # select images from buffer + return random.choices(list(self.dataset.buffer), k=self.n - 1) + else: # select any images + return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)] + + def _mix_transform(self, labels): + """Apply mixup transformation to the input image and labels.""" + assert labels.get('rect_shape', None) is None, 'rect and mosaic are mutually exclusive.' + assert len(labels.get('mix_labels', [])), 'There are no other images for mosaic augment.' + return self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels) + + def _mosaic4(self, labels): + """Create a 2x2 image mosaic.""" + mosaic_labels = [] + s = self.imgsz + yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y + for i in range(4): + labels_patch = labels if i == 0 else labels['mix_labels'][i - 1] + # Load image + img = labels_patch['img'] + h, w = labels_patch.pop('resized_shape') + + # Place img in img4 + if i == 0: # top left + img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) + x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) + elif i == 1: # top right + x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc + x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h + elif i == 2: # bottom left + x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) + x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) + elif i == 3: # bottom right + x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) + x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) + + img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] + padw = x1a - x1b + padh = y1a - y1b + + labels_patch = self._update_labels(labels_patch, padw, padh) + mosaic_labels.append(labels_patch) + final_labels = self._cat_labels(mosaic_labels) + final_labels['img'] = img4 + return final_labels + + def _mosaic9(self, labels): + """Create a 3x3 image mosaic.""" + mosaic_labels = [] + s = self.imgsz + hp, wp = -1, -1 # height, width previous + for i in range(9): + labels_patch = labels if i == 0 else labels['mix_labels'][i - 1] + # Load image + img = labels_patch['img'] + h, w = labels_patch.pop('resized_shape') + + # Place img in img9 + if i == 0: # center + img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + h0, w0 = h, w + c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates + elif i == 1: # top + c = s, s - h, s + w, s + elif i == 2: # top right + c = s + wp, s - h, s + wp + w, s + elif i == 3: # right + c = s + w0, s, s + w0 + w, s + h + elif i == 4: # bottom right + c = s + w0, s + hp, s + w0 + w, s + hp + h + elif i == 5: # bottom + c = s + w0 - w, s + h0, s + w0, s + h0 + h + elif i == 6: # bottom left + c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h + elif i == 7: # left + c = s - w, s + h0 - h, s, s + h0 + elif i == 8: # top left + c = s - w, s + h0 - hp - h, s, s + h0 - hp + + padw, padh = c[:2] + x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords + + # Image + img9[y1:y2, x1:x2] = img[y1 - padh:, x1 - padw:] # img9[ymin:ymax, xmin:xmax] + hp, wp = h, w # height, width previous for next iteration + + # Labels assuming imgsz*2 mosaic size + labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) + mosaic_labels.append(labels_patch) + final_labels = self._cat_labels(mosaic_labels) + + final_labels['img'] = img9[-self.border[0]:self.border[0], -self.border[1]:self.border[1]] + return final_labels + + @staticmethod + def _update_labels(labels, padw, padh): + """Update labels.""" + nh, nw = labels['img'].shape[:2] + labels['instances'].convert_bbox(format='xyxy') + labels['instances'].denormalize(nw, nh) + labels['instances'].add_padding(padw, padh) + return labels + + def _cat_labels(self, mosaic_labels): + """Return labels with mosaic border instances clipped.""" + if len(mosaic_labels) == 0: + return {} + cls = [] + instances = [] + imgsz = self.imgsz * 2 # mosaic imgsz + for labels in mosaic_labels: + cls.append(labels['cls']) + instances.append(labels['instances']) + final_labels = { + 'im_file': mosaic_labels[0]['im_file'], + 'ori_shape': mosaic_labels[0]['ori_shape'], + 'resized_shape': (imgsz, imgsz), + 'cls': np.concatenate(cls, 0), + 'instances': Instances.concatenate(instances, axis=0), + 'mosaic_border': self.border} # final_labels + final_labels['instances'].clip(imgsz, imgsz) + good = final_labels['instances'].remove_zero_area_boxes() + final_labels['cls'] = final_labels['cls'][good] + return final_labels + + +class MixUp(BaseMixTransform): + + def __init__(self, dataset, pre_transform=None, p=0.0) -> None: + super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) + + def get_indexes(self): + """Get a random index from the dataset.""" + return random.randint(0, len(self.dataset) - 1) + + def _mix_transform(self, labels): + """Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf.""" + r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 + labels2 = labels['mix_labels'][0] + labels['img'] = (labels['img'] * r + labels2['img'] * (1 - r)).astype(np.uint8) + labels['instances'] = Instances.concatenate([labels['instances'], labels2['instances']], axis=0) + labels['cls'] = np.concatenate([labels['cls'], labels2['cls']], 0) + return labels + + +class RandomPerspective: + + def __init__(self, + degrees=0.0, + translate=0.1, + scale=0.5, + shear=0.0, + perspective=0.0, + border=(0, 0), + pre_transform=None): + self.degrees = degrees + self.translate = translate + self.scale = scale + self.shear = shear + self.perspective = perspective + # Mosaic border + self.border = border + self.pre_transform = pre_transform + + def affine_transform(self, img, border): + """Center.""" + C = np.eye(3, dtype=np.float32) + + C[0, 2] = -img.shape[1] / 2 # x translation (pixels) + C[1, 2] = -img.shape[0] / 2 # y translation (pixels) + + # Perspective + P = np.eye(3, dtype=np.float32) + P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y) + P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x) + + # Rotation and Scale + R = np.eye(3, dtype=np.float32) + a = random.uniform(-self.degrees, self.degrees) + # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations + s = random.uniform(1 - self.scale, 1 + self.scale) + # s = 2 ** random.uniform(-scale, scale) + R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) + + # Shear + S = np.eye(3, dtype=np.float32) + S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg) + S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg) + + # Translation + T = np.eye(3, dtype=np.float32) + T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels) + T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels) + + # Combined rotation matrix + M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT + # Affine image + if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed + if self.perspective: + img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) + else: # affine + img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) + return img, M, s + + def apply_bboxes(self, bboxes, M): + """ + Apply affine to bboxes only. + + Args: + bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4). + M (ndarray): affine matrix. + + Returns: + new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4]. + """ + n = len(bboxes) + if n == 0: + return bboxes + + xy = np.ones((n * 4, 3), dtype=bboxes.dtype) + xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 + xy = xy @ M.T # transform + xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine + + # Create new boxes + x = xy[:, [0, 2, 4, 6]] + y = xy[:, [1, 3, 5, 7]] + return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T + + def apply_segments(self, segments, M): + """ + Apply affine to segments and generate new bboxes from segments. + + Args: + segments (ndarray): list of segments, [num_samples, 500, 2]. + M (ndarray): affine matrix. + + Returns: + new_segments (ndarray): list of segments after affine, [num_samples, 500, 2]. + new_bboxes (ndarray): bboxes after affine, [N, 4]. + """ + n, num = segments.shape[:2] + if n == 0: + return [], segments + + xy = np.ones((n * num, 3), dtype=segments.dtype) + segments = segments.reshape(-1, 2) + xy[:, :2] = segments + xy = xy @ M.T # transform + xy = xy[:, :2] / xy[:, 2:3] + segments = xy.reshape(n, -1, 2) + bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) + return bboxes, segments + + def apply_keypoints(self, keypoints, M): + """ + Apply affine to keypoints. + + Args: + keypoints (ndarray): keypoints, [N, 17, 3]. + M (ndarray): affine matrix. + + Return: + new_keypoints (ndarray): keypoints after affine, [N, 17, 3]. + """ + n, nkpt = keypoints.shape[:2] + if n == 0: + return keypoints + xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype) + visible = keypoints[..., 2].reshape(n * nkpt, 1) + xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2) + xy = xy @ M.T # transform + xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine + out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1]) + visible[out_mask] = 0 + return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3) + + def __call__(self, labels): + """ + Affine images and targets. + + Args: + labels (dict): a dict of `bboxes`, `segments`, `keypoints`. + """ + if self.pre_transform and 'mosaic_border' not in labels: + labels = self.pre_transform(labels) + labels.pop('ratio_pad') # do not need ratio pad + + img = labels['img'] + cls = labels['cls'] + instances = labels.pop('instances') + # Make sure the coord formats are right + instances.convert_bbox(format='xyxy') + instances.denormalize(*img.shape[:2][::-1]) + + border = labels.pop('mosaic_border', self.border) + self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h + # M is affine matrix + # scale for func:`box_candidates` + img, M, scale = self.affine_transform(img, border) + + bboxes = self.apply_bboxes(instances.bboxes, M) + + segments = instances.segments + keypoints = instances.keypoints + # Update bboxes if there are segments. + if len(segments): + bboxes, segments = self.apply_segments(segments, M) + + if keypoints is not None: + keypoints = self.apply_keypoints(keypoints, M) + new_instances = Instances(bboxes, segments, keypoints, bbox_format='xyxy', normalized=False) + # Clip + new_instances.clip(*self.size) + + # Filter instances + instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) + # Make the bboxes have the same scale with new_bboxes + i = self.box_candidates(box1=instances.bboxes.T, + box2=new_instances.bboxes.T, + area_thr=0.01 if len(segments) else 0.10) + labels['instances'] = new_instances[i] + labels['cls'] = cls[i] + labels['img'] = img + labels['resized_shape'] = img.shape[:2] + return labels + + def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) + # Compute box candidates: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio + w1, h1 = box1[2] - box1[0], box1[3] - box1[1] + w2, h2 = box2[2] - box2[0], box2[3] - box2[1] + ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio + return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates + + +class RandomHSV: + + def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: + self.hgain = hgain + self.sgain = sgain + self.vgain = vgain + + def __call__(self, labels): + """Applies random horizontal or vertical flip to an image with a given probability.""" + img = labels['img'] + if self.hgain or self.sgain or self.vgain: + r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains + hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) + dtype = img.dtype # uint8 + + x = np.arange(0, 256, dtype=r.dtype) + lut_hue = ((x * r[0]) % 180).astype(dtype) + lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) + lut_val = np.clip(x * r[2], 0, 255).astype(dtype) + + im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) + cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed + return labels + + +class RandomFlip: + + def __init__(self, p=0.5, direction='horizontal', flip_idx=None) -> None: + assert direction in ['horizontal', 'vertical'], f'Support direction `horizontal` or `vertical`, got {direction}' + assert 0 <= p <= 1.0 + + self.p = p + self.direction = direction + self.flip_idx = flip_idx + + def __call__(self, labels): + """Resize image and padding for detection, instance segmentation, pose.""" + img = labels['img'] + instances = labels.pop('instances') + instances.convert_bbox(format='xywh') + h, w = img.shape[:2] + h = 1 if instances.normalized else h + w = 1 if instances.normalized else w + + # Flip up-down + if self.direction == 'vertical' and random.random() < self.p: + img = np.flipud(img) + instances.flipud(h) + if self.direction == 'horizontal' and random.random() < self.p: + img = np.fliplr(img) + instances.fliplr(w) + # For keypoints + if self.flip_idx is not None and instances.keypoints is not None: + instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :]) + labels['img'] = np.ascontiguousarray(img) + labels['instances'] = instances + return labels + + +class LetterBox: + """Resize image and padding for detection, instance segmentation, pose.""" + + def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32): + """Initialize LetterBox object with specific parameters.""" + self.new_shape = new_shape + self.auto = auto + self.scaleFill = scaleFill + self.scaleup = scaleup + self.stride = stride + + def __call__(self, labels=None, image=None): + """Return updated labels and image with added border.""" + if labels is None: + labels = {} + img = labels.get('img') if image is None else image + shape = img.shape[:2] # current shape [height, width] + new_shape = labels.pop('rect_shape', self.new_shape) + if isinstance(new_shape, int): + new_shape = (new_shape, new_shape) + + # Scale ratio (new / old) + r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) + if not self.scaleup: # only scale down, do not scale up (for better val mAP) + r = min(r, 1.0) + + # Compute padding + ratio = r, r # width, height ratios + new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) + dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding + if self.auto: # minimum rectangle + dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding + elif self.scaleFill: # stretch + dw, dh = 0.0, 0.0 + new_unpad = (new_shape[1], new_shape[0]) + ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios + + dw /= 2 # divide padding into 2 sides + dh /= 2 + if labels.get('ratio_pad'): + labels['ratio_pad'] = (labels['ratio_pad'], (dw, dh)) # for evaluation + + if shape[::-1] != new_unpad: # resize + img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) + top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) + left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) + img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, + value=(114, 114, 114)) # add border + + if len(labels): + labels = self._update_labels(labels, ratio, dw, dh) + labels['img'] = img + labels['resized_shape'] = new_shape + return labels + else: + return img + + def _update_labels(self, labels, ratio, padw, padh): + """Update labels.""" + labels['instances'].convert_bbox(format='xyxy') + labels['instances'].denormalize(*labels['img'].shape[:2][::-1]) + labels['instances'].scale(*ratio) + labels['instances'].add_padding(padw, padh) + return labels + + +class CopyPaste: + + def __init__(self, p=0.5) -> None: + self.p = p + + def __call__(self, labels): + """Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy).""" + im = labels['img'] + cls = labels['cls'] + h, w = im.shape[:2] + instances = labels.pop('instances') + instances.convert_bbox(format='xyxy') + instances.denormalize(w, h) + if self.p and len(instances.segments): + n = len(instances) + _, w, _ = im.shape # height, width, channels + im_new = np.zeros(im.shape, np.uint8) + + # Calculate ioa first then select indexes randomly + ins_flip = deepcopy(instances) + ins_flip.fliplr(w) + + ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M) + indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) + n = len(indexes) + for j in random.sample(list(indexes), k=round(self.p * n)): + cls = np.concatenate((cls, cls[[j]]), axis=0) + instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) + cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) + + result = cv2.flip(im, 1) # augment segments (flip left-right) + i = cv2.flip(im_new, 1).astype(bool) + im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug + + labels['img'] = im + labels['cls'] = cls + labels['instances'] = instances + return labels + + +class Albumentations: + # YOLOv8 Albumentations class (optional, only used if package is installed) + def __init__(self, p=1.0): + """Initialize the transform object for YOLO bbox formatted params.""" + self.p = p + self.transform = None + prefix = colorstr('albumentations: ') + try: + import albumentations as A + + check_version(A.__version__, '1.0.3', hard=True) # version requirement + + T = [ + A.Blur(p=0.01), + A.MedianBlur(p=0.01), + A.ToGray(p=0.01), + A.CLAHE(p=0.01), + A.RandomBrightnessContrast(p=0.0), + A.RandomGamma(p=0.0), + A.ImageCompression(quality_lower=75, p=0.0)] # transforms + self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) + + LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) + except ImportError: # package not installed, skip + pass + except Exception as e: + LOGGER.info(f'{prefix}{e}') + + def __call__(self, labels): + """Generates object detections and returns a dictionary with detection results.""" + im = labels['img'] + cls = labels['cls'] + if len(cls): + labels['instances'].convert_bbox('xywh') + labels['instances'].normalize(*im.shape[:2][::-1]) + bboxes = labels['instances'].bboxes + # TODO: add supports of segments and keypoints + if self.transform and random.random() < self.p: + new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed + if len(new['class_labels']) > 0: # skip update if no bbox in new im + labels['img'] = new['image'] + labels['cls'] = np.array(new['class_labels']) + bboxes = np.array(new['bboxes'], dtype=np.float32) + labels['instances'].update(bboxes=bboxes) + return labels + + +# TODO: technically this is not an augmentation, maybe we should put this to another files +class Format: + + def __init__(self, + bbox_format='xywh', + normalize=True, + return_mask=False, + return_keypoint=False, + mask_ratio=4, + mask_overlap=True, + batch_idx=True): + self.bbox_format = bbox_format + self.normalize = normalize + self.return_mask = return_mask # set False when training detection only + self.return_keypoint = return_keypoint + self.mask_ratio = mask_ratio + self.mask_overlap = mask_overlap + self.batch_idx = batch_idx # keep the batch indexes + + def __call__(self, labels): + """Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'.""" + img = labels.pop('img') + h, w = img.shape[:2] + cls = labels.pop('cls') + instances = labels.pop('instances') + instances.convert_bbox(format=self.bbox_format) + instances.denormalize(w, h) + nl = len(instances) + + if self.return_mask: + if nl: + masks, instances, cls = self._format_segments(instances, cls, w, h) + masks = torch.from_numpy(masks) + else: + masks = torch.zeros(1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, + img.shape[1] // self.mask_ratio) + labels['masks'] = masks + if self.normalize: + instances.normalize(w, h) + labels['img'] = self._format_img(img) + labels['cls'] = torch.from_numpy(cls) if nl else torch.zeros(nl) + labels['bboxes'] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) + if self.return_keypoint: + labels['keypoints'] = torch.from_numpy(instances.keypoints) + # Then we can use collate_fn + if self.batch_idx: + labels['batch_idx'] = torch.zeros(nl) + return labels + + def _format_img(self, img): + """Format the image for YOLOv5 from Numpy array to PyTorch tensor.""" + if len(img.shape) < 3: + img = np.expand_dims(img, -1) + img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1]) + img = torch.from_numpy(img) + return img + + def _format_segments(self, instances, cls, w, h): + """convert polygon points to bitmap.""" + segments = instances.segments + if self.mask_overlap: + masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) + masks = masks[None] # (640, 640) -> (1, 640, 640) + instances = instances[sorted_idx] + cls = cls[sorted_idx] + else: + masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) + + return masks, instances, cls + + +def v8_transforms(dataset, imgsz, hyp, stretch=False): + """Convert images to a size suitable for YOLOv8 training.""" + pre_transform = Compose([ + Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), + CopyPaste(p=hyp.copy_paste), + RandomPerspective( + degrees=hyp.degrees, + translate=hyp.translate, + scale=hyp.scale, + shear=hyp.shear, + perspective=hyp.perspective, + pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), + )]) + flip_idx = dataset.data.get('flip_idx', None) # for keypoints augmentation + if dataset.use_keypoints: + kpt_shape = dataset.data.get('kpt_shape', None) + if flip_idx is None and hyp.fliplr > 0.0: + hyp.fliplr = 0.0 + LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'") + elif flip_idx and (len(flip_idx) != kpt_shape[0]): + raise ValueError(f'data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}') + + return Compose([ + pre_transform, + MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), + Albumentations(p=1.0), + RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), + RandomFlip(direction='vertical', p=hyp.flipud), + RandomFlip(direction='horizontal', p=hyp.fliplr, flip_idx=flip_idx)]) # transforms + + +# Classification augmentations ----------------------------------------------------------------------------------------- +def classify_transforms(size=224, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)): # IMAGENET_MEAN, IMAGENET_STD + # Transforms to apply if albumentations not installed + if not isinstance(size, int): + raise TypeError(f'classify_transforms() size {size} must be integer, not (list, tuple)') + if any(mean) or any(std): + return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(mean, std, inplace=True)]) + else: + return T.Compose([CenterCrop(size), ToTensor()]) + + +def hsv2colorjitter(h, s, v): + """Map HSV (hue, saturation, value) jitter into ColorJitter values (brightness, contrast, saturation, hue)""" + return v, v, s, h + + +def classify_albumentations( + augment=True, + size=224, + scale=(0.08, 1.0), + hflip=0.5, + vflip=0.0, + hsv_h=0.015, # image HSV-Hue augmentation (fraction) + hsv_s=0.7, # image HSV-Saturation augmentation (fraction) + hsv_v=0.4, # image HSV-Value augmentation (fraction) + mean=(0.0, 0.0, 0.0), # IMAGENET_MEAN + std=(1.0, 1.0, 1.0), # IMAGENET_STD + auto_aug=False, +): + # YOLOv8 classification Albumentations (optional, only used if package is installed) + prefix = colorstr('albumentations: ') + try: + import albumentations as A + from albumentations.pytorch import ToTensorV2 + + check_version(A.__version__, '1.0.3', hard=True) # version requirement + if augment: # Resize and crop + T = [A.RandomResizedCrop(height=size, width=size, scale=scale)] + if auto_aug: + # TODO: implement AugMix, AutoAug & RandAug in albumentations + LOGGER.info(f'{prefix}auto augmentations are currently not supported') + else: + if hflip > 0: + T += [A.HorizontalFlip(p=hflip)] + if vflip > 0: + T += [A.VerticalFlip(p=vflip)] + if any((hsv_h, hsv_s, hsv_v)): + T += [A.ColorJitter(*hsv2colorjitter(hsv_h, hsv_s, hsv_v))] # brightness, contrast, saturation, hue + else: # Use fixed crop for eval set (reproducibility) + T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] + T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor + LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) + return A.Compose(T) + + except ImportError: # package not installed, skip + pass + except Exception as e: + LOGGER.info(f'{prefix}{e}') + + +class ClassifyLetterBox: + # YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) + def __init__(self, size=(640, 640), auto=False, stride=32): + """Resizes image and crops it to center with max dimensions 'h' and 'w'.""" + super().__init__() + self.h, self.w = (size, size) if isinstance(size, int) else size + self.auto = auto # pass max size integer, automatically solve for short side using stride + self.stride = stride # used with auto + + def __call__(self, im): # im = np.array HWC + imh, imw = im.shape[:2] + r = min(self.h / imh, self.w / imw) # ratio of new/old + h, w = round(imh * r), round(imw * r) # resized image + hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w + top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) + im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) + im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) + return im_out + + +class CenterCrop: + # YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) + def __init__(self, size=640): + """Converts an image from numpy array to PyTorch tensor.""" + super().__init__() + self.h, self.w = (size, size) if isinstance(size, int) else size + + def __call__(self, im): # im = np.array HWC + imh, imw = im.shape[:2] + m = min(imh, imw) # min dimension + top, left = (imh - m) // 2, (imw - m) // 2 + return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) + + +class ToTensor: + # YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) + def __init__(self, half=False): + """Initialize YOLOv8 ToTensor object with optional half-precision support.""" + super().__init__() + self.half = half + + def __call__(self, im): # im = np.array HWC in BGR order + im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous + im = torch.from_numpy(im) # to torch + im = im.half() if self.half else im.float() # uint8 to fp16/32 + im /= 255.0 # 0-255 to 0.0-1.0 + return im diff --git a/modules/ultralytics/yolo/data/base.py b/modules/ultralytics/yolo/data/base.py new file mode 100644 index 0000000000000000000000000000000000000000..d2e9793c13dd12715ee96243c16e31006aa3d8be --- /dev/null +++ b/modules/ultralytics/yolo/data/base.py @@ -0,0 +1,286 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import glob +import math +import os +import random +from copy import deepcopy +from multiprocessing.pool import ThreadPool +from pathlib import Path +from typing import Optional + +import cv2 +import numpy as np +import psutil +from torch.utils.data import Dataset +from tqdm import tqdm + +from ..utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT +from .utils import HELP_URL, IMG_FORMATS + + +class BaseDataset(Dataset): + """ + Base dataset class for loading and processing image data. + + Args: + img_path (str): Path to the folder containing images. + imgsz (int, optional): Image size. Defaults to 640. + cache (bool, optional): Cache images to RAM or disk during training. Defaults to False. + augment (bool, optional): If True, data augmentation is applied. Defaults to True. + hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None. + prefix (str, optional): Prefix to print in log messages. Defaults to ''. + rect (bool, optional): If True, rectangular training is used. Defaults to False. + batch_size (int, optional): Size of batches. Defaults to None. + stride (int, optional): Stride. Defaults to 32. + pad (float, optional): Padding. Defaults to 0.0. + single_cls (bool, optional): If True, single class training is used. Defaults to False. + classes (list): List of included classes. Default is None. + fraction (float): Fraction of dataset to utilize. Default is 1.0 (use all data). + + Attributes: + im_files (list): List of image file paths. + labels (list): List of label data dictionaries. + ni (int): Number of images in the dataset. + ims (list): List of loaded images. + npy_files (list): List of numpy file paths. + transforms (callable): Image transformation function. + """ + + def __init__(self, + img_path, + imgsz=640, + cache=False, + augment=True, + hyp=DEFAULT_CFG, + prefix='', + rect=False, + batch_size=16, + stride=32, + pad=0.5, + single_cls=False, + classes=None, + fraction=1.0): + super().__init__() + self.img_path = img_path + self.imgsz = imgsz + self.augment = augment + self.single_cls = single_cls + self.prefix = prefix + self.fraction = fraction + self.im_files = self.get_img_files(self.img_path) + self.labels = self.get_labels() + self.update_labels(include_class=classes) # single_cls and include_class + self.ni = len(self.labels) # number of images + self.rect = rect + self.batch_size = batch_size + self.stride = stride + self.pad = pad + if self.rect: + assert self.batch_size is not None + self.set_rectangle() + + # Buffer thread for mosaic images + self.buffer = [] # buffer size = batch size + self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0 + + # Cache stuff + if cache == 'ram' and not self.check_cache_ram(): + cache = False + self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni + self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files] + if cache: + self.cache_images(cache) + + # Transforms + self.transforms = self.build_transforms(hyp=hyp) + + def get_img_files(self, img_path): + """Read image files.""" + try: + f = [] # image files + for p in img_path if isinstance(img_path, list) else [img_path]: + p = Path(p) # os-agnostic + if p.is_dir(): # dir + f += glob.glob(str(p / '**' / '*.*'), recursive=True) + # F = list(p.rglob('*.*')) # pathlib + elif p.is_file(): # file + with open(p) as t: + t = t.read().strip().splitlines() + parent = str(p.parent) + os.sep + f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path + # F += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) + else: + raise FileNotFoundError(f'{self.prefix}{p} does not exist') + im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS) + # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib + assert im_files, f'{self.prefix}No images found' + except Exception as e: + raise FileNotFoundError(f'{self.prefix}Error loading data from {img_path}\n{HELP_URL}') from e + if self.fraction < 1: + im_files = im_files[:round(len(im_files) * self.fraction)] + return im_files + + def update_labels(self, include_class: Optional[list]): + """include_class, filter labels to include only these classes (optional).""" + include_class_array = np.array(include_class).reshape(1, -1) + for i in range(len(self.labels)): + if include_class is not None: + cls = self.labels[i]['cls'] + bboxes = self.labels[i]['bboxes'] + segments = self.labels[i]['segments'] + keypoints = self.labels[i]['keypoints'] + j = (cls == include_class_array).any(1) + self.labels[i]['cls'] = cls[j] + self.labels[i]['bboxes'] = bboxes[j] + if segments: + self.labels[i]['segments'] = [segments[si] for si, idx in enumerate(j) if idx] + if keypoints is not None: + self.labels[i]['keypoints'] = keypoints[j] + if self.single_cls: + self.labels[i]['cls'][:, 0] = 0 + + def load_image(self, i): + """Loads 1 image from dataset index 'i', returns (im, resized hw).""" + im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i] + if im is None: # not cached in RAM + if fn.exists(): # load npy + im = np.load(fn) + else: # read image + im = cv2.imread(f) # BGR + if im is None: + raise FileNotFoundError(f'Image Not Found {f}') + h0, w0 = im.shape[:2] # orig hw + r = self.imgsz / max(h0, w0) # ratio + if r != 1: # if sizes are not equal + interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA + im = cv2.resize(im, (min(math.ceil(w0 * r), self.imgsz), min(math.ceil(h0 * r), self.imgsz)), + interpolation=interp) + + # Add to buffer if training with augmentations + if self.augment: + self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized + self.buffer.append(i) + if len(self.buffer) >= self.max_buffer_length: + j = self.buffer.pop(0) + self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None + + return im, (h0, w0), im.shape[:2] + + return self.ims[i], self.im_hw0[i], self.im_hw[i] + + def cache_images(self, cache): + """Cache images to memory or disk.""" + b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes + fcn = self.cache_images_to_disk if cache == 'disk' else self.load_image + with ThreadPool(NUM_THREADS) as pool: + results = pool.imap(fcn, range(self.ni)) + pbar = tqdm(enumerate(results), total=self.ni, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0) + for i, x in pbar: + if cache == 'disk': + b += self.npy_files[i].stat().st_size + else: # 'ram' + self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) + b += self.ims[i].nbytes + pbar.desc = f'{self.prefix}Caching images ({b / gb:.1f}GB {cache})' + pbar.close() + + def cache_images_to_disk(self, i): + """Saves an image as an *.npy file for faster loading.""" + f = self.npy_files[i] + if not f.exists(): + np.save(f.as_posix(), cv2.imread(self.im_files[i])) + + def check_cache_ram(self, safety_margin=0.5): + """Check image caching requirements vs available memory.""" + b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes + n = min(self.ni, 30) # extrapolate from 30 random images + for _ in range(n): + im = cv2.imread(random.choice(self.im_files)) # sample image + ratio = self.imgsz / max(im.shape[0], im.shape[1]) # max(h, w) # ratio + b += im.nbytes * ratio ** 2 + mem_required = b * self.ni / n * (1 + safety_margin) # GB required to cache dataset into RAM + mem = psutil.virtual_memory() + cache = mem_required < mem.available # to cache or not to cache, that is the question + if not cache: + LOGGER.info(f'{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images ' + f'with {int(safety_margin * 100)}% safety margin but only ' + f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, ' + f"{'caching images ✅' if cache else 'not caching images ⚠️'}") + return cache + + def set_rectangle(self): + """Sets the shape of bounding boxes for YOLO detections as rectangles.""" + bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int) # batch index + nb = bi[-1] + 1 # number of batches + + s = np.array([x.pop('shape') for x in self.labels]) # hw + ar = s[:, 0] / s[:, 1] # aspect ratio + irect = ar.argsort() + self.im_files = [self.im_files[i] for i in irect] + self.labels = [self.labels[i] for i in irect] + ar = ar[irect] + + # Set training image shapes + shapes = [[1, 1]] * nb + for i in range(nb): + ari = ar[bi == i] + mini, maxi = ari.min(), ari.max() + if maxi < 1: + shapes[i] = [maxi, 1] + elif mini > 1: + shapes[i] = [1, 1 / mini] + + self.batch_shapes = np.ceil(np.array(shapes) * self.imgsz / self.stride + self.pad).astype(int) * self.stride + self.batch = bi # batch index of image + + def __getitem__(self, index): + """Returns transformed label information for given index.""" + return self.transforms(self.get_image_and_label(index)) + + def get_image_and_label(self, index): + """Get and return label information from the dataset.""" + label = deepcopy(self.labels[index]) # requires deepcopy() https://github.com/ultralytics/ultralytics/pull/1948 + label.pop('shape', None) # shape is for rect, remove it + label['img'], label['ori_shape'], label['resized_shape'] = self.load_image(index) + label['ratio_pad'] = (label['resized_shape'][0] / label['ori_shape'][0], + label['resized_shape'][1] / label['ori_shape'][1]) # for evaluation + if self.rect: + label['rect_shape'] = self.batch_shapes[self.batch[index]] + return self.update_labels_info(label) + + def __len__(self): + """Returns the length of the labels list for the dataset.""" + return len(self.labels) + + def update_labels_info(self, label): + """custom your label format here.""" + return label + + def build_transforms(self, hyp=None): + """Users can custom augmentations here + like: + if self.augment: + # Training transforms + return Compose([]) + else: + # Val transforms + return Compose([]) + """ + raise NotImplementedError + + def get_labels(self): + """Users can custom their own format here. + Make sure your output is a list with each element like below: + dict( + im_file=im_file, + shape=shape, # format: (height, width) + cls=cls, + bboxes=bboxes, # xywh + segments=segments, # xy + keypoints=keypoints, # xy + normalized=True, # or False + bbox_format="xyxy", # or xywh, ltwh + ) + """ + raise NotImplementedError diff --git a/modules/ultralytics/yolo/data/build.py b/modules/ultralytics/yolo/data/build.py new file mode 100644 index 0000000000000000000000000000000000000000..54d2d16fc84c89ff311edced4b0e5b9e341dce3c --- /dev/null +++ b/modules/ultralytics/yolo/data/build.py @@ -0,0 +1,170 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import os +import random +from pathlib import Path + +import numpy as np +import torch +from PIL import Image +from torch.utils.data import dataloader, distributed + +from ultralytics.yolo.data.dataloaders.stream_loaders import (LOADERS, LoadImages, LoadPilAndNumpy, LoadScreenshots, + LoadStreams, LoadTensor, SourceTypes, autocast_list) +from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS +from ultralytics.yolo.utils.checks import check_file + +from ..utils import RANK, colorstr +from .dataset import YOLODataset +from .utils import PIN_MEMORY + + +class InfiniteDataLoader(dataloader.DataLoader): + """Dataloader that reuses workers. Uses same syntax as vanilla DataLoader.""" + + def __init__(self, *args, **kwargs): + """Dataloader that infinitely recycles workers, inherits from DataLoader.""" + super().__init__(*args, **kwargs) + object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) + self.iterator = super().__iter__() + + def __len__(self): + """Returns the length of the batch sampler's sampler.""" + return len(self.batch_sampler.sampler) + + def __iter__(self): + """Creates a sampler that repeats indefinitely.""" + for _ in range(len(self)): + yield next(self.iterator) + + def reset(self): + """Reset iterator. + This is useful when we want to modify settings of dataset while training. + """ + self.iterator = self._get_iterator() + + +class _RepeatSampler: + """ + Sampler that repeats forever. + + Args: + sampler (Dataset.sampler): The sampler to repeat. + """ + + def __init__(self, sampler): + """Initializes an object that repeats a given sampler indefinitely.""" + self.sampler = sampler + + def __iter__(self): + """Iterates over the 'sampler' and yields its contents.""" + while True: + yield from iter(self.sampler) + + +def seed_worker(worker_id): # noqa + # Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader + worker_seed = torch.initial_seed() % 2 ** 32 + np.random.seed(worker_seed) + random.seed(worker_seed) + + +def build_yolo_dataset(cfg, img_path, batch, data, mode='train', rect=False, stride=32): + """Build YOLO Dataset""" + return YOLODataset( + img_path=img_path, + imgsz=cfg.imgsz, + batch_size=batch, + augment=mode == 'train', # augmentation + hyp=cfg, # TODO: probably add a get_hyps_from_cfg function + rect=cfg.rect or rect, # rectangular batches + cache=cfg.cache or None, + single_cls=cfg.single_cls or False, + stride=int(stride), + pad=0.0 if mode == 'train' else 0.5, + prefix=colorstr(f'{mode}: '), + use_segments=cfg.task == 'segment', + use_keypoints=cfg.task == 'pose', + classes=cfg.classes, + data=data, + fraction=cfg.fraction if mode == 'train' else 1.0) + + +def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1): + """Return an InfiniteDataLoader or DataLoader for training or validation set.""" + batch = min(batch, len(dataset)) + nd = torch.cuda.device_count() # number of CUDA devices + nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers + sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) + generator = torch.Generator() + generator.manual_seed(6148914691236517205 + RANK) + return InfiniteDataLoader(dataset=dataset, + batch_size=batch, + shuffle=shuffle and sampler is None, + num_workers=nw, + sampler=sampler, + pin_memory=PIN_MEMORY, + collate_fn=getattr(dataset, 'collate_fn', None), + worker_init_fn=seed_worker, + generator=generator) + + +def check_source(source): + """Check source type and return corresponding flag values.""" + webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False + if isinstance(source, (str, int, Path)): # int for local usb camera + source = str(source) + is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) + is_url = source.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')) + webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) + screenshot = source.lower() == 'screen' + if is_url and is_file: + source = check_file(source) # download + elif isinstance(source, tuple(LOADERS)): + in_memory = True + elif isinstance(source, (list, tuple)): + source = autocast_list(source) # convert all list elements to PIL or np arrays + from_img = True + elif isinstance(source, (Image.Image, np.ndarray)): + from_img = True + elif isinstance(source, torch.Tensor): + tensor = True + else: + raise TypeError('Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict') + + return source, webcam, screenshot, from_img, in_memory, tensor + + +def load_inference_source(source=None, imgsz=640, vid_stride=1): + """ + Loads an inference source for object detection and applies necessary transformations. + + Args: + source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference. + imgsz (int, optional): The size of the image for inference. Default is 640. + vid_stride (int, optional): The frame interval for video sources. Default is 1. + + Returns: + dataset (Dataset): A dataset object for the specified input source. + """ + source, webcam, screenshot, from_img, in_memory, tensor = check_source(source) + source_type = source.source_type if in_memory else SourceTypes(webcam, screenshot, from_img, tensor) + + # Dataloader + if tensor: + dataset = LoadTensor(source) + elif in_memory: + dataset = source + elif webcam: + dataset = LoadStreams(source, imgsz=imgsz, vid_stride=vid_stride) + elif screenshot: + dataset = LoadScreenshots(source, imgsz=imgsz) + elif from_img: + dataset = LoadPilAndNumpy(source, imgsz=imgsz) + else: + dataset = LoadImages(source, imgsz=imgsz, vid_stride=vid_stride) + + # Attach source types to the dataset + setattr(dataset, 'source_type', source_type) + + return dataset diff --git a/modules/ultralytics/yolo/data/converter.py b/modules/ultralytics/yolo/data/converter.py new file mode 100644 index 0000000000000000000000000000000000000000..aa391b6c5979f2e1ae8b108f309a2b8555ce6e93 --- /dev/null +++ b/modules/ultralytics/yolo/data/converter.py @@ -0,0 +1,230 @@ +import json +from collections import defaultdict +from pathlib import Path + +import cv2 +import numpy as np +from tqdm import tqdm + +from ultralytics.yolo.utils.checks import check_requirements +from ultralytics.yolo.utils.files import make_dirs + + +def coco91_to_coco80_class(): + """Converts 91-index COCO class IDs to 80-index COCO class IDs. + + Returns: + (list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the + corresponding 91-index class ID. + + """ + return [ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None, + None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, + 51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, + None, 73, 74, 75, 76, 77, 78, 79, None] + + +def convert_coco(labels_dir='../coco/annotations/', use_segments=False, use_keypoints=False, cls91to80=True): + """Converts COCO dataset annotations to a format suitable for training YOLOv5 models. + + Args: + labels_dir (str, optional): Path to directory containing COCO dataset annotation files. + use_segments (bool, optional): Whether to include segmentation masks in the output. + use_keypoints (bool, optional): Whether to include keypoint annotations in the output. + cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs. + + Raises: + FileNotFoundError: If the labels_dir path does not exist. + + Example Usage: + convert_coco(labels_dir='../coco/annotations/', use_segments=True, use_keypoints=True, cls91to80=True) + + Output: + Generates output files in the specified output directory. + """ + + save_dir = make_dirs('yolo_labels') # output directory + coco80 = coco91_to_coco80_class() + + # Import json + for json_file in sorted(Path(labels_dir).resolve().glob('*.json')): + fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_', '') # folder name + fn.mkdir(parents=True, exist_ok=True) + with open(json_file) as f: + data = json.load(f) + + # Create image dict + images = {'%g' % x['id']: x for x in data['images']} + # Create image-annotations dict + imgToAnns = defaultdict(list) + for ann in data['annotations']: + imgToAnns[ann['image_id']].append(ann) + + # Write labels file + for img_id, anns in tqdm(imgToAnns.items(), desc=f'Annotations {json_file}'): + img = images['%g' % img_id] + h, w, f = img['height'], img['width'], img['file_name'] + + bboxes = [] + segments = [] + keypoints = [] + for ann in anns: + if ann['iscrowd']: + continue + # The COCO box format is [top left x, top left y, width, height] + box = np.array(ann['bbox'], dtype=np.float64) + box[:2] += box[2:] / 2 # xy top-left corner to center + box[[0, 2]] /= w # normalize x + box[[1, 3]] /= h # normalize y + if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0 + continue + + cls = coco80[ann['category_id'] - 1] if cls91to80 else ann['category_id'] - 1 # class + box = [cls] + box.tolist() + if box not in bboxes: + bboxes.append(box) + if use_segments and ann.get('segmentation') is not None: + if len(ann['segmentation']) == 0: + segments.append([]) + continue + if isinstance(ann['segmentation'], dict): + ann['segmentation'] = rle2polygon(ann['segmentation']) + if len(ann['segmentation']) > 1: + s = merge_multi_segment(ann['segmentation']) + s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist() + else: + s = [j for i in ann['segmentation'] for j in i] # all segments concatenated + s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist() + s = [cls] + s + if s not in segments: + segments.append(s) + if use_keypoints and ann.get('keypoints') is not None: + k = (np.array(ann['keypoints']).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist() + k = box + k + keypoints.append(k) + + # Write + with open((fn / f).with_suffix('.txt'), 'a') as file: + for i in range(len(bboxes)): + if use_keypoints: + line = *(keypoints[i]), # cls, box, keypoints + else: + line = *(segments[i] + if use_segments and len(segments[i]) > 0 else bboxes[i]), # cls, box or segments + file.write(('%g ' * len(line)).rstrip() % line + '\n') + + +def rle2polygon(segmentation): + """ + Convert Run-Length Encoding (RLE) mask to polygon coordinates. + + Args: + segmentation (dict, list): RLE mask representation of the object segmentation. + + Returns: + (list): A list of lists representing the polygon coordinates for each contour. + + Note: + Requires the 'pycocotools' package to be installed. + """ + check_requirements('pycocotools') + from pycocotools import mask + + m = mask.decode(segmentation) + m[m > 0] = 255 + contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS) + polygons = [] + for contour in contours: + epsilon = 0.001 * cv2.arcLength(contour, True) + contour_approx = cv2.approxPolyDP(contour, epsilon, True) + polygon = contour_approx.flatten().tolist() + polygons.append(polygon) + return polygons + + +def min_index(arr1, arr2): + """ + Find a pair of indexes with the shortest distance between two arrays of 2D points. + + Args: + arr1 (np.array): A NumPy array of shape (N, 2) representing N 2D points. + arr2 (np.array): A NumPy array of shape (M, 2) representing M 2D points. + + Returns: + (tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively. + """ + dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) + return np.unravel_index(np.argmin(dis, axis=None), dis.shape) + + +def merge_multi_segment(segments): + """ + Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment. + This function connects these coordinates with a thin line to merge all segments into one. + + Args: + segments (List[List]): Original segmentations in COCO's JSON file. + Each element is a list of coordinates, like [segmentation1, segmentation2,...]. + + Returns: + s (List[np.ndarray]): A list of connected segments represented as NumPy arrays. + """ + s = [] + segments = [np.array(i).reshape(-1, 2) for i in segments] + idx_list = [[] for _ in range(len(segments))] + + # record the indexes with min distance between each segment + for i in range(1, len(segments)): + idx1, idx2 = min_index(segments[i - 1], segments[i]) + idx_list[i - 1].append(idx1) + idx_list[i].append(idx2) + + # use two round to connect all the segments + for k in range(2): + # forward connection + if k == 0: + for i, idx in enumerate(idx_list): + # middle segments have two indexes + # reverse the index of middle segments + if len(idx) == 2 and idx[0] > idx[1]: + idx = idx[::-1] + segments[i] = segments[i][::-1, :] + + segments[i] = np.roll(segments[i], -idx[0], axis=0) + segments[i] = np.concatenate([segments[i], segments[i][:1]]) + # deal with the first segment and the last one + if i in [0, len(idx_list) - 1]: + s.append(segments[i]) + else: + idx = [0, idx[1] - idx[0]] + s.append(segments[i][idx[0]:idx[1] + 1]) + + else: + for i in range(len(idx_list) - 1, -1, -1): + if i not in [0, len(idx_list) - 1]: + idx = idx_list[i] + nidx = abs(idx[1] - idx[0]) + s.append(segments[i][nidx:]) + return s + + +def delete_dsstore(path='../datasets'): + """Delete Apple .DS_Store files in the specified directory and its subdirectories.""" + from pathlib import Path + + files = list(Path(path).rglob('.DS_store')) + print(files) + for f in files: + f.unlink() + + +if __name__ == '__main__': + source = 'COCO' + + if source == 'COCO': + convert_coco( + '../datasets/coco/annotations', # directory with *.json + use_segments=False, + use_keypoints=True, + cls91to80=False) diff --git a/modules/ultralytics/yolo/data/dataloaders/__init__.py b/modules/ultralytics/yolo/data/dataloaders/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/ultralytics/yolo/data/dataloaders/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/data/dataloaders/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..85ac3531ae792158b279b2a379cf7dcae4be72e1 Binary files /dev/null and b/modules/ultralytics/yolo/data/dataloaders/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/dataloaders/__pycache__/stream_loaders.cpython-312.pyc b/modules/ultralytics/yolo/data/dataloaders/__pycache__/stream_loaders.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e8ac272c82d61b3c5d7dd7f2332383b57752d45d Binary files /dev/null and b/modules/ultralytics/yolo/data/dataloaders/__pycache__/stream_loaders.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/dataloaders/__pycache__/v5augmentations.cpython-312.pyc b/modules/ultralytics/yolo/data/dataloaders/__pycache__/v5augmentations.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..40319c5196c0fd5ba6238cb5e5c2cfd468ff8070 Binary files /dev/null and b/modules/ultralytics/yolo/data/dataloaders/__pycache__/v5augmentations.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/dataloaders/__pycache__/v5loader.cpython-312.pyc b/modules/ultralytics/yolo/data/dataloaders/__pycache__/v5loader.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..48684aa88af6b0e6f37237384cbac16516494c9f Binary files /dev/null and b/modules/ultralytics/yolo/data/dataloaders/__pycache__/v5loader.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/data/dataloaders/stream_loaders.py b/modules/ultralytics/yolo/data/dataloaders/stream_loaders.py new file mode 100644 index 0000000000000000000000000000000000000000..400cee69f4cce646a793fb5f3d99c8949b9d1e99 --- /dev/null +++ b/modules/ultralytics/yolo/data/dataloaders/stream_loaders.py @@ -0,0 +1,371 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import glob +import math +import os +import time +from dataclasses import dataclass +from pathlib import Path +from threading import Thread +from urllib.parse import urlparse + +import cv2 +import numpy as np +import requests +import torch +from PIL import Image + +from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS +from ultralytics.yolo.utils import LOGGER, ROOT, is_colab, is_kaggle, ops +from ultralytics.yolo.utils.checks import check_requirements + + +@dataclass +class SourceTypes: + webcam: bool = False + screenshot: bool = False + from_img: bool = False + tensor: bool = False + + +class LoadStreams: + # YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams` + def __init__(self, sources='file.streams', imgsz=640, vid_stride=1): + """Initialize instance variables and check for consistent input stream shapes.""" + torch.backends.cudnn.benchmark = True # faster for fixed-size inference + self.mode = 'stream' + self.imgsz = imgsz + self.vid_stride = vid_stride # video frame-rate stride + sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources] + n = len(sources) + self.sources = [ops.clean_str(x) for x in sources] # clean source names for later + self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n + for i, s in enumerate(sources): # index, source + # Start thread to read frames from video stream + st = f'{i + 1}/{n}: {s}... ' + if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video + # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc' + s = get_best_youtube_url(s) + s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam + if s == 0 and (is_colab() or is_kaggle()): + raise NotImplementedError("'source=0' webcam not supported in Colab and Kaggle notebooks. " + "Try running 'source=0' in a local environment.") + cap = cv2.VideoCapture(s) + if not cap.isOpened(): + raise ConnectionError(f'{st}Failed to open {s}') + w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan + self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback + self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback + + success, self.imgs[i] = cap.read() # guarantee first frame + if not success or self.imgs[i] is None: + raise ConnectionError(f'{st}Failed to read images from {s}') + self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True) + LOGGER.info(f'{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)') + self.threads[i].start() + LOGGER.info('') # newline + + # Check for common shapes + self.bs = self.__len__() + + def update(self, i, cap, stream): + """Read stream `i` frames in daemon thread.""" + n, f = 0, self.frames[i] # frame number, frame array + while cap.isOpened() and n < f: + n += 1 + cap.grab() # .read() = .grab() followed by .retrieve() + if n % self.vid_stride == 0: + success, im = cap.retrieve() + if success: + self.imgs[i] = im + else: + LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.') + self.imgs[i] = np.zeros_like(self.imgs[i]) + cap.open(stream) # re-open stream if signal was lost + time.sleep(0.0) # wait time + + def __iter__(self): + """Iterates through YOLO image feed and re-opens unresponsive streams.""" + self.count = -1 + return self + + def __next__(self): + """Returns source paths, transformed and original images for processing YOLOv5.""" + self.count += 1 + if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit + cv2.destroyAllWindows() + raise StopIteration + + im0 = self.imgs.copy() + return self.sources, im0, None, '' + + def __len__(self): + """Return the length of the sources object.""" + return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years + + +class LoadScreenshots: + # YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen` + def __init__(self, source, imgsz=640): + """source = [screen_number left top width height] (pixels).""" + check_requirements('mss') + import mss # noqa + + source, *params = source.split() + self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0 + if len(params) == 1: + self.screen = int(params[0]) + elif len(params) == 4: + left, top, width, height = (int(x) for x in params) + elif len(params) == 5: + self.screen, left, top, width, height = (int(x) for x in params) + self.imgsz = imgsz + self.mode = 'stream' + self.frame = 0 + self.sct = mss.mss() + self.bs = 1 + + # Parse monitor shape + monitor = self.sct.monitors[self.screen] + self.top = monitor['top'] if top is None else (monitor['top'] + top) + self.left = monitor['left'] if left is None else (monitor['left'] + left) + self.width = width or monitor['width'] + self.height = height or monitor['height'] + self.monitor = {'left': self.left, 'top': self.top, 'width': self.width, 'height': self.height} + + def __iter__(self): + """Returns an iterator of the object.""" + return self + + def __next__(self): + """mss screen capture: get raw pixels from the screen as np array.""" + im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR + s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: ' + + self.frame += 1 + return str(self.screen), im0, None, s # screen, img, original img, im0s, s + + +class LoadImages: + # YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4` + def __init__(self, path, imgsz=640, vid_stride=1): + """Initialize the Dataloader and raise FileNotFoundError if file not found.""" + if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line + path = Path(path).read_text().rsplit() + files = [] + for p in sorted(path) if isinstance(path, (list, tuple)) else [path]: + p = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912 + if '*' in p: + files.extend(sorted(glob.glob(p, recursive=True))) # glob + elif os.path.isdir(p): + files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir + elif os.path.isfile(p): + files.append(p) # files + else: + raise FileNotFoundError(f'{p} does not exist') + + images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS] + videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS] + ni, nv = len(images), len(videos) + + self.imgsz = imgsz + self.files = images + videos + self.nf = ni + nv # number of files + self.video_flag = [False] * ni + [True] * nv + self.mode = 'image' + self.vid_stride = vid_stride # video frame-rate stride + self.bs = 1 + if any(videos): + self.orientation = None # rotation degrees + self._new_video(videos[0]) # new video + else: + self.cap = None + if self.nf == 0: + raise FileNotFoundError(f'No images or videos found in {p}. ' + f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}') + + def __iter__(self): + """Returns an iterator object for VideoStream or ImageFolder.""" + self.count = 0 + return self + + def __next__(self): + """Return next image, path and metadata from dataset.""" + if self.count == self.nf: + raise StopIteration + path = self.files[self.count] + + if self.video_flag[self.count]: + # Read video + self.mode = 'video' + for _ in range(self.vid_stride): + self.cap.grab() + success, im0 = self.cap.retrieve() + while not success: + self.count += 1 + self.cap.release() + if self.count == self.nf: # last video + raise StopIteration + path = self.files[self.count] + self._new_video(path) + success, im0 = self.cap.read() + + self.frame += 1 + # im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False + s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ' + + else: + # Read image + self.count += 1 + im0 = cv2.imread(path) # BGR + if im0 is None: + raise FileNotFoundError(f'Image Not Found {path}') + s = f'image {self.count}/{self.nf} {path}: ' + + return [path], [im0], self.cap, s + + def _new_video(self, path): + """Create a new video capture object.""" + self.frame = 0 + self.cap = cv2.VideoCapture(path) + self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride) + if hasattr(cv2, 'CAP_PROP_ORIENTATION_META'): # cv2<4.6.0 compatibility + self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees + # Disable auto-orientation due to known issues in https://github.com/ultralytics/yolov5/issues/8493 + # self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) + + def _cv2_rotate(self, im): + """Rotate a cv2 video manually.""" + if self.orientation == 0: + return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE) + elif self.orientation == 180: + return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE) + elif self.orientation == 90: + return cv2.rotate(im, cv2.ROTATE_180) + return im + + def __len__(self): + """Returns the number of files in the object.""" + return self.nf # number of files + + +class LoadPilAndNumpy: + + def __init__(self, im0, imgsz=640): + """Initialize PIL and Numpy Dataloader.""" + if not isinstance(im0, list): + im0 = [im0] + self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)] + self.im0 = [self._single_check(im) for im in im0] + self.imgsz = imgsz + self.mode = 'image' + # Generate fake paths + self.bs = len(self.im0) + + @staticmethod + def _single_check(im): + """Validate and format an image to numpy array.""" + assert isinstance(im, (Image.Image, np.ndarray)), f'Expected PIL/np.ndarray image type, but got {type(im)}' + if isinstance(im, Image.Image): + if im.mode != 'RGB': + im = im.convert('RGB') + im = np.asarray(im)[:, :, ::-1] + im = np.ascontiguousarray(im) # contiguous + return im + + def __len__(self): + """Returns the length of the 'im0' attribute.""" + return len(self.im0) + + def __next__(self): + """Returns batch paths, images, processed images, None, ''.""" + if self.count == 1: # loop only once as it's batch inference + raise StopIteration + self.count += 1 + return self.paths, self.im0, None, '' + + def __iter__(self): + """Enables iteration for class LoadPilAndNumpy.""" + self.count = 0 + return self + + +class LoadTensor: + + def __init__(self, imgs) -> None: + self.im0 = imgs + self.bs = imgs.shape[0] + self.mode = 'image' + + def __iter__(self): + """Returns an iterator object.""" + self.count = 0 + return self + + def __next__(self): + """Return next item in the iterator.""" + if self.count == 1: + raise StopIteration + self.count += 1 + return None, self.im0, None, '' # self.paths, im, self.im0, None, '' + + def __len__(self): + """Returns the batch size.""" + return self.bs + + +def autocast_list(source): + """ + Merges a list of source of different types into a list of numpy arrays or PIL images + """ + files = [] + for im in source: + if isinstance(im, (str, Path)): # filename or uri + files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im)) + elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image + files.append(im) + else: + raise TypeError(f'type {type(im).__name__} is not a supported Ultralytics prediction source type. \n' + f'See https://docs.ultralytics.com/modes/predict for supported source types.') + + return files + + +LOADERS = [LoadStreams, LoadPilAndNumpy, LoadImages, LoadScreenshots] + + +def get_best_youtube_url(url, use_pafy=True): + """ + Retrieves the URL of the best quality MP4 video stream from a given YouTube video. + + This function uses the pafy or yt_dlp library to extract the video info from YouTube. It then finds the highest + quality MP4 format that has video codec but no audio codec, and returns the URL of this video stream. + + Args: + url (str): The URL of the YouTube video. + use_pafy (bool): Use the pafy package, default=True, otherwise use yt_dlp package. + + Returns: + (str): The URL of the best quality MP4 video stream, or None if no suitable stream is found. + """ + if use_pafy: + check_requirements(('pafy', 'youtube_dl==2020.12.2')) + import pafy # noqa + return pafy.new(url).getbest(preftype='mp4').url + else: + check_requirements('yt-dlp') + import yt_dlp + with yt_dlp.YoutubeDL({'quiet': True}) as ydl: + info_dict = ydl.extract_info(url, download=False) # extract info + for f in info_dict.get('formats', None): + if f['vcodec'] != 'none' and f['acodec'] == 'none' and f['ext'] == 'mp4': + return f.get('url', None) + + +if __name__ == '__main__': + img = cv2.imread(str(ROOT / 'assets/bus.jpg')) + dataset = LoadPilAndNumpy(im0=img) + for d in dataset: + print(d[0]) diff --git a/modules/ultralytics/yolo/data/dataloaders/v5augmentations.py b/modules/ultralytics/yolo/data/dataloaders/v5augmentations.py new file mode 100644 index 0000000000000000000000000000000000000000..8e0b3e2fd1ef4446f7b00ac51cf1668fa625205d --- /dev/null +++ b/modules/ultralytics/yolo/data/dataloaders/v5augmentations.py @@ -0,0 +1,407 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Image augmentation functions +""" + +import math +import random + +import cv2 +import numpy as np +import torch +import torchvision.transforms as T +import torchvision.transforms.functional as TF + +from ultralytics.yolo.utils import LOGGER, colorstr +from ultralytics.yolo.utils.checks import check_version +from ultralytics.yolo.utils.metrics import bbox_ioa +from ultralytics.yolo.utils.ops import resample_segments, segment2box, xywhn2xyxy + +IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean +IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation + + +class Albumentations: + # YOLOv5 Albumentations class (optional, only used if package is installed) + def __init__(self, size=640): + """Instantiate object with image augmentations for YOLOv5.""" + self.transform = None + prefix = colorstr('albumentations: ') + try: + import albumentations as A + check_version(A.__version__, '1.0.3', hard=True) # version requirement + + T = [ + A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0), + A.Blur(p=0.01), + A.MedianBlur(p=0.01), + A.ToGray(p=0.01), + A.CLAHE(p=0.01), + A.RandomBrightnessContrast(p=0.0), + A.RandomGamma(p=0.0), + A.ImageCompression(quality_lower=75, p=0.0)] # transforms + self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) + + LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) + except ImportError: # package not installed, skip + pass + except Exception as e: + LOGGER.info(f'{prefix}{e}') + + def __call__(self, im, labels, p=1.0): + """Transforms input image and labels with probability 'p'.""" + if self.transform and random.random() < p: + new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed + im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) + return im, labels + + +def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False): + """Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std.""" + return TF.normalize(x, mean, std, inplace=inplace) + + +def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD): + """Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean.""" + for i in range(3): + x[:, i] = x[:, i] * std[i] + mean[i] + return x + + +def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): + """HSV color-space augmentation.""" + if hgain or sgain or vgain: + r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains + hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) + dtype = im.dtype # uint8 + + x = np.arange(0, 256, dtype=r.dtype) + lut_hue = ((x * r[0]) % 180).astype(dtype) + lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) + lut_val = np.clip(x * r[2], 0, 255).astype(dtype) + + im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) + cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed + + +def hist_equalize(im, clahe=True, bgr=False): + """Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255.""" + yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) + if clahe: + c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) + yuv[:, :, 0] = c.apply(yuv[:, :, 0]) + else: + yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram + return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB + + +def replicate(im, labels): + """Replicate labels.""" + h, w = im.shape[:2] + boxes = labels[:, 1:].astype(int) + x1, y1, x2, y2 = boxes.T + s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) + for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices + x1b, y1b, x2b, y2b = boxes[i] + bh, bw = y2b - y1b, x2b - x1b + yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y + x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] + im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax] + labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) + + return im, labels + + +def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): + """Resize and pad image while meeting stride-multiple constraints.""" + shape = im.shape[:2] # current shape [height, width] + if isinstance(new_shape, int): + new_shape = (new_shape, new_shape) + + # Scale ratio (new / old) + r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) + if not scaleup: # only scale down, do not scale up (for better val mAP) + r = min(r, 1.0) + + # Compute padding + ratio = r, r # width, height ratios + new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) + dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding + if auto: # minimum rectangle + dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding + elif scaleFill: # stretch + dw, dh = 0.0, 0.0 + new_unpad = (new_shape[1], new_shape[0]) + ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios + + dw /= 2 # divide padding into 2 sides + dh /= 2 + + if shape[::-1] != new_unpad: # resize + im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) + top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) + left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) + im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border + return im, ratio, (dw, dh) + + +def random_perspective(im, + targets=(), + segments=(), + degrees=10, + translate=.1, + scale=.1, + shear=10, + perspective=0.0, + border=(0, 0)): + # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10)) + # targets = [cls, xyxy] + + height = im.shape[0] + border[0] * 2 # shape(h,w,c) + width = im.shape[1] + border[1] * 2 + + # Center + C = np.eye(3) + C[0, 2] = -im.shape[1] / 2 # x translation (pixels) + C[1, 2] = -im.shape[0] / 2 # y translation (pixels) + + # Perspective + P = np.eye(3) + P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) + P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) + + # Rotation and Scale + R = np.eye(3) + a = random.uniform(-degrees, degrees) + # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations + s = random.uniform(1 - scale, 1 + scale) + # s = 2 ** random.uniform(-scale, scale) + R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) + + # Shear + S = np.eye(3) + S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) + S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) + + # Translation + T = np.eye(3) + T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) + T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) + + # Combined rotation matrix + M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT + if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed + if perspective: + im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) + else: # affine + im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) + + # Visualize + # import matplotlib.pyplot as plt + # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() + # ax[0].imshow(im[:, :, ::-1]) # base + # ax[1].imshow(im2[:, :, ::-1]) # warped + + # Transform label coordinates + n = len(targets) + if n: + use_segments = any(x.any() for x in segments) + new = np.zeros((n, 4)) + if use_segments: # warp segments + segments = resample_segments(segments) # upsample + for i, segment in enumerate(segments): + xy = np.ones((len(segment), 3)) + xy[:, :2] = segment + xy = xy @ M.T # transform + xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine + + # Clip + new[i] = segment2box(xy, width, height) + + else: # warp boxes + xy = np.ones((n * 4, 3)) + xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 + xy = xy @ M.T # transform + xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine + + # Create new boxes + x = xy[:, [0, 2, 4, 6]] + y = xy[:, [1, 3, 5, 7]] + new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T + + # Clip + new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) + new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) + + # Filter candidates + i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) + targets = targets[i] + targets[:, 1:5] = new[i] + + return im, targets + + +def copy_paste(im, labels, segments, p=0.5): + """Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy).""" + n = len(segments) + if p and n: + h, w, c = im.shape # height, width, channels + im_new = np.zeros(im.shape, np.uint8) + + # Calculate ioa first then select indexes randomly + boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1) # (n, 4) + ioa = bbox_ioa(boxes, labels[:, 1:5]) # intersection over area + indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) + n = len(indexes) + for j in random.sample(list(indexes), k=round(p * n)): + l, box, s = labels[j], boxes[j], segments[j] + labels = np.concatenate((labels, [[l[0], *box]]), 0) + segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) + cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED) + + result = cv2.flip(im, 1) # augment segments (flip left-right) + i = cv2.flip(im_new, 1).astype(bool) + im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug + + return im, labels, segments + + +def cutout(im, labels, p=0.5): + """Applies image cutout augmentation https://arxiv.org/abs/1708.04552.""" + if random.random() < p: + h, w = im.shape[:2] + scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction + for s in scales: + mask_h = random.randint(1, int(h * s)) # create random masks + mask_w = random.randint(1, int(w * s)) + + # Box + xmin = max(0, random.randint(0, w) - mask_w // 2) + ymin = max(0, random.randint(0, h) - mask_h // 2) + xmax = min(w, xmin + mask_w) + ymax = min(h, ymin + mask_h) + + # Apply random color mask + im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] + + # Return unobscured labels + if len(labels) and s > 0.03: + box = np.array([[xmin, ymin, xmax, ymax]], dtype=np.float32) + ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h))[0] # intersection over area + labels = labels[ioa < 0.60] # remove >60% obscured labels + + return labels + + +def mixup(im, labels, im2, labels2): + """Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf.""" + r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 + im = (im * r + im2 * (1 - r)).astype(np.uint8) + labels = np.concatenate((labels, labels2), 0) + return im, labels + + +def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) + # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio + w1, h1 = box1[2] - box1[0], box1[3] - box1[1] + w2, h2 = box2[2] - box2[0], box2[3] - box2[1] + ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio + return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates + + +def classify_albumentations( + augment=True, + size=224, + scale=(0.08, 1.0), + ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33 + hflip=0.5, + vflip=0.0, + jitter=0.4, + mean=IMAGENET_MEAN, + std=IMAGENET_STD, + auto_aug=False): + # YOLOv5 classification Albumentations (optional, only used if package is installed) + prefix = colorstr('albumentations: ') + try: + import albumentations as A + from albumentations.pytorch import ToTensorV2 + check_version(A.__version__, '1.0.3', hard=True) # version requirement + if augment: # Resize and crop + T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)] + if auto_aug: + # TODO: implement AugMix, AutoAug & RandAug in albumentation + LOGGER.info(f'{prefix}auto augmentations are currently not supported') + else: + if hflip > 0: + T += [A.HorizontalFlip(p=hflip)] + if vflip > 0: + T += [A.VerticalFlip(p=vflip)] + if jitter > 0: + jitter = float(jitter) + T += [A.ColorJitter(jitter, jitter, jitter, 0)] # brightness, contrast, satuaration, 0 hue + else: # Use fixed crop for eval set (reproducibility) + T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] + T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor + LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) + return A.Compose(T) + + except ImportError: # package not installed, skip + LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)') + except Exception as e: + LOGGER.info(f'{prefix}{e}') + + +def classify_transforms(size=224): + """Transforms to apply if albumentations not installed.""" + assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)' + # T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) + return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) + + +class LetterBox: + # YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) + def __init__(self, size=(640, 640), auto=False, stride=32): + """Resizes and crops an image to a specified size for YOLOv5 preprocessing.""" + super().__init__() + self.h, self.w = (size, size) if isinstance(size, int) else size + self.auto = auto # pass max size integer, automatically solve for short side using stride + self.stride = stride # used with auto + + def __call__(self, im): # im = np.array HWC + imh, imw = im.shape[:2] + r = min(self.h / imh, self.w / imw) # ratio of new/old + h, w = round(imh * r), round(imw * r) # resized image + hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w + top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) + im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) + im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) + return im_out + + +class CenterCrop: + # YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) + def __init__(self, size=640): + """Converts input image into tensor for YOLOv5 processing.""" + super().__init__() + self.h, self.w = (size, size) if isinstance(size, int) else size + + def __call__(self, im): # im = np.array HWC + imh, imw = im.shape[:2] + m = min(imh, imw) # min dimension + top, left = (imh - m) // 2, (imw - m) // 2 + return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) + + +class ToTensor: + # YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) + def __init__(self, half=False): + """Initialize ToTensor class for YOLOv5 image preprocessing.""" + super().__init__() + self.half = half + + def __call__(self, im): # im = np.array HWC in BGR order + im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous + im = torch.from_numpy(im) # to torch + im = im.half() if self.half else im.float() # uint8 to fp16/32 + im /= 255.0 # 0-255 to 0.0-1.0 + return im diff --git a/modules/ultralytics/yolo/data/dataloaders/v5loader.py b/modules/ultralytics/yolo/data/dataloaders/v5loader.py new file mode 100644 index 0000000000000000000000000000000000000000..96549ddebe359cacaa0bfdbecc7f36bf71fce8ab --- /dev/null +++ b/modules/ultralytics/yolo/data/dataloaders/v5loader.py @@ -0,0 +1,1109 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Dataloaders and dataset utils +""" + +import contextlib +import glob +import hashlib +import math +import os +import random +import shutil +import time +from itertools import repeat +from multiprocessing.pool import ThreadPool +from pathlib import Path +from threading import Thread +from urllib.parse import urlparse + +import cv2 +import numpy as np +import psutil +import torch +import torchvision +from PIL import ExifTags, Image, ImageOps +from torch.utils.data import DataLoader, Dataset, dataloader, distributed +from tqdm import tqdm + +from ultralytics.yolo.utils import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, is_colab, is_dir_writeable, + is_kaggle) +from ultralytics.yolo.utils.checks import check_requirements +from ultralytics.yolo.utils.ops import clean_str, segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn +from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first + +from .v5augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste, + letterbox, mixup, random_perspective) + +# Parameters +HELP_URL = 'See https://docs.ultralytics.com/yolov5/tutorials/train_custom_data' +IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # include image suffixes +VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes +LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html +RANK = int(os.getenv('RANK', -1)) +PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders + +# Get orientation exif tag +for orientation in ExifTags.TAGS.keys(): + if ExifTags.TAGS[orientation] == 'Orientation': + break + + +def get_hash(paths): + """Returns a single hash value of a list of paths (files or dirs).""" + size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes + h = hashlib.sha256(str(size).encode()) # hash sizes + h.update(''.join(paths).encode()) # hash paths + return h.hexdigest() # return hash + + +def exif_size(img): + """Returns exif-corrected PIL size.""" + s = img.size # (width, height) + with contextlib.suppress(Exception): + rotation = dict(img._getexif().items())[orientation] + if rotation in [6, 8]: # rotation 270 or 90 + s = (s[1], s[0]) + return s + + +def exif_transpose(image): + """ + Transpose a PIL image accordingly if it has an EXIF Orientation tag. + Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose() + + :param image: The image to transpose. + :return: An image. + """ + exif = image.getexif() + orientation = exif.get(0x0112, 1) # default 1 + if orientation > 1: + method = { + 2: Image.FLIP_LEFT_RIGHT, + 3: Image.ROTATE_180, + 4: Image.FLIP_TOP_BOTTOM, + 5: Image.TRANSPOSE, + 6: Image.ROTATE_270, + 7: Image.TRANSVERSE, + 8: Image.ROTATE_90}.get(orientation) + if method is not None: + image = image.transpose(method) + del exif[0x0112] + image.info['exif'] = exif.tobytes() + return image + + +def seed_worker(worker_id): + """Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader.""" + worker_seed = torch.initial_seed() % 2 ** 32 + np.random.seed(worker_seed) + random.seed(worker_seed) + + +def create_dataloader(path, + imgsz, + batch_size, + stride, + single_cls=False, + hyp=None, + augment=False, + cache=False, + pad=0.0, + rect=False, + rank=-1, + workers=8, + image_weights=False, + close_mosaic=False, + min_items=0, + prefix='', + shuffle=False, + seed=0): + if rect and shuffle: + LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False') + shuffle = False + with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP + dataset = LoadImagesAndLabels( + path, + imgsz, + batch_size, + augment=augment, # augmentation + hyp=hyp, # hyperparameters + rect=rect, # rectangular batches + cache_images=cache, + single_cls=single_cls, + stride=int(stride), + pad=pad, + image_weights=image_weights, + min_items=min_items, + prefix=prefix) + + batch_size = min(batch_size, len(dataset)) + nd = torch.cuda.device_count() # number of CUDA devices + nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers + sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) + loader = DataLoader if image_weights or close_mosaic else InfiniteDataLoader # DataLoader allows attribute updates + generator = torch.Generator() + generator.manual_seed(6148914691236517205 + seed + RANK) + return loader(dataset, + batch_size=batch_size, + shuffle=shuffle and sampler is None, + num_workers=nw, + sampler=sampler, + pin_memory=PIN_MEMORY, + collate_fn=LoadImagesAndLabels.collate_fn, + worker_init_fn=seed_worker, + generator=generator), dataset + + +class InfiniteDataLoader(dataloader.DataLoader): + """Dataloader that reuses workers + + Uses same syntax as vanilla DataLoader + """ + + def __init__(self, *args, **kwargs): + """Dataloader that reuses workers for same syntax as vanilla DataLoader.""" + super().__init__(*args, **kwargs) + object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) + self.iterator = super().__iter__() + + def __len__(self): + """Returns the length of batch_sampler's sampler.""" + return len(self.batch_sampler.sampler) + + def __iter__(self): + """Creates a sampler that infinitely repeats.""" + for _ in range(len(self)): + yield next(self.iterator) + + +class _RepeatSampler: + """Sampler that repeats forever + + Args: + sampler (Dataset.sampler): The sampler to repeat. + """ + + def __init__(self, sampler): + """Sampler that repeats dataset samples infinitely.""" + self.sampler = sampler + + def __iter__(self): + """Infinite loop iterating over a given sampler.""" + while True: + yield from iter(self.sampler) + + +class LoadScreenshots: + # YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"` + def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None): + """source = [screen_number left top width height] (pixels).""" + check_requirements('mss') + import mss + + source, *params = source.split() + self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0 + if len(params) == 1: + self.screen = int(params[0]) + elif len(params) == 4: + left, top, width, height = (int(x) for x in params) + elif len(params) == 5: + self.screen, left, top, width, height = (int(x) for x in params) + self.img_size = img_size + self.stride = stride + self.transforms = transforms + self.auto = auto + self.mode = 'stream' + self.frame = 0 + self.sct = mss.mss() + + # Parse monitor shape + monitor = self.sct.monitors[self.screen] + self.top = monitor['top'] if top is None else (monitor['top'] + top) + self.left = monitor['left'] if left is None else (monitor['left'] + left) + self.width = width or monitor['width'] + self.height = height or monitor['height'] + self.monitor = {'left': self.left, 'top': self.top, 'width': self.width, 'height': self.height} + + def __iter__(self): + """Iterates over objects with the same structure as the monitor attribute.""" + return self + + def __next__(self): + """mss screen capture: get raw pixels from the screen as np array.""" + im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR + s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: ' + + if self.transforms: + im = self.transforms(im0) # transforms + else: + im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize + im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + im = np.ascontiguousarray(im) # contiguous + self.frame += 1 + return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s + + +class LoadImages: + # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4` + def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1): + """Initialize instance variables and check for valid input.""" + if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line + path = Path(path).read_text().rsplit() + files = [] + for p in sorted(path) if isinstance(path, (list, tuple)) else [path]: + p = str(Path(p).resolve()) + if '*' in p: + files.extend(sorted(glob.glob(p, recursive=True))) # glob + elif os.path.isdir(p): + files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir + elif os.path.isfile(p): + files.append(p) # files + else: + raise FileNotFoundError(f'{p} does not exist') + + images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS] + videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS] + ni, nv = len(images), len(videos) + + self.img_size = img_size + self.stride = stride + self.files = images + videos + self.nf = ni + nv # number of files + self.video_flag = [False] * ni + [True] * nv + self.mode = 'image' + self.auto = auto + self.transforms = transforms # optional + self.vid_stride = vid_stride # video frame-rate stride + if any(videos): + self._new_video(videos[0]) # new video + else: + self.cap = None + assert self.nf > 0, f'No images or videos found in {p}. ' \ + f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}' + + def __iter__(self): + """Returns an iterator object for iterating over images or videos found in a directory.""" + self.count = 0 + return self + + def __next__(self): + """Iterator's next item, performs transformation on image and returns path, transformed image, original image, capture and size.""" + if self.count == self.nf: + raise StopIteration + path = self.files[self.count] + + if self.video_flag[self.count]: + # Read video + self.mode = 'video' + for _ in range(self.vid_stride): + self.cap.grab() + ret_val, im0 = self.cap.retrieve() + while not ret_val: + self.count += 1 + self.cap.release() + if self.count == self.nf: # last video + raise StopIteration + path = self.files[self.count] + self._new_video(path) + ret_val, im0 = self.cap.read() + + self.frame += 1 + # im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False + s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ' + + else: + # Read image + self.count += 1 + im0 = cv2.imread(path) # BGR + assert im0 is not None, f'Image Not Found {path}' + s = f'image {self.count}/{self.nf} {path}: ' + + if self.transforms: + im = self.transforms(im0) # transforms + else: + im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize + im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + im = np.ascontiguousarray(im) # contiguous + + return path, im, im0, self.cap, s + + def _new_video(self, path): + """Create a new video capture object.""" + self.frame = 0 + self.cap = cv2.VideoCapture(path) + self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride) + self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees + # self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) # disable https://github.com/ultralytics/yolov5/issues/8493 + + def _cv2_rotate(self, im): + """Rotate a cv2 video manually.""" + if self.orientation == 0: + return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE) + elif self.orientation == 180: + return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE) + elif self.orientation == 90: + return cv2.rotate(im, cv2.ROTATE_180) + return im + + def __len__(self): + """Returns the number of files in the class instance.""" + return self.nf # number of files + + +class LoadStreams: + # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams` + def __init__(self, sources='file.streams', img_size=640, stride=32, auto=True, transforms=None, vid_stride=1): + """Initialize YOLO detector with optional transforms and check input shapes.""" + torch.backends.cudnn.benchmark = True # faster for fixed-size inference + self.mode = 'stream' + self.img_size = img_size + self.stride = stride + self.vid_stride = vid_stride # video frame-rate stride + sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources] + n = len(sources) + self.sources = [clean_str(x) for x in sources] # clean source names for later + self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n + for i, s in enumerate(sources): # index, source + # Start thread to read frames from video stream + st = f'{i + 1}/{n}: {s}... ' + if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video + # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc' + check_requirements(('pafy', 'youtube_dl==2020.12.2')) + import pafy + s = pafy.new(s).getbest(preftype='mp4').url # YouTube URL + s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam + if s == 0: + assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.' + assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.' + cap = cv2.VideoCapture(s) + assert cap.isOpened(), f'{st}Failed to open {s}' + w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan + self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback + self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback + + _, self.imgs[i] = cap.read() # guarantee first frame + self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True) + LOGGER.info(f'{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)') + self.threads[i].start() + LOGGER.info('') # newline + + # Check for common shapes + s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs]) + self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal + self.auto = auto and self.rect + self.transforms = transforms # optional + if not self.rect: + LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.') + + def update(self, i, cap, stream): + """Read stream `i` frames in daemon thread.""" + n, f = 0, self.frames[i] # frame number, frame array + while cap.isOpened() and n < f: + n += 1 + cap.grab() # .read() = .grab() followed by .retrieve() + if n % self.vid_stride == 0: + success, im = cap.retrieve() + if success: + self.imgs[i] = im + else: + LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.') + self.imgs[i] = np.zeros_like(self.imgs[i]) + cap.open(stream) # re-open stream if signal was lost + time.sleep(0.0) # wait time + + def __iter__(self): + """Iterator that returns the class instance.""" + self.count = -1 + return self + + def __next__(self): + """Return a tuple containing transformed and resized image data.""" + self.count += 1 + if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit + cv2.destroyAllWindows() + raise StopIteration + + im0 = self.imgs.copy() + if self.transforms: + im = np.stack([self.transforms(x) for x in im0]) # transforms + else: + im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0]) # resize + im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW + im = np.ascontiguousarray(im) # contiguous + + return self.sources, im, im0, None, '' + + def __len__(self): + """Returns the number of sources as the length of the object.""" + return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years + + +def img2label_paths(img_paths): + """Define label paths as a function of image paths.""" + sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings + return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths] + + +class LoadImagesAndLabels(Dataset): + """YOLOv5 train_loader/val_loader, loads images and labels for training and validation.""" + cache_version = 0.6 # dataset labels *.cache version + rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4] + + def __init__(self, + path, + img_size=640, + batch_size=16, + augment=False, + hyp=None, + rect=False, + image_weights=False, + cache_images=False, + single_cls=False, + stride=32, + pad=0.0, + min_items=0, + prefix=''): + self.img_size = img_size + self.augment = augment + self.hyp = hyp + self.image_weights = image_weights + self.rect = False if image_weights else rect + self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) + self.mosaic_border = [-img_size // 2, -img_size // 2] + self.stride = stride + self.path = path + self.albumentations = Albumentations(size=img_size) if augment else None + + try: + f = [] # image files + for p in path if isinstance(path, list) else [path]: + p = Path(p) # os-agnostic + if p.is_dir(): # dir + f += glob.glob(str(p / '**' / '*.*'), recursive=True) + # f = list(p.rglob('*.*')) # pathlib + elif p.is_file(): # file + with open(p) as t: + t = t.read().strip().splitlines() + parent = str(p.parent) + os.sep + f += [x.replace('./', parent, 1) if x.startswith('./') else x for x in t] # to global path + # f += [p.parent / x.lstrip(os.sep) for x in t] # to global path (pathlib) + else: + raise FileNotFoundError(f'{prefix}{p} does not exist') + self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS) + # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib + assert self.im_files, f'{prefix}No images found' + except Exception as e: + raise FileNotFoundError(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e + + # Check cache + self.label_files = img2label_paths(self.im_files) # labels + cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') + try: + cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict + assert cache['version'] == self.cache_version # matches current version + assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash + except (FileNotFoundError, AssertionError, AttributeError): + cache, exists = self.cache_labels(cache_path, prefix), False # run cache ops + + # Display cache + nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total + if exists and LOCAL_RANK in (-1, 0): + d = f'Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt' + tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results + if cache['msgs']: + LOGGER.info('\n'.join(cache['msgs'])) # display warnings + assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}' + + # Read cache + [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items + labels, shapes, self.segments = zip(*cache.values()) + nl = len(np.concatenate(labels, 0)) # number of labels + assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}' + self.labels = list(labels) + self.shapes = np.array(shapes) + self.im_files = list(cache.keys()) # update + self.label_files = img2label_paths(cache.keys()) # update + + # Filter images + if min_items: + include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int) + LOGGER.info(f'{prefix}{n - len(include)}/{n} images filtered from dataset') + self.im_files = [self.im_files[i] for i in include] + self.label_files = [self.label_files[i] for i in include] + self.labels = [self.labels[i] for i in include] + self.segments = [self.segments[i] for i in include] + self.shapes = self.shapes[include] # wh + + # Create indices + n = len(self.shapes) # number of images + bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index + nb = bi[-1] + 1 # number of batches + self.batch = bi # batch index of image + self.n = n + self.indices = range(n) + + # Update labels + include_class = [] # filter labels to include only these classes (optional) + include_class_array = np.array(include_class).reshape(1, -1) + for i, (label, segment) in enumerate(zip(self.labels, self.segments)): + if include_class: + j = (label[:, 0:1] == include_class_array).any(1) + self.labels[i] = label[j] + if segment: + self.segments[i] = [segment[si] for si, idx in enumerate(j) if idx] + if single_cls: # single-class training, merge all classes into 0 + self.labels[i][:, 0] = 0 + + # Rectangular Training + if self.rect: + # Sort by aspect ratio + s = self.shapes # wh + ar = s[:, 1] / s[:, 0] # aspect ratio + irect = ar.argsort() + self.im_files = [self.im_files[i] for i in irect] + self.label_files = [self.label_files[i] for i in irect] + self.labels = [self.labels[i] for i in irect] + self.segments = [self.segments[i] for i in irect] + self.shapes = s[irect] # wh + ar = ar[irect] + + # Set training image shapes + shapes = [[1, 1]] * nb + for i in range(nb): + ari = ar[bi == i] + mini, maxi = ari.min(), ari.max() + if maxi < 1: + shapes[i] = [maxi, 1] + elif mini > 1: + shapes[i] = [1, 1 / mini] + + self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride + + # Cache images into RAM/disk for faster training + if cache_images == 'ram' and not self.check_cache_ram(prefix=prefix): + cache_images = False + self.ims = [None] * n + self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files] + if cache_images: + b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes + self.im_hw0, self.im_hw = [None] * n, [None] * n + fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image + with ThreadPool(NUM_THREADS) as pool: + results = pool.imap(fcn, range(n)) + pbar = tqdm(enumerate(results), total=n, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0) + for i, x in pbar: + if cache_images == 'disk': + b += self.npy_files[i].stat().st_size + else: # 'ram' + self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) + b += self.ims[i].nbytes + pbar.desc = f'{prefix}Caching images ({b / gb:.1f}GB {cache_images})' + pbar.close() + + def check_cache_ram(self, safety_margin=0.1, prefix=''): + """Check image caching requirements vs available memory.""" + b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes + n = min(self.n, 30) # extrapolate from 30 random images + for _ in range(n): + im = cv2.imread(random.choice(self.im_files)) # sample image + ratio = self.img_size / max(im.shape[0], im.shape[1]) # max(h, w) # ratio + b += im.nbytes * ratio ** 2 + mem_required = b * self.n / n # GB required to cache dataset into RAM + mem = psutil.virtual_memory() + cache = mem_required * (1 + safety_margin) < mem.available # to cache or not to cache, that is the question + if not cache: + LOGGER.info(f'{prefix}{mem_required / gb:.1f}GB RAM required, ' + f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, ' + f"{'caching images ✅' if cache else 'not caching images ⚠️'}") + return cache + + def cache_labels(self, path=Path('./labels.cache'), prefix=''): + """Cache labels and save as numpy file for next time.""" + # Cache dataset labels, check images and read shapes + if path.exists(): + path.unlink() # remove *.cache file if exists + x = {} # dict + nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages + desc = f'{prefix}Scanning {path.parent / path.stem}...' + total = len(self.im_files) + with ThreadPool(NUM_THREADS) as pool: + results = pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))) + pbar = tqdm(results, desc=desc, total=total, bar_format=TQDM_BAR_FORMAT) + for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar: + nm += nm_f + nf += nf_f + ne += ne_f + nc += nc_f + if im_file: + x[im_file] = [lb, shape, segments] + if msg: + msgs.append(msg) + pbar.desc = f'{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt' + pbar.close() + + if msgs: + LOGGER.info('\n'.join(msgs)) + if nf == 0: + LOGGER.warning(f'{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}') + x['hash'] = get_hash(self.label_files + self.im_files) + x['results'] = nf, nm, ne, nc, len(self.im_files) + x['msgs'] = msgs # warnings + x['version'] = self.cache_version # cache version + if is_dir_writeable(path.parent): + np.save(str(path), x) # save cache for next time + path.with_suffix('.cache.npy').rename(path) # remove .npy suffix + LOGGER.info(f'{prefix}New cache created: {path}') + else: + LOGGER.warning(f'{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable') # not writeable + return x + + def __len__(self): + """Returns the length of 'im_files' attribute.""" + return len(self.im_files) + + def __getitem__(self, index): + """Get a sample and its corresponding label, filename and shape from the dataset.""" + index = self.indices[index] # linear, shuffled, or image_weights + + hyp = self.hyp + mosaic = self.mosaic and random.random() < hyp['mosaic'] + if mosaic: + # Load mosaic + img, labels = self.load_mosaic(index) + shapes = None + + # MixUp augmentation + if random.random() < hyp['mixup']: + img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1))) + + else: + # Load image + img, (h0, w0), (h, w) = self.load_image(index) + + # Letterbox + shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape + img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) + shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling + + labels = self.labels[index].copy() + if labels.size: # normalized xywh to pixel xyxy format + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) + + if self.augment: + img, labels = random_perspective(img, + labels, + degrees=hyp['degrees'], + translate=hyp['translate'], + scale=hyp['scale'], + shear=hyp['shear'], + perspective=hyp['perspective']) + + nl = len(labels) # number of labels + if nl: + labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3) + + if self.augment: + # Albumentations + img, labels = self.albumentations(img, labels) + nl = len(labels) # update after albumentations + + # HSV color-space + augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) + + # Flip up-down + if random.random() < hyp['flipud']: + img = np.flipud(img) + if nl: + labels[:, 2] = 1 - labels[:, 2] + + # Flip left-right + if random.random() < hyp['fliplr']: + img = np.fliplr(img) + if nl: + labels[:, 1] = 1 - labels[:, 1] + + # Cutouts + # labels = cutout(img, labels, p=0.5) + # nl = len(labels) # update after cutout + + labels_out = torch.zeros((nl, 6)) + if nl: + labels_out[:, 1:] = torch.from_numpy(labels) + + # Convert + img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + img = np.ascontiguousarray(img) + + return torch.from_numpy(img), labels_out, self.im_files[index], shapes + + def load_image(self, i): + """Loads 1 image from dataset index 'i', returns (im, original hw, resized hw).""" + im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i], + if im is None: # not cached in RAM + if fn.exists(): # load npy + im = np.load(fn) + else: # read image + im = cv2.imread(f) # BGR + assert im is not None, f'Image Not Found {f}' + h0, w0 = im.shape[:2] # orig hw + r = self.img_size / max(h0, w0) # ratio + if r != 1: # if sizes are not equal + interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA + im = cv2.resize(im, (math.ceil(w0 * r), math.ceil(h0 * r)), interpolation=interp) + return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized + return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized + + def cache_images_to_disk(self, i): + """Saves an image as an *.npy file for faster loading.""" + f = self.npy_files[i] + if not f.exists(): + np.save(f.as_posix(), cv2.imread(self.im_files[i])) + + def load_mosaic(self, index): + """YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic.""" + labels4, segments4 = [], [] + s = self.img_size + yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y + indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices + random.shuffle(indices) + for i, index in enumerate(indices): + # Load image + img, _, (h, w) = self.load_image(index) + + # Place img in img4 + if i == 0: # top left + img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) + x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) + elif i == 1: # top right + x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc + x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h + elif i == 2: # bottom left + x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) + x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) + elif i == 3: # bottom right + x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) + x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) + + img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] + padw = x1a - x1b + padh = y1a - y1b + + # Labels + labels, segments = self.labels[index].copy(), self.segments[index].copy() + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format + segments = [xyn2xy(x, w, h, padw, padh) for x in segments] + labels4.append(labels) + segments4.extend(segments) + + # Concat/clip labels + labels4 = np.concatenate(labels4, 0) + for x in (labels4[:, 1:], *segments4): + np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() + # img4, labels4 = replicate(img4, labels4) # replicate + + # Augment + img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste']) + img4, labels4 = random_perspective(img4, + labels4, + segments4, + degrees=self.hyp['degrees'], + translate=self.hyp['translate'], + scale=self.hyp['scale'], + shear=self.hyp['shear'], + perspective=self.hyp['perspective'], + border=self.mosaic_border) # border to remove + + return img4, labels4 + + def load_mosaic9(self, index): + """YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic.""" + labels9, segments9 = [], [] + s = self.img_size + indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices + random.shuffle(indices) + hp, wp = -1, -1 # height, width previous + for i, index in enumerate(indices): + # Load image + img, _, (h, w) = self.load_image(index) + + # Place img in img9 + if i == 0: # center + img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + h0, w0 = h, w + c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates + elif i == 1: # top + c = s, s - h, s + w, s + elif i == 2: # top right + c = s + wp, s - h, s + wp + w, s + elif i == 3: # right + c = s + w0, s, s + w0 + w, s + h + elif i == 4: # bottom right + c = s + w0, s + hp, s + w0 + w, s + hp + h + elif i == 5: # bottom + c = s + w0 - w, s + h0, s + w0, s + h0 + h + elif i == 6: # bottom left + c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h + elif i == 7: # left + c = s - w, s + h0 - h, s, s + h0 + elif i == 8: # top left + c = s - w, s + h0 - hp - h, s, s + h0 - hp + + padx, pady = c[:2] + x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords + + # Labels + labels, segments = self.labels[index].copy(), self.segments[index].copy() + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format + segments = [xyn2xy(x, w, h, padx, pady) for x in segments] + labels9.append(labels) + segments9.extend(segments) + + # Image + img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax] + hp, wp = h, w # height, width previous + + # Offset + yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y + img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] + + # Concat/clip labels + labels9 = np.concatenate(labels9, 0) + labels9[:, [1, 3]] -= xc + labels9[:, [2, 4]] -= yc + c = np.array([xc, yc]) # centers + segments9 = [x - c for x in segments9] + + for x in (labels9[:, 1:], *segments9): + np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() + # img9, labels9 = replicate(img9, labels9) # replicate + + # Augment + img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp['copy_paste']) + img9, labels9 = random_perspective(img9, + labels9, + segments9, + degrees=self.hyp['degrees'], + translate=self.hyp['translate'], + scale=self.hyp['scale'], + shear=self.hyp['shear'], + perspective=self.hyp['perspective'], + border=self.mosaic_border) # border to remove + + return img9, labels9 + + @staticmethod + def collate_fn(batch): + """YOLOv8 collate function, outputs dict.""" + im, label, path, shapes = zip(*batch) # transposed + for i, lb in enumerate(label): + lb[:, 0] = i # add target image index for build_targets() + batch_idx, cls, bboxes = torch.cat(label, 0).split((1, 1, 4), dim=1) + return { + 'ori_shape': tuple((x[0] if x else None) for x in shapes), + 'ratio_pad': tuple((x[1] if x else None) for x in shapes), + 'im_file': path, + 'img': torch.stack(im, 0), + 'cls': cls, + 'bboxes': bboxes, + 'batch_idx': batch_idx.view(-1)} + + @staticmethod + def collate_fn_old(batch): + """YOLOv5 original collate function.""" + im, label, path, shapes = zip(*batch) # transposed + for i, lb in enumerate(label): + lb[:, 0] = i # add target image index for build_targets() + return torch.stack(im, 0), torch.cat(label, 0), path, shapes + + +# Ancillary functions -------------------------------------------------------------------------------------------------- +def flatten_recursive(path=DATASETS_DIR / 'coco128'): + """Flatten a recursive directory by bringing all files to top level.""" + new_path = Path(f'{str(path)}_flat') + if os.path.exists(new_path): + shutil.rmtree(new_path) # delete output folder + os.makedirs(new_path) # make new output folder + for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)): + shutil.copyfile(file, new_path / Path(file).name) + + +def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes() + # Convert detection dataset into classification dataset, with one directory per class + path = Path(path) # images dir + shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None # remove existing + files = list(path.rglob('*.*')) + n = len(files) # number of files + for im_file in tqdm(files, total=n): + if im_file.suffix[1:] in IMG_FORMATS: + # Image + im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB + h, w = im.shape[:2] + + # Labels + lb_file = Path(img2label_paths([str(im_file)])[0]) + if Path(lb_file).exists(): + with open(lb_file) as f: + lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels + + for j, x in enumerate(lb): + c = int(x[0]) # class + f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename + if not f.parent.is_dir(): + f.parent.mkdir(parents=True) + + b = x[1:] * [w, h, w, h] # box + # B[2:] = b[2:].max() # rectangle to square + b[2:] = b[2:] * 1.2 + 3 # pad + b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int) + + b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image + b[[1, 3]] = np.clip(b[[1, 3]], 0, h) + assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' + + +def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False): + """Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files + Usage: from utils.dataloaders import *; autosplit() + Arguments + path: Path to images directory + weights: Train, val, test weights (list, tuple) + annotated_only: Only use images with an annotated txt file + """ + path = Path(path) # images dir + files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only + n = len(files) # number of files + random.seed(0) # for reproducibility + indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split + + txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files + for x in txt: + if (path.parent / x).exists(): + (path.parent / x).unlink() # remove existing + + print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) + for i, img in tqdm(zip(indices, files), total=n): + if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label + with open(path.parent / txt[i], 'a') as f: + f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file + + +def verify_image_label(args): + """Verify one image-label pair.""" + im_file, lb_file, prefix = args + nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments + try: + # Verify images + im = Image.open(im_file) + im.verify() # PIL verify + shape = exif_size(im) # image size + assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' + assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' + if im.format.lower() in ('jpg', 'jpeg'): + with open(im_file, 'rb') as f: + f.seek(-2, 2) + if f.read() != b'\xff\xd9': # corrupt JPEG + ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100) + msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved' + + # Verify labels + if os.path.isfile(lb_file): + nf = 1 # label found + with open(lb_file) as f: + lb = [x.split() for x in f.read().strip().splitlines() if len(x)] + if any(len(x) > 6 for x in lb): # is segment + classes = np.array([x[0] for x in lb], dtype=np.float32) + segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) + lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) + lb = np.array(lb, dtype=np.float32) + nl = len(lb) + if nl: + assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected' + assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}' + assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}' + _, i = np.unique(lb, axis=0, return_index=True) + if len(i) < nl: # duplicate row check + lb = lb[i] # remove duplicates + if segments: + segments = [segments[x] for x in i] + msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed' + else: + ne = 1 # label empty + lb = np.zeros((0, 5), dtype=np.float32) + else: + nm = 1 # label missing + lb = np.zeros((0, 5), dtype=np.float32) + return im_file, lb, shape, segments, nm, nf, ne, nc, msg + except Exception as e: + nc = 1 + msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}' + return [None, None, None, None, nm, nf, ne, nc, msg] + + +# Classification dataloaders ------------------------------------------------------------------------------------------- +class ClassificationDataset(torchvision.datasets.ImageFolder): + """ + YOLOv5 Classification Dataset. + Arguments + root: Dataset path + transform: torchvision transforms, used by default + album_transform: Albumentations transforms, used if installed + """ + + def __init__(self, root, augment, imgsz, cache=False): + """Initialize YOLO dataset with root, augmentation, image size, and cache parameters.""" + super().__init__(root=root) + self.torch_transforms = classify_transforms(imgsz) + self.album_transforms = classify_albumentations(augment, imgsz) if augment else None + self.cache_ram = cache is True or cache == 'ram' + self.cache_disk = cache == 'disk' + self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im + + def __getitem__(self, i): + """Retrieves data items of 'dataset' via indices & creates InfiniteDataLoader.""" + f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image + if self.cache_ram and im is None: + im = self.samples[i][3] = cv2.imread(f) + elif self.cache_disk: + if not fn.exists(): # load npy + np.save(fn.as_posix(), cv2.imread(f)) + im = np.load(fn) + else: # read image + im = cv2.imread(f) # BGR + if self.album_transforms: + sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))['image'] + else: + sample = self.torch_transforms(im) + return sample, j + + +def create_classification_dataloader(path, + imgsz=224, + batch_size=16, + augment=True, + cache=False, + rank=-1, + workers=8, + shuffle=True): + """Returns Dataloader object to be used with YOLOv5 Classifier.""" + with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP + dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache) + batch_size = min(batch_size, len(dataset)) + nd = torch.cuda.device_count() + nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) + sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) + generator = torch.Generator() + generator.manual_seed(6148914691236517205 + RANK) + return InfiniteDataLoader(dataset, + batch_size=batch_size, + shuffle=shuffle and sampler is None, + num_workers=nw, + sampler=sampler, + pin_memory=PIN_MEMORY, + worker_init_fn=seed_worker, + generator=generator) # or DataLoader(persistent_workers=True) diff --git a/modules/ultralytics/yolo/data/dataset.py b/modules/ultralytics/yolo/data/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..17e6d47c109f9f9088ce01602dc9b06e0a89fde9 --- /dev/null +++ b/modules/ultralytics/yolo/data/dataset.py @@ -0,0 +1,274 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from itertools import repeat +from multiprocessing.pool import ThreadPool +from pathlib import Path + +import cv2 +import numpy as np +import torch +import torchvision +from tqdm import tqdm + +from ..utils import LOCAL_RANK, NUM_THREADS, TQDM_BAR_FORMAT, is_dir_writeable +from .augment import Compose, Format, Instances, LetterBox, classify_albumentations, classify_transforms, v8_transforms +from .base import BaseDataset +from .utils import HELP_URL, LOGGER, get_hash, img2label_paths, verify_image_label + + +class YOLODataset(BaseDataset): + """ + Dataset class for loading object detection and/or segmentation labels in YOLO format. + + Args: + data (dict, optional): A dataset YAML dictionary. Defaults to None. + use_segments (bool, optional): If True, segmentation masks are used as labels. Defaults to False. + use_keypoints (bool, optional): If True, keypoints are used as labels. Defaults to False. + + Returns: + (torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model. + """ + cache_version = '1.0.2' # dataset labels *.cache version, >= 1.0.0 for YOLOv8 + rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4] + + def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs): + self.use_segments = use_segments + self.use_keypoints = use_keypoints + self.data = data + assert not (self.use_segments and self.use_keypoints), 'Can not use both segments and keypoints.' + super().__init__(*args, **kwargs) + + def cache_labels(self, path=Path('./labels.cache')): + """Cache dataset labels, check images and read shapes. + Args: + path (Path): path where to save the cache file (default: Path('./labels.cache')). + Returns: + (dict): labels. + """ + x = {'labels': []} + nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages + desc = f'{self.prefix}Scanning {path.parent / path.stem}...' + total = len(self.im_files) + nkpt, ndim = self.data.get('kpt_shape', (0, 0)) + if self.use_keypoints and (nkpt <= 0 or ndim not in (2, 3)): + raise ValueError("'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of " + "keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'") + with ThreadPool(NUM_THREADS) as pool: + results = pool.imap(func=verify_image_label, + iterable=zip(self.im_files, self.label_files, repeat(self.prefix), + repeat(self.use_keypoints), repeat(len(self.data['names'])), repeat(nkpt), + repeat(ndim))) + pbar = tqdm(results, desc=desc, total=total, bar_format=TQDM_BAR_FORMAT) + for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar: + nm += nm_f + nf += nf_f + ne += ne_f + nc += nc_f + if im_file: + x['labels'].append( + dict( + im_file=im_file, + shape=shape, + cls=lb[:, 0:1], # n, 1 + bboxes=lb[:, 1:], # n, 4 + segments=segments, + keypoints=keypoint, + normalized=True, + bbox_format='xywh')) + if msg: + msgs.append(msg) + pbar.desc = f'{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt' + pbar.close() + + if msgs: + LOGGER.info('\n'.join(msgs)) + if nf == 0: + LOGGER.warning(f'{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}') + x['hash'] = get_hash(self.label_files + self.im_files) + x['results'] = nf, nm, ne, nc, len(self.im_files) + x['msgs'] = msgs # warnings + x['version'] = self.cache_version # cache version + if is_dir_writeable(path.parent): + if path.exists(): + path.unlink() # remove *.cache file if exists + np.save(str(path), x) # save cache for next time + path.with_suffix('.cache.npy').rename(path) # remove .npy suffix + LOGGER.info(f'{self.prefix}New cache created: {path}') + else: + LOGGER.warning(f'{self.prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable, cache not saved.') + return x + + def get_labels(self): + """Returns dictionary of labels for YOLO training.""" + self.label_files = img2label_paths(self.im_files) + cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') + try: + import gc + gc.disable() # reduce pickle load time https://github.com/ultralytics/ultralytics/pull/1585 + cache, exists = np.load(str(cache_path), allow_pickle=True).item(), True # load dict + gc.enable() + assert cache['version'] == self.cache_version # matches current version + assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash + except (FileNotFoundError, AssertionError, AttributeError): + cache, exists = self.cache_labels(cache_path), False # run cache ops + + # Display cache + nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total + if exists and LOCAL_RANK in (-1, 0): + d = f'Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt' + tqdm(None, desc=self.prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results + if cache['msgs']: + LOGGER.info('\n'.join(cache['msgs'])) # display warnings + if nf == 0: # number of labels found + raise FileNotFoundError(f'{self.prefix}No labels found in {cache_path}, can not start training. {HELP_URL}') + + # Read cache + [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items + labels = cache['labels'] + self.im_files = [lb['im_file'] for lb in labels] # update im_files + + # Check if the dataset is all boxes or all segments + lengths = ((len(lb['cls']), len(lb['bboxes']), len(lb['segments'])) for lb in labels) + len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths)) + if len_segments and len_boxes != len_segments: + LOGGER.warning( + f'WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, ' + f'len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. ' + 'To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset.') + for lb in labels: + lb['segments'] = [] + if len_cls == 0: + raise ValueError(f'All labels empty in {cache_path}, can not start training without labels. {HELP_URL}') + return labels + + # TODO: use hyp config to set all these augmentations + def build_transforms(self, hyp=None): + """Builds and appends transforms to the list.""" + if self.augment: + hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 + hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 + transforms = v8_transforms(self, self.imgsz, hyp) + else: + transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)]) + transforms.append( + Format(bbox_format='xywh', + normalize=True, + return_mask=self.use_segments, + return_keypoint=self.use_keypoints, + batch_idx=True, + mask_ratio=hyp.mask_ratio, + mask_overlap=hyp.overlap_mask)) + return transforms + + def close_mosaic(self, hyp): + """Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations.""" + hyp.mosaic = 0.0 # set mosaic ratio=0.0 + hyp.copy_paste = 0.0 # keep the same behavior as previous v8 close-mosaic + hyp.mixup = 0.0 # keep the same behavior as previous v8 close-mosaic + self.transforms = self.build_transforms(hyp) + + def update_labels_info(self, label): + """custom your label format here.""" + # NOTE: cls is not with bboxes now, classification and semantic segmentation need an independent cls label + # we can make it also support classification and semantic segmentation by add or remove some dict keys there. + bboxes = label.pop('bboxes') + segments = label.pop('segments') + keypoints = label.pop('keypoints', None) + bbox_format = label.pop('bbox_format') + normalized = label.pop('normalized') + label['instances'] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized) + return label + + @staticmethod + def collate_fn(batch): + """Collates data samples into batches.""" + new_batch = {} + keys = batch[0].keys() + values = list(zip(*[list(b.values()) for b in batch])) + for i, k in enumerate(keys): + value = values[i] + if k == 'img': + value = torch.stack(value, 0) + if k in ['masks', 'keypoints', 'bboxes', 'cls']: + value = torch.cat(value, 0) + new_batch[k] = value + new_batch['batch_idx'] = list(new_batch['batch_idx']) + for i in range(len(new_batch['batch_idx'])): + new_batch['batch_idx'][i] += i # add target image index for build_targets() + new_batch['batch_idx'] = torch.cat(new_batch['batch_idx'], 0) + return new_batch + + +# Classification dataloaders ------------------------------------------------------------------------------------------- +class ClassificationDataset(torchvision.datasets.ImageFolder): + """ + YOLO Classification Dataset. + + Args: + root (str): Dataset path. + + Attributes: + cache_ram (bool): True if images should be cached in RAM, False otherwise. + cache_disk (bool): True if images should be cached on disk, False otherwise. + samples (list): List of samples containing file, index, npy, and im. + torch_transforms (callable): torchvision transforms applied to the dataset. + album_transforms (callable, optional): Albumentations transforms applied to the dataset if augment is True. + """ + + def __init__(self, root, args, augment=False, cache=False): + """ + Initialize YOLO object with root, image size, augmentations, and cache settings. + + Args: + root (str): Dataset path. + args (Namespace): Argument parser containing dataset related settings. + augment (bool, optional): True if dataset should be augmented, False otherwise. Defaults to False. + cache (bool | str | optional): Cache setting, can be True, False, 'ram' or 'disk'. Defaults to False. + """ + super().__init__(root=root) + if augment and args.fraction < 1.0: # reduce training fraction + self.samples = self.samples[:round(len(self.samples) * args.fraction)] + self.cache_ram = cache is True or cache == 'ram' + self.cache_disk = cache == 'disk' + self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im + self.torch_transforms = classify_transforms(args.imgsz) + self.album_transforms = classify_albumentations( + augment=augment, + size=args.imgsz, + scale=(1.0 - args.scale, 1.0), # (0.08, 1.0) + hflip=args.fliplr, + vflip=args.flipud, + hsv_h=args.hsv_h, # HSV-Hue augmentation (fraction) + hsv_s=args.hsv_s, # HSV-Saturation augmentation (fraction) + hsv_v=args.hsv_v, # HSV-Value augmentation (fraction) + mean=(0.0, 0.0, 0.0), # IMAGENET_MEAN + std=(1.0, 1.0, 1.0), # IMAGENET_STD + auto_aug=False) if augment else None + + def __getitem__(self, i): + """Returns subset of data and targets corresponding to given indices.""" + f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image + if self.cache_ram and im is None: + im = self.samples[i][3] = cv2.imread(f) + elif self.cache_disk: + if not fn.exists(): # load npy + np.save(fn.as_posix(), cv2.imread(f)) + im = np.load(fn) + else: # read image + im = cv2.imread(f) # BGR + if self.album_transforms: + sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))['image'] + else: + sample = self.torch_transforms(im) + return {'img': sample, 'cls': j} + + def __len__(self) -> int: + return len(self.samples) + + +# TODO: support semantic segmentation +class SemanticDataset(BaseDataset): + + def __init__(self): + """Initialize a SemanticDataset object.""" + super().__init__() diff --git a/modules/ultralytics/yolo/data/dataset_wrappers.py b/modules/ultralytics/yolo/data/dataset_wrappers.py new file mode 100644 index 0000000000000000000000000000000000000000..72a6fb57a373cb9fbfd2a4facde7dfb427452a64 --- /dev/null +++ b/modules/ultralytics/yolo/data/dataset_wrappers.py @@ -0,0 +1,53 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import collections +from copy import deepcopy + +from .augment import LetterBox + + +class MixAndRectDataset: + """ + A dataset class that applies mosaic and mixup transformations as well as rectangular training. + + Attributes: + dataset: The base dataset. + imgsz: The size of the images in the dataset. + """ + + def __init__(self, dataset): + """ + Args: + dataset (BaseDataset): The base dataset to apply transformations to. + """ + self.dataset = dataset + self.imgsz = dataset.imgsz + + def __len__(self): + """Returns the number of items in the dataset.""" + return len(self.dataset) + + def __getitem__(self, index): + """ + Applies mosaic, mixup and rectangular training transformations to an item in the dataset. + + Args: + index (int): Index of the item in the dataset. + + Returns: + (dict): A dictionary containing the transformed item data. + """ + labels = deepcopy(self.dataset[index]) + for transform in self.dataset.transforms.tolist(): + # Mosaic and mixup + if hasattr(transform, 'get_indexes'): + indexes = transform.get_indexes(self.dataset) + if not isinstance(indexes, collections.abc.Sequence): + indexes = [indexes] + labels['mix_labels'] = [deepcopy(self.dataset[index]) for index in indexes] + if self.dataset.rect and isinstance(transform, LetterBox): + transform.new_shape = self.dataset.batch_shapes[self.dataset.batch[index]] + labels = transform(labels) + if 'mix_labels' in labels: + labels.pop('mix_labels') + return labels diff --git a/modules/ultralytics/yolo/data/scripts/download_weights.sh b/modules/ultralytics/yolo/data/scripts/download_weights.sh new file mode 100644 index 0000000000000000000000000000000000000000..72502a366eaee7dff539fc806e00c0d1bcc5e404 --- /dev/null +++ b/modules/ultralytics/yolo/data/scripts/download_weights.sh @@ -0,0 +1,18 @@ +#!/bin/bash +# Ultralytics YOLO 🚀, AGPL-3.0 license +# Download latest models from https://github.com/ultralytics/assets/releases +# Example usage: bash ultralytics/yolo/data/scripts/download_weights.sh +# parent +# └── weights +# ├── yolov8n.pt ← downloads here +# ├── yolov8s.pt +# └── ... + +python - < 9) & (shape[1] > 9), f'image size {shape} <10 pixels' + assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' + if im.format.lower() in ('jpg', 'jpeg'): + with open(im_file, 'rb') as f: + f.seek(-2, 2) + if f.read() != b'\xff\xd9': # corrupt JPEG + ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100) + msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved' + + # Verify labels + if os.path.isfile(lb_file): + nf = 1 # label found + with open(lb_file) as f: + lb = [x.split() for x in f.read().strip().splitlines() if len(x)] + if any(len(x) > 6 for x in lb) and (not keypoint): # is segment + classes = np.array([x[0] for x in lb], dtype=np.float32) + segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) + lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) + lb = np.array(lb, dtype=np.float32) + nl = len(lb) + if nl: + if keypoint: + assert lb.shape[1] == (5 + nkpt * ndim), f'labels require {(5 + nkpt * ndim)} columns each' + assert (lb[:, 5::ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels' + assert (lb[:, 6::ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels' + else: + assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected' + assert (lb[:, 1:] <= 1).all(), \ + f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}' + assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}' + # All labels + max_cls = int(lb[:, 0].max()) # max label count + assert max_cls <= num_cls, \ + f'Label class {max_cls} exceeds dataset class count {num_cls}. ' \ + f'Possible class labels are 0-{num_cls - 1}' + _, i = np.unique(lb, axis=0, return_index=True) + if len(i) < nl: # duplicate row check + lb = lb[i] # remove duplicates + if segments: + segments = [segments[x] for x in i] + msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed' + else: + ne = 1 # label empty + lb = np.zeros((0, (5 + nkpt * ndim)), dtype=np.float32) if keypoint else np.zeros( + (0, 5), dtype=np.float32) + else: + nm = 1 # label missing + lb = np.zeros((0, (5 + nkpt * ndim)), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32) + if keypoint: + keypoints = lb[:, 5:].reshape(-1, nkpt, ndim) + if ndim == 2: + kpt_mask = np.ones(keypoints.shape[:2], dtype=np.float32) + kpt_mask = np.where(keypoints[..., 0] < 0, 0.0, kpt_mask) + kpt_mask = np.where(keypoints[..., 1] < 0, 0.0, kpt_mask) + keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1) # (nl, nkpt, 3) + lb = lb[:, :5] + return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg + except Exception as e: + nc = 1 + msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}' + return [None, None, None, None, None, nm, nf, ne, nc, msg] + + +def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1): + """ + Args: + imgsz (tuple): The image size. + polygons (list[np.ndarray]): [N, M], N is the number of polygons, M is the number of points(Be divided by 2). + color (int): color + downsample_ratio (int): downsample ratio + """ + mask = np.zeros(imgsz, dtype=np.uint8) + polygons = np.asarray(polygons) + polygons = polygons.astype(np.int32) + shape = polygons.shape + polygons = polygons.reshape(shape[0], -1, 2) + cv2.fillPoly(mask, polygons, color=color) + nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio) + # NOTE: fillPoly firstly then resize is trying the keep the same way + # of loss calculation when mask-ratio=1. + mask = cv2.resize(mask, (nw, nh)) + return mask + + +def polygons2masks(imgsz, polygons, color, downsample_ratio=1): + """ + Args: + imgsz (tuple): The image size. + polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0) + color (int): color + downsample_ratio (int): downsample ratio + """ + masks = [] + for si in range(len(polygons)): + mask = polygon2mask(imgsz, [polygons[si].reshape(-1)], color, downsample_ratio) + masks.append(mask) + return np.array(masks) + + +def polygons2masks_overlap(imgsz, segments, downsample_ratio=1): + """Return a (640, 640) overlap mask.""" + masks = np.zeros((imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio), + dtype=np.int32 if len(segments) > 255 else np.uint8) + areas = [] + ms = [] + for si in range(len(segments)): + mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1) + ms.append(mask) + areas.append(mask.sum()) + areas = np.asarray(areas) + index = np.argsort(-areas) + ms = np.array(ms)[index] + for i in range(len(segments)): + mask = ms[i] * (i + 1) + masks = masks + mask + masks = np.clip(masks, a_min=0, a_max=i + 1) + return masks, index + + +def check_det_dataset(dataset, autodownload=True): + """Download, check and/or unzip dataset if not found locally.""" + data = check_file(dataset) + + # Download (optional) + extract_dir = '' + if isinstance(data, (str, Path)) and (zipfile.is_zipfile(data) or is_tarfile(data)): + new_dir = safe_download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False) + data = next((DATASETS_DIR / new_dir).rglob('*.yaml')) + extract_dir, autodownload = data.parent, False + + # Read yaml (optional) + if isinstance(data, (str, Path)): + data = yaml_load(data, append_filename=True) # dictionary + + # Checks + for k in 'train', 'val': + if k not in data: + raise SyntaxError( + emojis(f"{dataset} '{k}:' key missing ❌.\n'train' and 'val' are required in all data YAMLs.")) + if 'names' not in data and 'nc' not in data: + raise SyntaxError(emojis(f"{dataset} key missing ❌.\n either 'names' or 'nc' are required in all data YAMLs.")) + if 'names' in data and 'nc' in data and len(data['names']) != data['nc']: + raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match.")) + if 'names' not in data: + data['names'] = [f'class_{i}' for i in range(data['nc'])] + else: + data['nc'] = len(data['names']) + + data['names'] = check_class_names(data['names']) + + # Resolve paths + path = Path(extract_dir or data.get('path') or Path(data.get('yaml_file', '')).parent) # dataset root + + if not path.is_absolute(): + path = (DATASETS_DIR / path).resolve() + data['path'] = path # download scripts + for k in 'train', 'val', 'test': + if data.get(k): # prepend path + if isinstance(data[k], str): + x = (path / data[k]).resolve() + if not x.exists() and data[k].startswith('../'): + x = (path / data[k][3:]).resolve() + data[k] = str(x) + else: + data[k] = [str((path / x).resolve()) for x in data[k]] + + # Parse yaml + train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) + if val: + val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path + if not all(x.exists() for x in val): + name = clean_url(dataset) # dataset name with URL auth stripped + m = f"\nDataset '{name}' images not found ⚠️, missing paths %s" % [str(x) for x in val if not x.exists()] + if s and autodownload: + LOGGER.warning(m) + else: + m += f"\nNote dataset download directory is '{DATASETS_DIR}'. You can update this in '{SETTINGS_YAML}'" + raise FileNotFoundError(m) + t = time.time() + if s.startswith('http') and s.endswith('.zip'): # URL + safe_download(url=s, dir=DATASETS_DIR, delete=True) + r = None # success + elif s.startswith('bash '): # bash script + LOGGER.info(f'Running {s} ...') + r = os.system(s) + else: # python script + r = exec(s, {'yaml': data}) # return None + dt = f'({round(time.time() - t, 1)}s)' + s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f'failure {dt} ❌' + LOGGER.info(f'Dataset download {s}\n') + check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf') # download fonts + + return data # dictionary + + +def check_cls_dataset(dataset: str, split=''): + """ + Check a classification dataset such as Imagenet. + + This function takes a `dataset` name as input and returns a dictionary containing information about the dataset. + If the dataset is not found, it attempts to download the dataset from the internet and save it locally. + + Args: + dataset (str): Name of the dataset. + split (str, optional): Dataset split, either 'val', 'test', or ''. Defaults to ''. + + Returns: + data (dict): A dictionary containing the following keys and values: + 'train': Path object for the directory containing the training set of the dataset + 'val': Path object for the directory containing the validation set of the dataset + 'test': Path object for the directory containing the test set of the dataset + 'nc': Number of classes in the dataset + 'names': List of class names in the dataset + """ + data_dir = (DATASETS_DIR / dataset).resolve() + if not data_dir.is_dir(): + LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...') + t = time.time() + if dataset == 'imagenet': + subprocess.run(f"bash {ROOT / 'yolo/data/scripts/get_imagenet.sh'}", shell=True, check=True) + else: + url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip' + download(url, dir=data_dir.parent) + s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n" + LOGGER.info(s) + train_set = data_dir / 'train' + val_set = data_dir / 'val' if (data_dir / 'val').exists() else None # data/test or data/val + test_set = data_dir / 'test' if (data_dir / 'test').exists() else None # data/val or data/test + if split == 'val' and not val_set: + LOGGER.info("WARNING ⚠️ Dataset 'split=val' not found, using 'split=test' instead.") + elif split == 'test' and not test_set: + LOGGER.info("WARNING ⚠️ Dataset 'split=test' not found, using 'split=val' instead.") + + nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes + names = [x.name for x in (data_dir / 'train').iterdir() if x.is_dir()] # class names list + names = dict(enumerate(sorted(names))) + return {'train': train_set, 'val': val_set or test_set, 'test': test_set or val_set, 'nc': nc, 'names': names} + + +class HUBDatasetStats(): + """ + Class for generating HUB dataset JSON and `-hub` dataset directory + + Arguments + path: Path to data.yaml or data.zip (with data.yaml inside data.zip) + task: Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. + autodownload: Attempt to download dataset if not found locally + + Usage + from ultralytics.yolo.data.utils import HUBDatasetStats + stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8.zip', task='detect') # detect dataset + stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8-seg.zip', task='segment') # segment dataset + stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8-pose.zip', task='pose') # pose dataset + stats.get_json(save=False) + stats.process_images() + """ + + def __init__(self, path='coco128.yaml', task='detect', autodownload=False): + """Initialize class.""" + LOGGER.info(f'Starting HUB dataset checks for {path}....') + zipped, data_dir, yaml_path = self._unzip(Path(path)) + try: + # data = yaml_load(check_yaml(yaml_path)) # data dict + data = check_det_dataset(yaml_path, autodownload) # data dict + if zipped: + data['path'] = data_dir + except Exception as e: + raise Exception('error/HUB/dataset_stats/yaml_load') from e + + self.hub_dir = Path(str(data['path']) + '-hub') + self.im_dir = self.hub_dir / 'images' + self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images + self.stats = {'nc': len(data['names']), 'names': list(data['names'].values())} # statistics dictionary + self.data = data + self.task = task # detect, segment, pose, classify + + @staticmethod + def _find_yaml(dir): + """Return data.yaml file.""" + files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive + assert files, f'No *.yaml file found in {dir}' + if len(files) > 1: + files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name + assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed' + assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}' + return files[0] + + def _unzip(self, path): + """Unzip data.zip.""" + if not str(path).endswith('.zip'): # path is data.yaml + return False, None, path + unzip_dir = unzip_file(path, path=path.parent) + assert unzip_dir.is_dir(), f'Error unzipping {path}, {unzip_dir} not found. ' \ + f'path/to/abc.zip MUST unzip to path/to/abc/' + return True, str(unzip_dir), self._find_yaml(unzip_dir) # zipped, data_dir, yaml_path + + def _hub_ops(self, f): + """Saves a compressed image for HUB previews.""" + compress_one_image(f, self.im_dir / Path(f).name) # save to dataset-hub + + def get_json(self, save=False, verbose=False): + """Return dataset JSON for Ultralytics HUB.""" + from ultralytics.yolo.data import YOLODataset # ClassificationDataset + + def _round(labels): + """Update labels to integer class and 4 decimal place floats.""" + if self.task == 'detect': + coordinates = labels['bboxes'] + elif self.task == 'segment': + coordinates = [x.flatten() for x in labels['segments']] + elif self.task == 'pose': + n = labels['keypoints'].shape[0] + coordinates = np.concatenate((labels['bboxes'], labels['keypoints'].reshape(n, -1)), 1) + else: + raise ValueError('Undefined dataset task.') + zipped = zip(labels['cls'], coordinates) + return [[int(c), *(round(float(x), 4) for x in points)] for c, points in zipped] + + for split in 'train', 'val', 'test': + if self.data.get(split) is None: + self.stats[split] = None # i.e. no test set + continue + + dataset = YOLODataset(img_path=self.data[split], + data=self.data, + use_segments=self.task == 'segment', + use_keypoints=self.task == 'pose') + x = np.array([ + np.bincount(label['cls'].astype(int).flatten(), minlength=self.data['nc']) + for label in tqdm(dataset.labels, total=len(dataset), desc='Statistics')]) # shape(128x80) + self.stats[split] = { + 'instance_stats': { + 'total': int(x.sum()), + 'per_class': x.sum(0).tolist()}, + 'image_stats': { + 'total': len(dataset), + 'unlabelled': int(np.all(x == 0, 1).sum()), + 'per_class': (x > 0).sum(0).tolist()}, + 'labels': [{ + Path(k).name: _round(v)} for k, v in zip(dataset.im_files, dataset.labels)]} + + # Save, print and return + if save: + stats_path = self.hub_dir / 'stats.json' + LOGGER.info(f'Saving {stats_path.resolve()}...') + with open(stats_path, 'w') as f: + json.dump(self.stats, f) # save stats.json + if verbose: + LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False)) + return self.stats + + def process_images(self): + """Compress images for Ultralytics HUB.""" + from ultralytics.yolo.data import YOLODataset # ClassificationDataset + + for split in 'train', 'val', 'test': + if self.data.get(split) is None: + continue + dataset = YOLODataset(img_path=self.data[split], data=self.data) + with ThreadPool(NUM_THREADS) as pool: + for _ in tqdm(pool.imap(self._hub_ops, dataset.im_files), total=len(dataset), desc=f'{split} images'): + pass + LOGGER.info(f'Done. All images saved to {self.im_dir}') + return self.im_dir + + +def compress_one_image(f, f_new=None, max_dim=1920, quality=50): + """ + Compresses a single image file to reduced size while preserving its aspect ratio and quality using either the + Python Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will + not be resized. + + Args: + f (str): The path to the input image file. + f_new (str, optional): The path to the output image file. If not specified, the input file will be overwritten. + max_dim (int, optional): The maximum dimension (width or height) of the output image. Default is 1920 pixels. + quality (int, optional): The image compression quality as a percentage. Default is 50%. + + Usage: + from pathlib import Path + from ultralytics.yolo.data.utils import compress_one_image + for f in Path('/Users/glennjocher/Downloads/dataset').rglob('*.jpg'): + compress_one_image(f) + """ + try: # use PIL + im = Image.open(f) + r = max_dim / max(im.height, im.width) # ratio + if r < 1.0: # image too large + im = im.resize((int(im.width * r), int(im.height * r))) + im.save(f_new or f, 'JPEG', quality=quality, optimize=True) # save + except Exception as e: # use OpenCV + LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}') + im = cv2.imread(f) + im_height, im_width = im.shape[:2] + r = max_dim / max(im_height, im_width) # ratio + if r < 1.0: # image too large + im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA) + cv2.imwrite(str(f_new or f), im) + + +def delete_dsstore(path): + """ + Deletes all ".DS_store" files under a specified directory. + + Args: + path (str, optional): The directory path where the ".DS_store" files should be deleted. + + Usage: + from ultralytics.yolo.data.utils import delete_dsstore + delete_dsstore('/Users/glennjocher/Downloads/dataset') + + Note: + ".DS_store" files are created by the Apple operating system and contain metadata about folders and files. They + are hidden system files and can cause issues when transferring files between different operating systems. + """ + # Delete Apple .DS_store files + files = list(Path(path).rglob('.DS_store')) + LOGGER.info(f'Deleting *.DS_store files: {files}') + for f in files: + f.unlink() + + +def zip_directory(dir, use_zipfile_library=True): + """ + Zips a directory and saves the archive to the specified output path. + + Args: + dir (str): The path to the directory to be zipped. + use_zipfile_library (bool): Whether to use zipfile library or shutil for zipping. + + Usage: + from ultralytics.yolo.data.utils import zip_directory + zip_directory('/Users/glennjocher/Downloads/playground') + + zip -r coco8-pose.zip coco8-pose + """ + delete_dsstore(dir) + if use_zipfile_library: + dir = Path(dir) + with zipfile.ZipFile(dir.with_suffix('.zip'), 'w', zipfile.ZIP_DEFLATED) as zip_file: + for file_path in dir.glob('**/*'): + if file_path.is_file(): + zip_file.write(file_path, file_path.relative_to(dir)) + else: + import shutil + shutil.make_archive(dir, 'zip', dir) diff --git a/modules/ultralytics/yolo/engine/__init__.py b/modules/ultralytics/yolo/engine/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/ultralytics/yolo/engine/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/engine/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8fb1c3b5bc7a028245e2bd758326e4672bdee42 Binary files /dev/null and b/modules/ultralytics/yolo/engine/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/engine/__pycache__/exporter.cpython-312.pyc b/modules/ultralytics/yolo/engine/__pycache__/exporter.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8448660c37895a246b5961cc57456787c662eda2 Binary files /dev/null and b/modules/ultralytics/yolo/engine/__pycache__/exporter.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/engine/__pycache__/model.cpython-312.pyc b/modules/ultralytics/yolo/engine/__pycache__/model.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..89b50e23e885353dfe3b81ff9a39c74606e95632 Binary files /dev/null and b/modules/ultralytics/yolo/engine/__pycache__/model.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/engine/__pycache__/predictor.cpython-312.pyc b/modules/ultralytics/yolo/engine/__pycache__/predictor.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..db6a0408dc87d6c83b8fbce07c984693a11845a1 Binary files /dev/null and b/modules/ultralytics/yolo/engine/__pycache__/predictor.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/engine/__pycache__/results.cpython-312.pyc b/modules/ultralytics/yolo/engine/__pycache__/results.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2908214f4cd7d5b0c0b46be6cbdde5c92c0acd11 Binary files /dev/null and b/modules/ultralytics/yolo/engine/__pycache__/results.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/engine/__pycache__/trainer.cpython-312.pyc b/modules/ultralytics/yolo/engine/__pycache__/trainer.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8fdfc43d2343abd32562281b1bc79d126717ae4f Binary files /dev/null and b/modules/ultralytics/yolo/engine/__pycache__/trainer.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/engine/__pycache__/validator.cpython-312.pyc b/modules/ultralytics/yolo/engine/__pycache__/validator.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..afc83724789ac7afec5b0c9d49fb73260c24ed80 Binary files /dev/null and b/modules/ultralytics/yolo/engine/__pycache__/validator.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/engine/exporter.py b/modules/ultralytics/yolo/engine/exporter.py new file mode 100644 index 0000000000000000000000000000000000000000..8017a2f7053ec4ed025b087af9097a2e5f6a08af --- /dev/null +++ b/modules/ultralytics/yolo/engine/exporter.py @@ -0,0 +1,867 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit + +Format | `format=argument` | Model +--- | --- | --- +PyTorch | - | yolov8n.pt +TorchScript | `torchscript` | yolov8n.torchscript +ONNX | `onnx` | yolov8n.onnx +OpenVINO | `openvino` | yolov8n_openvino_model/ +TensorRT | `engine` | yolov8n.engine +CoreML | `coreml` | yolov8n.mlmodel +TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ +TensorFlow GraphDef | `pb` | yolov8n.pb +TensorFlow Lite | `tflite` | yolov8n.tflite +TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite +TensorFlow.js | `tfjs` | yolov8n_web_model/ +PaddlePaddle | `paddle` | yolov8n_paddle_model/ + +Requirements: + $ pip install ultralytics[export] + +Python: + from ultralytics import YOLO + model = YOLO('yolov8n.pt') + results = model.export(format='onnx') + +CLI: + $ yolo mode=export model=yolov8n.pt format=onnx + +Inference: + $ yolo predict model=yolov8n.pt # PyTorch + yolov8n.torchscript # TorchScript + yolov8n.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov8n_openvino_model # OpenVINO + yolov8n.engine # TensorRT + yolov8n.mlmodel # CoreML (macOS-only) + yolov8n_saved_model # TensorFlow SavedModel + yolov8n.pb # TensorFlow GraphDef + yolov8n.tflite # TensorFlow Lite + yolov8n_edgetpu.tflite # TensorFlow Edge TPU + yolov8n_paddle_model # PaddlePaddle + +TensorFlow.js: + $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example + $ npm install + $ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model + $ npm start +""" +import json +import os +import platform +import subprocess +import time +import warnings +from copy import deepcopy +from pathlib import Path + +import torch + +from ultralytics.nn.autobackend import check_class_names +from ultralytics.nn.modules import C2f, Detect, Segment +from ultralytics.nn.tasks import DetectionModel, SegmentationModel +from ultralytics.yolo.cfg import get_cfg +from ultralytics.yolo.utils import (DEFAULT_CFG, LINUX, LOGGER, MACOS, __version__, callbacks, colorstr, + get_default_args, yaml_save) +from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version +from ultralytics.yolo.utils.files import file_size +from ultralytics.yolo.utils.ops import Profile +from ultralytics.yolo.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode + +ARM64 = platform.machine() in ('arm64', 'aarch64') + + +def export_formats(): + """YOLOv8 export formats.""" + import pandas + x = [ + ['PyTorch', '-', '.pt', True, True], + ['TorchScript', 'torchscript', '.torchscript', True, True], + ['ONNX', 'onnx', '.onnx', True, True], + ['OpenVINO', 'openvino', '_openvino_model', True, False], + ['TensorRT', 'engine', '.engine', False, True], + ['CoreML', 'coreml', '.mlmodel', True, False], + ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True], + ['TensorFlow GraphDef', 'pb', '.pb', True, True], + ['TensorFlow Lite', 'tflite', '.tflite', True, False], + ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', True, False], + ['TensorFlow.js', 'tfjs', '_web_model', True, False], + ['PaddlePaddle', 'paddle', '_paddle_model', True, True], ] + return pandas.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU']) + + +def gd_outputs(gd): + """TensorFlow GraphDef model output node names.""" + name_list, input_list = [], [] + for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef + name_list.append(node.name) + input_list.extend(node.input) + return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp')) + + +def try_export(inner_func): + """YOLOv8 export decorator, i..e @try_export.""" + inner_args = get_default_args(inner_func) + + def outer_func(*args, **kwargs): + """Export a model.""" + prefix = inner_args['prefix'] + try: + with Profile() as dt: + f, model = inner_func(*args, **kwargs) + LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)') + return f, model + except Exception as e: + LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}') + return None, None + + return outer_func + + +class Exporter: + """ + A class for exporting a model. + + Attributes: + args (SimpleNamespace): Configuration for the exporter. + save_dir (Path): Directory to save results. + """ + + def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): + """ + Initializes the Exporter class. + + Args: + cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. + overrides (dict, optional): Configuration overrides. Defaults to None. + _callbacks (list, optional): List of callback functions. Defaults to None. + """ + self.args = get_cfg(cfg, overrides) + self.callbacks = _callbacks or callbacks.get_default_callbacks() + callbacks.add_integration_callbacks(self) + + @smart_inference_mode() + def __call__(self, model=None): + """Returns list of exported files/dirs after running callbacks.""" + self.run_callbacks('on_export_start') + t = time.time() + format = self.args.format.lower() # to lowercase + if format in ('tensorrt', 'trt'): # engine aliases + format = 'engine' + fmts = tuple(export_formats()['Argument'][1:]) # available export formats + flags = [x == format for x in fmts] + if sum(flags) != 1: + raise ValueError(f"Invalid export format='{format}'. Valid formats are {fmts}") + jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans + + # Load PyTorch model + self.device = select_device('cpu' if self.args.device is None else self.args.device) + if self.args.half and onnx and self.device.type == 'cpu': + LOGGER.warning('WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0') + self.args.half = False + assert not self.args.dynamic, 'half=True not compatible with dynamic=True, i.e. use only one.' + + # Checks + model.names = check_class_names(model.names) + self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size + if self.args.optimize: + assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' + if edgetpu and not LINUX: + raise SystemError('Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler/') + + # Input + im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device) + file = Path( + getattr(model, 'pt_path', None) or getattr(model, 'yaml_file', None) or model.yaml.get('yaml_file', '')) + if file.suffix == '.yaml': + file = Path(file.name) + + # Update model + model = deepcopy(model).to(self.device) + for p in model.parameters(): + p.requires_grad = False + model.eval() + model.float() + model = model.fuse() + for k, m in model.named_modules(): + if isinstance(m, (Detect, Segment)): + m.dynamic = self.args.dynamic + m.export = True + m.format = self.args.format + elif isinstance(m, C2f) and not any((saved_model, pb, tflite, edgetpu, tfjs)): + # EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph + m.forward = m.forward_split + + y = None + for _ in range(2): + y = model(im) # dry runs + if self.args.half and (engine or onnx) and self.device.type != 'cpu': + im, model = im.half(), model.half() # to FP16 + + # Warnings + warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning + warnings.filterwarnings('ignore', category=UserWarning) # suppress shape prim::Constant missing ONNX warning + warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress CoreML np.bool deprecation warning + + # Assign + self.im = im + self.model = model + self.file = file + self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else \ + tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y) + self.pretty_name = Path(self.model.yaml.get('yaml_file', self.file)).stem.replace('yolo', 'YOLO') + trained_on = f'trained on {Path(self.args.data).name}' if self.args.data else '(untrained)' + description = f'Ultralytics {self.pretty_name} model {trained_on}' + self.metadata = { + 'description': description, + 'author': 'Ultralytics', + 'license': 'AGPL-3.0 https://ultralytics.com/license', + 'version': __version__, + 'stride': int(max(model.stride)), + 'task': model.task, + 'batch': self.args.batch, + 'imgsz': self.imgsz, + 'names': model.names} # model metadata + if model.task == 'pose': + self.metadata['kpt_shape'] = model.kpt_shape + + LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with input shape {tuple(im.shape)} BCHW and " + f'output shape(s) {self.output_shape} ({file_size(file):.1f} MB)') + + # Exports + f = [''] * len(fmts) # exported filenames + if jit: # TorchScript + f[0], _ = self.export_torchscript() + if engine: # TensorRT required before ONNX + f[1], _ = self.export_engine() + if onnx or xml: # OpenVINO requires ONNX + f[2], _ = self.export_onnx() + if xml: # OpenVINO + f[3], _ = self.export_openvino() + if coreml: # CoreML + f[4], _ = self.export_coreml() + if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats + self.args.int8 |= edgetpu + f[5], s_model = self.export_saved_model() + if pb or tfjs: # pb prerequisite to tfjs + f[6], _ = self.export_pb(s_model) + if tflite: + f[7], _ = self.export_tflite(s_model, nms=False, agnostic_nms=self.args.agnostic_nms) + if edgetpu: + f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f'{self.file.stem}_full_integer_quant.tflite') + if tfjs: + f[9], _ = self.export_tfjs() + if paddle: # PaddlePaddle + f[10], _ = self.export_paddle() + + # Finish + f = [str(x) for x in f if x] # filter out '' and None + if any(f): + f = str(Path(f[-1])) + square = self.imgsz[0] == self.imgsz[1] + s = '' if square else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not " \ + f"work. Use export 'imgsz={max(self.imgsz)}' if val is required." + imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(' ', '') + data = f'data={self.args.data}' if model.task == 'segment' and format == 'pb' else '' + LOGGER.info( + f'\nExport complete ({time.time() - t:.1f}s)' + f"\nResults saved to {colorstr('bold', file.parent.resolve())}" + f'\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {data}' + f'\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={self.args.data} {s}' + f'\nVisualize: https://netron.app') + + self.run_callbacks('on_export_end') + return f # return list of exported files/dirs + + @try_export + def export_torchscript(self, prefix=colorstr('TorchScript:')): + """YOLOv8 TorchScript model export.""" + LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') + f = self.file.with_suffix('.torchscript') + + ts = torch.jit.trace(self.model, self.im, strict=False) + extra_files = {'config.txt': json.dumps(self.metadata)} # torch._C.ExtraFilesMap() + if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html + LOGGER.info(f'{prefix} optimizing for mobile...') + from torch.utils.mobile_optimizer import optimize_for_mobile + optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) + else: + ts.save(str(f), _extra_files=extra_files) + return f, None + + @try_export + def export_onnx(self, prefix=colorstr('ONNX:')): + """YOLOv8 ONNX export.""" + requirements = ['onnx>=1.12.0'] + if self.args.simplify: + requirements += ['onnxsim>=0.4.17', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime'] + check_requirements(requirements) + import onnx # noqa + + opset_version = self.args.opset or get_latest_opset() + LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...') + f = str(self.file.with_suffix('.onnx')) + + output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0'] + dynamic = self.args.dynamic + if dynamic: + dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640) + if isinstance(self.model, SegmentationModel): + dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) + dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160) + elif isinstance(self.model, DetectionModel): + dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) + + torch.onnx.export( + self.model.cpu() if dynamic else self.model, # --dynamic only compatible with cpu + self.im.cpu() if dynamic else self.im, + f, + verbose=False, + opset_version=opset_version, + do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False + input_names=['images'], + output_names=output_names, + dynamic_axes=dynamic or None) + + # Checks + model_onnx = onnx.load(f) # load onnx model + # onnx.checker.check_model(model_onnx) # check onnx model + + # Simplify + if self.args.simplify: + try: + import onnxsim + + LOGGER.info(f'{prefix} simplifying with onnxsim {onnxsim.__version__}...') + # subprocess.run(f'onnxsim {f} {f}', shell=True) + model_onnx, check = onnxsim.simplify(model_onnx) + assert check, 'Simplified ONNX model could not be validated' + except Exception as e: + LOGGER.info(f'{prefix} simplifier failure: {e}') + + # Metadata + for k, v in self.metadata.items(): + meta = model_onnx.metadata_props.add() + meta.key, meta.value = k, str(v) + + onnx.save(model_onnx, f) + return f, model_onnx + + @try_export + def export_openvino(self, prefix=colorstr('OpenVINO:')): + """YOLOv8 OpenVINO export.""" + check_requirements('openvino-dev>=2022.3') # requires openvino-dev: https://pypi.org/project/openvino-dev/ + import openvino.runtime as ov # noqa + from openvino.tools import mo # noqa + + LOGGER.info(f'\n{prefix} starting export with openvino {ov.__version__}...') + f = str(self.file).replace(self.file.suffix, f'_openvino_model{os.sep}') + f_onnx = self.file.with_suffix('.onnx') + f_ov = str(Path(f) / self.file.with_suffix('.xml').name) + + ov_model = mo.convert_model(f_onnx, + model_name=self.pretty_name, + framework='onnx', + compress_to_fp16=self.args.half) # export + + # Set RT info + ov_model.set_rt_info('YOLOv8', ['model_info', 'model_type']) + ov_model.set_rt_info(True, ['model_info', 'reverse_input_channels']) + ov_model.set_rt_info(114, ['model_info', 'pad_value']) + ov_model.set_rt_info([255.0], ['model_info', 'scale_values']) + ov_model.set_rt_info(self.args.iou, ['model_info', 'iou_threshold']) + ov_model.set_rt_info([v.replace(' ', '_') for k, v in sorted(self.model.names.items())], + ['model_info', 'labels']) + if self.model.task != 'classify': + ov_model.set_rt_info('fit_to_window_letterbox', ['model_info', 'resize_type']) + + ov.serialize(ov_model, f_ov) # save + yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml + return f, None + + @try_export + def export_paddle(self, prefix=colorstr('PaddlePaddle:')): + """YOLOv8 Paddle export.""" + check_requirements(('paddlepaddle', 'x2paddle')) + import x2paddle # noqa + from x2paddle.convert import pytorch2paddle # noqa + + LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...') + f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}') + + pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im]) # export + yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml + return f, None + + @try_export + def export_coreml(self, prefix=colorstr('CoreML:')): + """YOLOv8 CoreML export.""" + check_requirements('coremltools>=6.0') + import coremltools as ct # noqa + + LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') + f = self.file.with_suffix('.mlmodel') + + bias = [0.0, 0.0, 0.0] + scale = 1 / 255 + classifier_config = None + if self.model.task == 'classify': + classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None + model = self.model + elif self.model.task == 'detect': + model = iOSDetectModel(self.model, self.im) if self.args.nms else self.model + else: + # TODO CoreML Segment and Pose model pipelining + model = self.model + + ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model + ct_model = ct.convert(ts, + inputs=[ct.ImageType('image', shape=self.im.shape, scale=scale, bias=bias)], + classifier_config=classifier_config) + bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None) + if bits < 32: + if 'kmeans' in mode: + check_requirements('scikit-learn') # scikit-learn package required for k-means quantization + ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) + if self.args.nms and self.model.task == 'detect': + ct_model = self._pipeline_coreml(ct_model) + + m = self.metadata # metadata dict + ct_model.short_description = m.pop('description') + ct_model.author = m.pop('author') + ct_model.license = m.pop('license') + ct_model.version = m.pop('version') + ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()}) + ct_model.save(str(f)) + return f, ct_model + + @try_export + def export_engine(self, prefix=colorstr('TensorRT:')): + """YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt.""" + assert self.im.device.type != 'cpu', "export running on CPU but must be on GPU, i.e. use 'device=0'" + try: + import tensorrt as trt # noqa + except ImportError: + if LINUX: + check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') + import tensorrt as trt # noqa + + check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=8.0.0 + self.args.simplify = True + f_onnx, _ = self.export_onnx() + + LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') + assert Path(f_onnx).exists(), f'failed to export ONNX file: {f_onnx}' + f = self.file.with_suffix('.engine') # TensorRT engine file + logger = trt.Logger(trt.Logger.INFO) + if self.args.verbose: + logger.min_severity = trt.Logger.Severity.VERBOSE + + builder = trt.Builder(logger) + config = builder.create_builder_config() + config.max_workspace_size = self.args.workspace * 1 << 30 + # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice + + flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) + network = builder.create_network(flag) + parser = trt.OnnxParser(network, logger) + if not parser.parse_from_file(f_onnx): + raise RuntimeError(f'failed to load ONNX file: {f_onnx}') + + inputs = [network.get_input(i) for i in range(network.num_inputs)] + outputs = [network.get_output(i) for i in range(network.num_outputs)] + for inp in inputs: + LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') + for out in outputs: + LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') + + if self.args.dynamic: + shape = self.im.shape + if shape[0] <= 1: + LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument') + profile = builder.create_optimization_profile() + for inp in inputs: + profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape) + config.add_optimization_profile(profile) + + LOGGER.info( + f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}') + if builder.platform_has_fast_fp16 and self.args.half: + config.set_flag(trt.BuilderFlag.FP16) + + # Write file + with builder.build_engine(network, config) as engine, open(f, 'wb') as t: + # Metadata + meta = json.dumps(self.metadata) + t.write(len(meta).to_bytes(4, byteorder='little', signed=True)) + t.write(meta.encode()) + # Model + t.write(engine.serialize()) + + return f, None + + @try_export + def export_saved_model(self, prefix=colorstr('TensorFlow SavedModel:')): + """YOLOv8 TensorFlow SavedModel export.""" + try: + import tensorflow as tf # noqa + except ImportError: + cuda = torch.cuda.is_available() + check_requirements(f"tensorflow{'-macos' if MACOS else '-aarch64' if ARM64 else '' if cuda else '-cpu'}") + import tensorflow as tf # noqa + check_requirements(('onnx', 'onnx2tf>=1.7.7', 'sng4onnx>=1.0.1', 'onnxsim>=0.4.17', 'onnx_graphsurgeon>=0.3.26', + 'tflite_support', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime'), + cmds='--extra-index-url https://pypi.ngc.nvidia.com') + + LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') + f = Path(str(self.file).replace(self.file.suffix, '_saved_model')) + if f.is_dir(): + import shutil + shutil.rmtree(f) # delete output folder + + # Export to ONNX + self.args.simplify = True + f_onnx, _ = self.export_onnx() + + # Export to TF + int8 = '-oiqt -qt per-tensor' if self.args.int8 else '' + cmd = f'onnx2tf -i {f_onnx} -o {f} -nuo --non_verbose {int8}' + LOGGER.info(f"\n{prefix} running '{cmd.strip()}'") + subprocess.run(cmd, shell=True) + yaml_save(f / 'metadata.yaml', self.metadata) # add metadata.yaml + + # Remove/rename TFLite models + if self.args.int8: + for file in f.rglob('*_dynamic_range_quant.tflite'): + file.rename(file.with_stem(file.stem.replace('_dynamic_range_quant', '_int8'))) + for file in f.rglob('*_integer_quant_with_int16_act.tflite'): + file.unlink() # delete extra fp16 activation TFLite files + + # Add TFLite metadata + for file in f.rglob('*.tflite'): + f.unlink() if 'quant_with_int16_act.tflite' in str(f) else self._add_tflite_metadata(file) + + # Load saved_model + keras_model = tf.saved_model.load(f, tags=None, options=None) + + return str(f), keras_model + + @try_export + def export_pb(self, keras_model, prefix=colorstr('TensorFlow GraphDef:')): + """YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow.""" + import tensorflow as tf # noqa + from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa + + LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') + f = self.file.with_suffix('.pb') + + m = tf.function(lambda x: keras_model(x)) # full model + m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) + frozen_func = convert_variables_to_constants_v2(m) + frozen_func.graph.as_graph_def() + tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) + return f, None + + @try_export + def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): + """YOLOv8 TensorFlow Lite export.""" + import tensorflow as tf # noqa + + LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') + saved_model = Path(str(self.file).replace(self.file.suffix, '_saved_model')) + if self.args.int8: + f = saved_model / f'{self.file.stem}_int8.tflite' # fp32 in/out + elif self.args.half: + f = saved_model / f'{self.file.stem}_float16.tflite' # fp32 in/out + else: + f = saved_model / f'{self.file.stem}_float32.tflite' + return str(f), None + + @try_export + def export_edgetpu(self, tflite_model='', prefix=colorstr('Edge TPU:')): + """YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/.""" + LOGGER.warning(f'{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185') + + cmd = 'edgetpu_compiler --version' + help_url = 'https://coral.ai/docs/edgetpu/compiler/' + assert LINUX, f'export only supported on Linux. See {help_url}' + if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0: + LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') + sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system + for c in ( + 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', + 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', + 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'): + subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) + ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] + + LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') + f = str(tflite_model).replace('.tflite', '_edgetpu.tflite') # Edge TPU model + + cmd = f'edgetpu_compiler -s -d -k 10 --out_dir {Path(f).parent} {tflite_model}' + LOGGER.info(f"{prefix} running '{cmd}'") + subprocess.run(cmd.split(), check=True) + self._add_tflite_metadata(f) + return f, None + + @try_export + def export_tfjs(self, prefix=colorstr('TensorFlow.js:')): + """YOLOv8 TensorFlow.js export.""" + check_requirements('tensorflowjs') + import tensorflow as tf + import tensorflowjs as tfjs # noqa + + LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') + f = str(self.file).replace(self.file.suffix, '_web_model') # js dir + f_pb = self.file.with_suffix('.pb') # *.pb path + + gd = tf.Graph().as_graph_def() # TF GraphDef + with open(f_pb, 'rb') as file: + gd.ParseFromString(file.read()) + outputs = ','.join(gd_outputs(gd)) + LOGGER.info(f'\n{prefix} output node names: {outputs}') + + cmd = f'tensorflowjs_converter --input_format=tf_frozen_model --output_node_names={outputs} {f_pb} {f}' + subprocess.run(cmd.split(), check=True) + + # f_json = Path(f) / 'model.json' # *.json path + # with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order + # subst = re.sub( + # r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' + # r'"Identity.?.?": {"name": "Identity.?.?"}, ' + # r'"Identity.?.?": {"name": "Identity.?.?"}, ' + # r'"Identity.?.?": {"name": "Identity.?.?"}}}', + # r'{"outputs": {"Identity": {"name": "Identity"}, ' + # r'"Identity_1": {"name": "Identity_1"}, ' + # r'"Identity_2": {"name": "Identity_2"}, ' + # r'"Identity_3": {"name": "Identity_3"}}}', + # f_json.read_text(), + # ) + # j.write(subst) + yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml + return f, None + + def _add_tflite_metadata(self, file): + """Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata.""" + from tflite_support import flatbuffers # noqa + from tflite_support import metadata as _metadata # noqa + from tflite_support import metadata_schema_py_generated as _metadata_fb # noqa + + # Create model info + model_meta = _metadata_fb.ModelMetadataT() + model_meta.name = self.metadata['description'] + model_meta.version = self.metadata['version'] + model_meta.author = self.metadata['author'] + model_meta.license = self.metadata['license'] + + # Label file + tmp_file = Path(file).parent / 'temp_meta.txt' + with open(tmp_file, 'w') as f: + f.write(str(self.metadata)) + + label_file = _metadata_fb.AssociatedFileT() + label_file.name = tmp_file.name + label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS + + # Create input info + input_meta = _metadata_fb.TensorMetadataT() + input_meta.name = 'image' + input_meta.description = 'Input image to be detected.' + input_meta.content = _metadata_fb.ContentT() + input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT() + input_meta.content.contentProperties.colorSpace = _metadata_fb.ColorSpaceType.RGB + input_meta.content.contentPropertiesType = _metadata_fb.ContentProperties.ImageProperties + + # Create output info + output1 = _metadata_fb.TensorMetadataT() + output1.name = 'output' + output1.description = 'Coordinates of detected objects, class labels, and confidence score' + output1.associatedFiles = [label_file] + if self.model.task == 'segment': + output2 = _metadata_fb.TensorMetadataT() + output2.name = 'output' + output2.description = 'Mask protos' + output2.associatedFiles = [label_file] + + # Create subgraph info + subgraph = _metadata_fb.SubGraphMetadataT() + subgraph.inputTensorMetadata = [input_meta] + subgraph.outputTensorMetadata = [output1, output2] if self.model.task == 'segment' else [output1] + model_meta.subgraphMetadata = [subgraph] + + b = flatbuffers.Builder(0) + b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) + metadata_buf = b.Output() + + populator = _metadata.MetadataPopulator.with_model_file(str(file)) + populator.load_metadata_buffer(metadata_buf) + populator.load_associated_files([str(tmp_file)]) + populator.populate() + tmp_file.unlink() + + def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')): + """YOLOv8 CoreML pipeline.""" + import coremltools as ct # noqa + + LOGGER.info(f'{prefix} starting pipeline with coremltools {ct.__version__}...') + batch_size, ch, h, w = list(self.im.shape) # BCHW + + # Output shapes + spec = model.get_spec() + out0, out1 = iter(spec.description.output) + if MACOS: + from PIL import Image + img = Image.new('RGB', (w, h)) # img(192 width, 320 height) + # img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection + out = model.predict({'image': img}) + out0_shape = out[out0.name].shape + out1_shape = out[out1.name].shape + else: # linux and windows can not run model.predict(), get sizes from pytorch output y + out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80) + out1_shape = self.output_shape[2], 4 # (3780, 4) + + # Checks + names = self.metadata['names'] + nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height + na, nc = out0_shape + # na, nc = out0.type.multiArrayType.shape # number anchors, classes + assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check + + # Define output shapes (missing) + out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80) + out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4) + # spec.neuralNetwork.preprocessing[0].featureName = '0' + + # Flexible input shapes + # from coremltools.models.neural_network import flexible_shape_utils + # s = [] # shapes + # s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192)) + # s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width) + # flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s) + # r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges + # r.add_height_range((192, 640)) + # r.add_width_range((192, 640)) + # flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r) + + # Print + # print(spec.description) + + # Model from spec + model = ct.models.MLModel(spec) + + # 3. Create NMS protobuf + nms_spec = ct.proto.Model_pb2.Model() + nms_spec.specificationVersion = 5 + for i in range(2): + decoder_output = model._spec.description.output[i].SerializeToString() + nms_spec.description.input.add() + nms_spec.description.input[i].ParseFromString(decoder_output) + nms_spec.description.output.add() + nms_spec.description.output[i].ParseFromString(decoder_output) + + nms_spec.description.output[0].name = 'confidence' + nms_spec.description.output[1].name = 'coordinates' + + output_sizes = [nc, 4] + for i in range(2): + ma_type = nms_spec.description.output[i].type.multiArrayType + ma_type.shapeRange.sizeRanges.add() + ma_type.shapeRange.sizeRanges[0].lowerBound = 0 + ma_type.shapeRange.sizeRanges[0].upperBound = -1 + ma_type.shapeRange.sizeRanges.add() + ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i] + ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i] + del ma_type.shape[:] + + nms = nms_spec.nonMaximumSuppression + nms.confidenceInputFeatureName = out0.name # 1x507x80 + nms.coordinatesInputFeatureName = out1.name # 1x507x4 + nms.confidenceOutputFeatureName = 'confidence' + nms.coordinatesOutputFeatureName = 'coordinates' + nms.iouThresholdInputFeatureName = 'iouThreshold' + nms.confidenceThresholdInputFeatureName = 'confidenceThreshold' + nms.iouThreshold = 0.45 + nms.confidenceThreshold = 0.25 + nms.pickTop.perClass = True + nms.stringClassLabels.vector.extend(names.values()) + nms_model = ct.models.MLModel(nms_spec) + + # 4. Pipeline models together + pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)), + ('iouThreshold', ct.models.datatypes.Double()), + ('confidenceThreshold', ct.models.datatypes.Double())], + output_features=['confidence', 'coordinates']) + pipeline.add_model(model) + pipeline.add_model(nms_model) + + # Correct datatypes + pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString()) + pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString()) + pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString()) + + # Update metadata + pipeline.spec.specificationVersion = 5 + pipeline.spec.description.metadata.userDefined.update({ + 'IoU threshold': str(nms.iouThreshold), + 'Confidence threshold': str(nms.confidenceThreshold)}) + + # Save the model + model = ct.models.MLModel(pipeline.spec) + model.input_description['image'] = 'Input image' + model.input_description['iouThreshold'] = f'(optional) IOU threshold override (default: {nms.iouThreshold})' + model.input_description['confidenceThreshold'] = \ + f'(optional) Confidence threshold override (default: {nms.confidenceThreshold})' + model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")' + model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)' + LOGGER.info(f'{prefix} pipeline success') + return model + + def add_callback(self, event: str, callback): + """ + Appends the given callback. + """ + self.callbacks[event].append(callback) + + def run_callbacks(self, event: str): + """Execute all callbacks for a given event.""" + for callback in self.callbacks.get(event, []): + callback(self) + + +class iOSDetectModel(torch.nn.Module): + """Wrap an Ultralytics YOLO model for iOS export.""" + + def __init__(self, model, im): + """Initialize the iOSDetectModel class with a YOLO model and example image.""" + super().__init__() + b, c, h, w = im.shape # batch, channel, height, width + self.model = model + self.nc = len(model.names) # number of classes + if w == h: + self.normalize = 1.0 / w # scalar + else: + self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller) + + def forward(self, x): + """Normalize predictions of object detection model with input size-dependent factors.""" + xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1) + return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4) + + +def export(cfg=DEFAULT_CFG): + """Export a YOLOv model to a specific format.""" + cfg.model = cfg.model or 'yolov8n.yaml' + cfg.format = cfg.format or 'torchscript' + + from ultralytics import YOLO + model = YOLO(cfg.model) + model.export(**vars(cfg)) + + +if __name__ == '__main__': + """ + CLI: + yolo mode=export model=yolov8n.yaml format=onnx + """ + export() diff --git a/modules/ultralytics/yolo/engine/model.py b/modules/ultralytics/yolo/engine/model.py new file mode 100644 index 0000000000000000000000000000000000000000..18810e70158bb5546e976b97ce5a7069f74eb4fc --- /dev/null +++ b/modules/ultralytics/yolo/engine/model.py @@ -0,0 +1,507 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import sys +from pathlib import Path +from typing import Union + +from ultralytics import yolo # noqa +from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, PoseModel, SegmentationModel, + attempt_load_one_weight, guess_model_task, nn, yaml_model_load) +from ultralytics.yolo.cfg import get_cfg +from ultralytics.yolo.engine.exporter import Exporter +from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, NUM_THREADS, RANK, ROOT, + callbacks, is_git_dir, yaml_load) +from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml +from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS +from ultralytics.yolo.utils.torch_utils import smart_inference_mode + +# Map head to model, trainer, validator, and predictor classes +TASK_MAP = { + 'classify': [ + ClassificationModel, yolo.v8.classify.ClassificationTrainer, yolo.v8.classify.ClassificationValidator, + yolo.v8.classify.ClassificationPredictor], + 'detect': [ + DetectionModel, yolo.v8.detect.DetectionTrainer, yolo.v8.detect.DetectionValidator, + yolo.v8.detect.DetectionPredictor], + 'segment': [ + SegmentationModel, yolo.v8.segment.SegmentationTrainer, yolo.v8.segment.SegmentationValidator, + yolo.v8.segment.SegmentationPredictor], + 'pose': [PoseModel, yolo.v8.pose.PoseTrainer, yolo.v8.pose.PoseValidator, yolo.v8.pose.PosePredictor]} + + +class YOLO: + """ + YOLO (You Only Look Once) object detection model. + + Args: + model (str, Path): Path to the model file to load or create. + task (Any, optional): Task type for the YOLO model. Defaults to None. + + Attributes: + predictor (Any): The predictor object. + model (Any): The model object. + trainer (Any): The trainer object. + task (str): The type of model task. + ckpt (Any): The checkpoint object if the model loaded from *.pt file. + cfg (str): The model configuration if loaded from *.yaml file. + ckpt_path (str): The checkpoint file path. + overrides (dict): Overrides for the trainer object. + metrics (Any): The data for metrics. + + Methods: + __call__(source=None, stream=False, **kwargs): + Alias for the predict method. + _new(cfg:str, verbose:bool=True) -> None: + Initializes a new model and infers the task type from the model definitions. + _load(weights:str, task:str='') -> None: + Initializes a new model and infers the task type from the model head. + _check_is_pytorch_model() -> None: + Raises TypeError if the model is not a PyTorch model. + reset() -> None: + Resets the model modules. + info(verbose:bool=False) -> None: + Logs the model info. + fuse() -> None: + Fuses the model for faster inference. + predict(source=None, stream=False, **kwargs) -> List[ultralytics.yolo.engine.results.Results]: + Performs prediction using the YOLO model. + + Returns: + list(ultralytics.yolo.engine.results.Results): The prediction results. + """ + + def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None: + """ + Initializes the YOLO model. + + Args: + model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'. + task (Any, optional): Task type for the YOLO model. Defaults to None. + """ + self.callbacks = callbacks.get_default_callbacks() + self.predictor = None # reuse predictor + self.model = None # model object + self.trainer = None # trainer object + self.task = None # task type + self.ckpt = None # if loaded from *.pt + self.cfg = None # if loaded from *.yaml + self.ckpt_path = None + self.overrides = {} # overrides for trainer object + self.metrics = None # validation/training metrics + self.session = None # HUB session + model = str(model).strip() # strip spaces + + # Check if Ultralytics HUB model from https://hub.ultralytics.com + if self.is_hub_model(model): + from ultralytics.hub.session import HUBTrainingSession + self.session = HUBTrainingSession(model) + model = self.session.model_file + + # Load or create new YOLO model + suffix = Path(model).suffix + if not suffix and Path(model).stem in GITHUB_ASSET_STEMS: + model, suffix = Path(model).with_suffix('.pt'), '.pt' # add suffix, i.e. yolov8n -> yolov8n.pt + if suffix == '.yaml': + self._new(model, task) + else: + self._load(model, task) + + def __call__(self, source=None, stream=False, **kwargs): + """Calls the 'predict' function with given arguments to perform object detection.""" + return self.predict(source, stream, **kwargs) + + def __getattr__(self, attr): + """Raises error if object has no requested attribute.""" + name = self.__class__.__name__ + raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") + + @staticmethod + def is_hub_model(model): + """Check if the provided model is a HUB model.""" + return any(( + model.startswith('https://hub.ultralytics.com/models/'), # i.e. https://hub.ultralytics.com/models/MODEL_ID + [len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID + len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID + + def _new(self, cfg: str, task=None, verbose=True): + """ + Initializes a new model and infers the task type from the model definitions. + + Args: + cfg (str): model configuration file + task (str | None): model task + verbose (bool): display model info on load + """ + cfg_dict = yaml_model_load(cfg) + self.cfg = cfg + self.task = task or guess_model_task(cfg_dict) + self.model = TASK_MAP[self.task][0](cfg_dict, verbose=verbose and RANK == -1) # build model + self.overrides['model'] = self.cfg + + # Below added to allow export from yamls + args = {**DEFAULT_CFG_DICT, **self.overrides} # combine model and default args, preferring model args + self.model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model + self.model.task = self.task + + def _load(self, weights: str, task=None): + """ + Initializes a new model and infers the task type from the model head. + + Args: + weights (str): model checkpoint to be loaded + task (str | None): model task + """ + suffix = Path(weights).suffix + if suffix == '.pt': + self.model, self.ckpt = attempt_load_one_weight(weights) + self.task = self.model.args['task'] + self.overrides = self.model.args = self._reset_ckpt_args(self.model.args) + self.ckpt_path = self.model.pt_path + else: + weights = check_file(weights) + self.model, self.ckpt = weights, None + self.task = task or guess_model_task(weights) + self.ckpt_path = weights + self.overrides['model'] = weights + self.overrides['task'] = self.task + + def _check_is_pytorch_model(self): + """ + Raises TypeError is model is not a PyTorch model + """ + pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt' + pt_module = isinstance(self.model, nn.Module) + if not (pt_module or pt_str): + raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. " + f'PyTorch models can be used to train, val, predict and export, i.e. ' + f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only " + f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.") + + @smart_inference_mode() + def reset_weights(self): + """ + Resets the model modules parameters to randomly initialized values, losing all training information. + """ + self._check_is_pytorch_model() + for m in self.model.modules(): + if hasattr(m, 'reset_parameters'): + m.reset_parameters() + for p in self.model.parameters(): + p.requires_grad = True + return self + + @smart_inference_mode() + def load(self, weights='yolov8n.pt'): + """ + Transfers parameters with matching names and shapes from 'weights' to model. + """ + self._check_is_pytorch_model() + if isinstance(weights, (str, Path)): + weights, self.ckpt = attempt_load_one_weight(weights) + self.model.load(weights) + return self + + def info(self, detailed=False, verbose=True): + """ + Logs model info. + + Args: + detailed (bool): Show detailed information about model. + verbose (bool): Controls verbosity. + """ + self._check_is_pytorch_model() + return self.model.info(detailed=detailed, verbose=verbose) + + def fuse(self): + """Fuse PyTorch Conv2d and BatchNorm2d layers.""" + self._check_is_pytorch_model() + self.model.fuse() + + @smart_inference_mode() + def predict(self, source=None, stream=False, **kwargs): + """ + Perform prediction using the YOLO model. + + Args: + source (str | int | PIL | np.ndarray): The source of the image to make predictions on. + Accepts all source types accepted by the YOLO model. + stream (bool): Whether to stream the predictions or not. Defaults to False. + **kwargs : Additional keyword arguments passed to the predictor. + Check the 'configuration' section in the documentation for all available options. + + Returns: + (List[ultralytics.yolo.engine.results.Results]): The prediction results. + """ + if source is None: + source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' + LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") + is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any( + x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track')) + overrides = self.overrides.copy() + overrides['conf'] = 0.25 + overrides.update(kwargs) # prefer kwargs + overrides['mode'] = kwargs.get('mode', 'predict') + assert overrides['mode'] in ['track', 'predict'] + if not is_cli: + overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python + if not self.predictor: + self.task = overrides.get('task') or self.task + self.predictor = TASK_MAP[self.task][3](overrides=overrides, _callbacks=self.callbacks) + self.predictor.setup_model(model=self.model, verbose=is_cli) + else: # only update args if predictor is already setup + self.predictor.args = get_cfg(self.predictor.args, overrides) + if 'project' in overrides or 'name' in overrides: + self.predictor.save_dir = self.predictor.get_save_dir() + return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) + + def track(self, source=None, stream=False, persist=False, **kwargs): + """ + Perform object tracking on the input source using the registered trackers. + + Args: + source (str, optional): The input source for object tracking. Can be a file path or a video stream. + stream (bool, optional): Whether the input source is a video stream. Defaults to False. + persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False. + **kwargs (optional): Additional keyword arguments for the tracking process. + + Returns: + (List[ultralytics.yolo.engine.results.Results]): The tracking results. + + """ + if not hasattr(self.predictor, 'trackers'): + from ultralytics.tracker import register_tracker + register_tracker(self, persist) + # ByteTrack-based method needs low confidence predictions as input + conf = kwargs.get('conf') or 0.1 + kwargs['conf'] = conf + kwargs['mode'] = 'track' + return self.predict(source=source, stream=stream, **kwargs) + + @smart_inference_mode() + def val(self, data=None, **kwargs): + """ + Validate a model on a given dataset. + + Args: + data (str): The dataset to validate on. Accepts all formats accepted by yolo + **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs + """ + overrides = self.overrides.copy() + overrides['rect'] = True # rect batches as default + overrides.update(kwargs) + overrides['mode'] = 'val' + args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) + args.data = data or args.data + if 'task' in overrides: + self.task = args.task + else: + args.task = self.task + if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)): + args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed + args.imgsz = check_imgsz(args.imgsz, max_dim=1) + + validator = TASK_MAP[self.task][2](args=args, _callbacks=self.callbacks) + validator(model=self.model) + self.metrics = validator.metrics + + return validator.metrics + + @smart_inference_mode() + def benchmark(self, **kwargs): + """ + Benchmark a model on all export formats. + + Args: + **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs + """ + self._check_is_pytorch_model() + from ultralytics.yolo.utils.benchmarks import benchmark + overrides = self.model.args.copy() + overrides.update(kwargs) + overrides['mode'] = 'benchmark' + overrides = {**DEFAULT_CFG_DICT, **overrides} # fill in missing overrides keys with defaults + return benchmark(model=self, imgsz=overrides['imgsz'], half=overrides['half'], device=overrides['device']) + + def export(self, **kwargs): + """ + Export model. + + Args: + **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs + """ + self._check_is_pytorch_model() + overrides = self.overrides.copy() + overrides.update(kwargs) + overrides['mode'] = 'export' + if overrides.get('imgsz') is None: + overrides['imgsz'] = self.model.args['imgsz'] # use trained imgsz unless custom value is passed + if 'batch' not in kwargs: + overrides['batch'] = 1 # default to 1 if not modified + args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) + args.task = self.task + return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) + + def train(self, **kwargs): + """ + Trains the model on a given dataset. + + Args: + **kwargs (Any): Any number of arguments representing the training configuration. + """ + self._check_is_pytorch_model() + if self.session: # Ultralytics HUB session + if any(kwargs): + LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.') + kwargs = self.session.train_args + check_pip_update_available() + overrides = self.overrides.copy() + if kwargs.get('cfg'): + LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.") + overrides = yaml_load(check_yaml(kwargs['cfg'])) + overrides.update(kwargs) + overrides['mode'] = 'train' + if not overrides.get('data'): + raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'") + if overrides.get('resume'): + overrides['resume'] = self.ckpt_path + self.task = overrides.get('task') or self.task + self.trainer = TASK_MAP[self.task][1](overrides=overrides, _callbacks=self.callbacks) + if not overrides.get('resume'): # manually set model only if not resuming + self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) + self.model = self.trainer.model + self.trainer.hub_session = self.session # attach optional HUB session + self.trainer.train() + # Update model and cfg after training + if RANK in (-1, 0): + self.model, _ = attempt_load_one_weight(str(self.trainer.best)) + self.overrides = self.model.args + self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP + + def to(self, device): + """ + Sends the model to the given device. + + Args: + device (str): device + """ + self._check_is_pytorch_model() + self.model.to(device) + + def tune(self, + data: str, + space: dict = None, + grace_period: int = 10, + gpu_per_trial: int = None, + max_samples: int = 10, + train_args: dict = None): + """ + Runs hyperparameter tuning using Ray Tune. + + Args: + data (str): The dataset to run the tuner on. + space (dict, optional): The hyperparameter search space. Defaults to None. + grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10. + gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None. + max_samples (int, optional): The maximum number of trials to run. Defaults to 10. + train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}. + + Returns: + (dict): A dictionary containing the results of the hyperparameter search. + + Raises: + ModuleNotFoundError: If Ray Tune is not installed. + """ + if train_args is None: + train_args = {} + + try: + from ultralytics.yolo.utils.tuner import (ASHAScheduler, RunConfig, WandbLoggerCallback, default_space, + task_metric_map, tune) + except ImportError: + raise ModuleNotFoundError("Install Ray Tune: `pip install 'ray[tune]'`") + + try: + import wandb + from wandb import __version__ # noqa + except ImportError: + wandb = False + + def _tune(config): + """ + Trains the YOLO model with the specified hyperparameters and additional arguments. + + Args: + config (dict): A dictionary of hyperparameters to use for training. + + Returns: + None. + """ + self._reset_callbacks() + config.update(train_args) + self.train(**config) + + if not space: + LOGGER.warning('WARNING: search space not provided. Using default search space') + space = default_space + + space['data'] = data + + # Define the trainable function with allocated resources + trainable_with_resources = tune.with_resources(_tune, {'cpu': NUM_THREADS, 'gpu': gpu_per_trial or 0}) + + # Define the ASHA scheduler for hyperparameter search + asha_scheduler = ASHAScheduler(time_attr='epoch', + metric=task_metric_map[self.task], + mode='max', + max_t=train_args.get('epochs') or 100, + grace_period=grace_period, + reduction_factor=3) + + # Define the callbacks for the hyperparameter search + tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else [] + + # Create the Ray Tune hyperparameter search tuner + tuner = tune.Tuner(trainable_with_resources, + param_space=space, + tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples), + run_config=RunConfig(callbacks=tuner_callbacks, local_dir='./runs')) + + # Run the hyperparameter search + tuner.fit() + + # Return the results of the hyperparameter search + return tuner.get_results() + + @property + def names(self): + """Returns class names of the loaded model.""" + return self.model.names if hasattr(self.model, 'names') else None + + @property + def device(self): + """Returns device if PyTorch model.""" + return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None + + @property + def transforms(self): + """Returns transform of the loaded model.""" + return self.model.transforms if hasattr(self.model, 'transforms') else None + + def add_callback(self, event: str, func): + """Add a callback.""" + self.callbacks[event].append(func) + + def clear_callback(self, event: str): + """Clear all event callbacks.""" + self.callbacks[event] = [] + + @staticmethod + def _reset_ckpt_args(args): + """Reset arguments when loading a PyTorch model.""" + include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model + return {k: v for k, v in args.items() if k in include} + + def _reset_callbacks(self): + """Reset all registered callbacks.""" + for event in callbacks.default_callbacks.keys(): + self.callbacks[event] = [callbacks.default_callbacks[event][0]] diff --git a/modules/ultralytics/yolo/engine/predictor.py b/modules/ultralytics/yolo/engine/predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..b71785cb71354134d20d52d80befd81c10cd0a38 --- /dev/null +++ b/modules/ultralytics/yolo/engine/predictor.py @@ -0,0 +1,350 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc. + +Usage - sources: + $ yolo mode=predict model=yolov8n.pt source=0 # webcam + img.jpg # image + vid.mp4 # video + screen # screenshot + path/ # directory + list.txt # list of images + list.streams # list of streams + 'path/*.jpg' # glob + 'https://youtu.be/Zgi9g1ksQHc' # YouTube + 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream + +Usage - formats: + $ yolo mode=predict model=yolov8n.pt # PyTorch + yolov8n.torchscript # TorchScript + yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True + yolov8n_openvino_model # OpenVINO + yolov8n.engine # TensorRT + yolov8n.mlmodel # CoreML (macOS-only) + yolov8n_saved_model # TensorFlow SavedModel + yolov8n.pb # TensorFlow GraphDef + yolov8n.tflite # TensorFlow Lite + yolov8n_edgetpu.tflite # TensorFlow Edge TPU + yolov8n_paddle_model # PaddlePaddle +""" +import platform +from pathlib import Path + +import cv2 +import numpy as np +import torch + +from ultralytics.nn.autobackend import AutoBackend +from ultralytics.yolo.cfg import get_cfg +from ultralytics.yolo.data import load_inference_source +from ultralytics.yolo.data.augment import LetterBox, classify_transforms +from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, SETTINGS, callbacks, colorstr, ops +from ultralytics.yolo.utils.checks import check_imgsz, check_imshow +from ultralytics.yolo.utils.files import increment_path +from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode + +STREAM_WARNING = """ + WARNING ⚠️ stream/video/webcam/dir predict source will accumulate results in RAM unless `stream=True` is passed, + causing potential out-of-memory errors for large sources or long-running streams/videos. + + Usage: + results = model(source=..., stream=True) # generator of Results objects + for r in results: + boxes = r.boxes # Boxes object for bbox outputs + masks = r.masks # Masks object for segment masks outputs + probs = r.probs # Class probabilities for classification outputs +""" + + +class BasePredictor: + """ + BasePredictor + + A base class for creating predictors. + + Attributes: + args (SimpleNamespace): Configuration for the predictor. + save_dir (Path): Directory to save results. + done_warmup (bool): Whether the predictor has finished setup. + model (nn.Module): Model used for prediction. + data (dict): Data configuration. + device (torch.device): Device used for prediction. + dataset (Dataset): Dataset used for prediction. + vid_path (str): Path to video file. + vid_writer (cv2.VideoWriter): Video writer for saving video output. + data_path (str): Path to data. + """ + + def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): + """ + Initializes the BasePredictor class. + + Args: + cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. + overrides (dict, optional): Configuration overrides. Defaults to None. + """ + self.args = get_cfg(cfg, overrides) + self.save_dir = self.get_save_dir() + if self.args.conf is None: + self.args.conf = 0.25 # default conf=0.25 + self.done_warmup = False + if self.args.show: + self.args.show = check_imshow(warn=True) + + # Usable if setup is done + self.model = None + self.data = self.args.data # data_dict + self.imgsz = None + self.device = None + self.dataset = None + self.vid_path, self.vid_writer = None, None + self.plotted_img = None + self.data_path = None + self.source_type = None + self.batch = None + self.results = None + self.transforms = None + self.callbacks = _callbacks or callbacks.get_default_callbacks() + callbacks.add_integration_callbacks(self) + + def get_save_dir(self): + project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task + name = self.args.name or f'{self.args.mode}' + return increment_path(Path(project) / name, exist_ok=self.args.exist_ok) + + def preprocess(self, im): + """Prepares input image before inference. + + Args: + im (torch.Tensor | List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. + """ + if not isinstance(im, torch.Tensor): + im = np.stack(self.pre_transform(im)) + im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w) + im = np.ascontiguousarray(im) # contiguous + im = torch.from_numpy(im) + # NOTE: assuming im with (b, 3, h, w) if it's a tensor + img = im.to(self.device) + img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 + img /= 255 # 0 - 255 to 0.0 - 1.0 + return img + + def pre_transform(self, im): + """Pre-tranform input image before inference. + + Args: + im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. + + Return: A list of transformed imgs. + """ + same_shapes = all(x.shape == im[0].shape for x in im) + auto = same_shapes and self.model.pt + return [LetterBox(self.imgsz, auto=auto, stride=self.model.stride)(image=x) for x in im] + + def write_results(self, idx, results, batch): + """Write inference results to a file or directory.""" + p, im, _ = batch + log_string = '' + if len(im.shape) == 3: + im = im[None] # expand for batch dim + self.seen += 1 + if self.source_type.webcam or self.source_type.from_img: # batch_size >= 1 + log_string += f'{idx}: ' + frame = self.dataset.count + else: + frame = getattr(self.dataset, 'frame', 0) + self.data_path = p + self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}') + log_string += '%gx%g ' % im.shape[2:] # print string + result = results[idx] + log_string += result.verbose() + + if self.args.save or self.args.show: # Add bbox to image + plot_args = dict(line_width=self.args.line_width, + boxes=self.args.boxes, + conf=self.args.show_conf, + labels=self.args.show_labels) + if not self.args.retina_masks: + plot_args['im_gpu'] = im[idx] + self.plotted_img = result.plot(**plot_args) + # Write + if self.args.save_txt: + result.save_txt(f'{self.txt_path}.txt', save_conf=self.args.save_conf) + if self.args.save_crop: + result.save_crop(save_dir=self.save_dir / 'crops', file_name=self.data_path.stem) + + return log_string + + def postprocess(self, preds, img, orig_imgs): + """Post-processes predictions for an image and returns them.""" + return preds + + def __call__(self, source=None, model=None, stream=False): + """Performs inference on an image or stream.""" + self.stream = stream + if stream: + return self.stream_inference(source, model) + else: + return list(self.stream_inference(source, model)) # merge list of Result into one + + def predict_cli(self, source=None, model=None): + """Method used for CLI prediction. It uses always generator as outputs as not required by CLI mode.""" + gen = self.stream_inference(source, model) + for _ in gen: # running CLI inference without accumulating any outputs (do not modify) + pass + + def setup_source(self, source): + """Sets up source and inference mode.""" + self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size + self.transforms = getattr(self.model.model, 'transforms', classify_transforms( + self.imgsz[0])) if self.args.task == 'classify' else None + self.dataset = load_inference_source(source=source, imgsz=self.imgsz, vid_stride=self.args.vid_stride) + self.source_type = self.dataset.source_type + if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams + len(self.dataset) > 1000 or # images + any(getattr(self.dataset, 'video_flag', [False]))): # videos + LOGGER.warning(STREAM_WARNING) + self.vid_path, self.vid_writer = [None] * self.dataset.bs, [None] * self.dataset.bs + + @smart_inference_mode() + def stream_inference(self, source=None, model=None): + """Streams real-time inference on camera feed and saves results to file.""" + if self.args.verbose: + LOGGER.info('') + + # Setup model + if not self.model: + self.setup_model(model) + # Setup source every time predict is called + self.setup_source(source if source is not None else self.args.source) + + # Check if save_dir/ label file exists + if self.args.save or self.args.save_txt: + (self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) + # Warmup model + if not self.done_warmup: + self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz)) + self.done_warmup = True + + self.seen, self.windows, self.batch, profilers = 0, [], None, (ops.Profile(), ops.Profile(), ops.Profile()) + self.run_callbacks('on_predict_start') + for batch in self.dataset: + self.run_callbacks('on_predict_batch_start') + self.batch = batch + path, im0s, vid_cap, s = batch + visualize = increment_path(self.save_dir / Path(path[0]).stem, + mkdir=True) if self.args.visualize and (not self.source_type.tensor) else False + + # Preprocess + with profilers[0]: + im = self.preprocess(im0s) + + # Inference + with profilers[1]: + preds = self.model(im, augment=self.args.augment, visualize=visualize) + + # Postprocess + with profilers[2]: + self.results = self.postprocess(preds, im, im0s) + self.run_callbacks('on_predict_postprocess_end') + + # Visualize, save, write results + n = len(im0s) + for i in range(n): + self.results[i].speed = { + 'preprocess': profilers[0].dt * 1E3 / n, + 'inference': profilers[1].dt * 1E3 / n, + 'postprocess': profilers[2].dt * 1E3 / n} + if self.source_type.tensor: # skip write, show and plot operations if input is raw tensor + continue + p, im0 = path[i], im0s[i].copy() + p = Path(p) + + if self.args.verbose or self.args.save or self.args.save_txt or self.args.show: + s += self.write_results(i, self.results, (p, im, im0)) + if self.args.save or self.args.save_txt: + self.results[i].save_dir = self.save_dir.__str__() + if self.args.show and self.plotted_img is not None: + self.show(p) + if self.args.save and self.plotted_img is not None: + self.save_preds(vid_cap, i, str(self.save_dir / p.name)) + + self.run_callbacks('on_predict_batch_end') + yield from self.results + + # Print time (inference-only) + if self.args.verbose: + LOGGER.info(f'{s}{profilers[1].dt * 1E3:.1f}ms') + + # Release assets + if isinstance(self.vid_writer[-1], cv2.VideoWriter): + self.vid_writer[-1].release() # release final video writer + + # Print results + if self.args.verbose and self.seen: + t = tuple(x.t / self.seen * 1E3 for x in profilers) # speeds per image + LOGGER.info(f'Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape ' + f'{(1, 3, *self.imgsz)}' % t) + if self.args.save or self.args.save_txt or self.args.save_crop: + nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels + s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else '' + LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}") + + self.run_callbacks('on_predict_end') + + def setup_model(self, model, verbose=True): + """Initialize YOLO model with given parameters and set it to evaluation mode.""" + device = select_device(self.args.device, verbose=verbose) + model = model or self.args.model + self.args.half &= device.type != 'cpu' # half precision only supported on CUDA + self.model = AutoBackend(model, + device=device, + dnn=self.args.dnn, + data=self.args.data, + fp16=self.args.half, + fuse=True, + verbose=verbose) + self.device = device + self.model.eval() + + def show(self, p): + """Display an image in a window using OpenCV imshow().""" + im0 = self.plotted_img + if platform.system() == 'Linux' and p not in self.windows: + self.windows.append(p) + cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) + cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) + cv2.imshow(str(p), im0) + cv2.waitKey(500 if self.batch[3].startswith('image') else 1) # 1 millisecond + + def save_preds(self, vid_cap, idx, save_path): + """Save video predictions as mp4 at specified path.""" + im0 = self.plotted_img + # Save imgs + if self.dataset.mode == 'image': + cv2.imwrite(save_path, im0) + else: # 'video' or 'stream' + if self.vid_path[idx] != save_path: # new video + self.vid_path[idx] = save_path + if isinstance(self.vid_writer[idx], cv2.VideoWriter): + self.vid_writer[idx].release() # release previous video writer + if vid_cap: # video + fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec + w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + else: # stream + fps, w, h = 30, im0.shape[1], im0.shape[0] + save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos + self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) + self.vid_writer[idx].write(im0) + + def run_callbacks(self, event: str): + """Runs all registered callbacks for a specific event.""" + for callback in self.callbacks.get(event, []): + callback(self) + + def add_callback(self, event: str, func): + """ + Add callback + """ + self.callbacks[event].append(func) diff --git a/modules/ultralytics/yolo/engine/results.py b/modules/ultralytics/yolo/engine/results.py new file mode 100644 index 0000000000000000000000000000000000000000..68e0de2d7d282c420e8608f43d328154b74662b2 --- /dev/null +++ b/modules/ultralytics/yolo/engine/results.py @@ -0,0 +1,605 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Ultralytics Results, Boxes and Masks classes for handling inference results + +Usage: See https://docs.ultralytics.com/modes/predict/ +""" + +from copy import deepcopy +from functools import lru_cache +from pathlib import Path + +import numpy as np +import torch + +from ultralytics.yolo.data.augment import LetterBox +from ultralytics.yolo.utils import LOGGER, SimpleClass, deprecation_warn, ops +from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box + + +class BaseTensor(SimpleClass): + """ + Base tensor class with additional methods for easy manipulation and device handling. + """ + + def __init__(self, data, orig_shape) -> None: + """Initialize BaseTensor with data and original shape. + + Args: + data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints. + orig_shape (tuple): Original shape of image. + """ + assert isinstance(data, (torch.Tensor, np.ndarray)) + self.data = data + self.orig_shape = orig_shape + + @property + def shape(self): + """Return the shape of the data tensor.""" + return self.data.shape + + def cpu(self): + """Return a copy of the tensor on CPU memory.""" + return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape) + + def numpy(self): + """Return a copy of the tensor as a numpy array.""" + return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape) + + def cuda(self): + """Return a copy of the tensor on GPU memory.""" + return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape) + + def to(self, *args, **kwargs): + """Return a copy of the tensor with the specified device and dtype.""" + return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape) + + def __len__(self): # override len(results) + """Return the length of the data tensor.""" + return len(self.data) + + def __getitem__(self, idx): + """Return a BaseTensor with the specified index of the data tensor.""" + return self.__class__(self.data[idx], self.orig_shape) + + +class Results(SimpleClass): + """ + A class for storing and manipulating inference results. + + Args: + orig_img (numpy.ndarray): The original image as a numpy array. + path (str): The path to the image file. + names (dict): A dictionary of class names. + boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection. + masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image. + probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task. + keypoints (List[List[float]], optional): A list of detected keypoints for each object. + + + Attributes: + orig_img (numpy.ndarray): The original image as a numpy array. + orig_shape (tuple): The original image shape in (height, width) format. + boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. + masks (Masks, optional): A Masks object containing the detection masks. + probs (Probs, optional): A Probs object containing probabilities of each class for classification task. + names (dict): A dictionary of class names. + path (str): The path to the image file. + keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object. + speed (dict): A dictionary of preprocess, inference and postprocess speeds in milliseconds per image. + _keys (tuple): A tuple of attribute names for non-empty attributes. + """ + + def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None: + """Initialize the Results class.""" + self.orig_img = orig_img + self.orig_shape = orig_img.shape[:2] + self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes + self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks + self.probs = Probs(probs) if probs is not None else None + self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None + self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image + self.names = names + self.path = path + self.save_dir = None + self._keys = ('boxes', 'masks', 'probs', 'keypoints') + + def __getitem__(self, idx): + """Return a Results object for the specified index.""" + r = self.new() + for k in self.keys: + setattr(r, k, getattr(self, k)[idx]) + return r + + def update(self, boxes=None, masks=None, probs=None): + """Update the boxes, masks, and probs attributes of the Results object.""" + if boxes is not None: + self.boxes = Boxes(boxes, self.orig_shape) + if masks is not None: + self.masks = Masks(masks, self.orig_shape) + if probs is not None: + self.probs = probs + + def cpu(self): + """Return a copy of the Results object with all tensors on CPU memory.""" + r = self.new() + for k in self.keys: + setattr(r, k, getattr(self, k).cpu()) + return r + + def numpy(self): + """Return a copy of the Results object with all tensors as numpy arrays.""" + r = self.new() + for k in self.keys: + setattr(r, k, getattr(self, k).numpy()) + return r + + def cuda(self): + """Return a copy of the Results object with all tensors on GPU memory.""" + r = self.new() + for k in self.keys: + setattr(r, k, getattr(self, k).cuda()) + return r + + def to(self, *args, **kwargs): + """Return a copy of the Results object with tensors on the specified device and dtype.""" + r = self.new() + for k in self.keys: + setattr(r, k, getattr(self, k).to(*args, **kwargs)) + return r + + def __len__(self): + """Return the number of detections in the Results object.""" + for k in self.keys: + return len(getattr(self, k)) + + def new(self): + """Return a new Results object with the same image, path, and names.""" + return Results(orig_img=self.orig_img, path=self.path, names=self.names) + + @property + def keys(self): + """Return a list of non-empty attribute names.""" + return [k for k in self._keys if getattr(self, k) is not None] + + def plot( + self, + conf=True, + line_width=None, + font_size=None, + font='Arial.ttf', + pil=False, + img=None, + img_gpu=None, + kpt_line=True, + labels=True, + boxes=True, + masks=True, + probs=True, + **kwargs # deprecated args TODO: remove support in 8.2 + ): + """ + Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image. + + Args: + conf (bool): Whether to plot the detection confidence score. + line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size. + font_size (float, optional): The font size of the text. If None, it is scaled to the image size. + font (str): The font to use for the text. + pil (bool): Whether to return the image as a PIL Image. + img (numpy.ndarray): Plot to another image. if not, plot to original image. + img_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting. + kpt_line (bool): Whether to draw lines connecting keypoints. + labels (bool): Whether to plot the label of bounding boxes. + boxes (bool): Whether to plot the bounding boxes. + masks (bool): Whether to plot the masks. + probs (bool): Whether to plot classification probability + + Returns: + (numpy.ndarray): A numpy array of the annotated image. + """ + # Deprecation warn TODO: remove in 8.2 + if 'show_conf' in kwargs: + deprecation_warn('show_conf', 'conf') + conf = kwargs['show_conf'] + assert type(conf) == bool, '`show_conf` should be of boolean type, i.e, show_conf=True/False' + + if 'line_thickness' in kwargs: + deprecation_warn('line_thickness', 'line_width') + line_width = kwargs['line_thickness'] + assert type(line_width) == int, '`line_width` should be of int type, i.e, line_width=3' + + names = self.names + annotator = Annotator(deepcopy(self.orig_img if img is None else img), + line_width, + font_size, + font, + pil, + example=names) + pred_boxes, show_boxes = self.boxes, boxes + pred_masks, show_masks = self.masks, masks + pred_probs, show_probs = self.probs, probs + keypoints = self.keypoints + if pred_masks and show_masks: + if img_gpu is None: + img = LetterBox(pred_masks.shape[1:])(image=annotator.result()) + img_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute( + 2, 0, 1).flip(0).contiguous() / 255 + idx = pred_boxes.cls if pred_boxes else range(len(pred_masks)) + annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=img_gpu) + + if pred_boxes and show_boxes: + for d in reversed(pred_boxes): + c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item()) + name = ('' if id is None else f'id:{id} ') + names[c] + label = (f'{name} {conf:.2f}' if conf else name) if labels else None + annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) + + if pred_probs is not None and show_probs: + text = f"{', '.join(f'{names[j] if names else j} {pred_probs.data[j]:.2f}' for j in pred_probs.top5)}, " + annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors + + if keypoints is not None: + for k in reversed(keypoints.data): + annotator.kpts(k, self.orig_shape, kpt_line=kpt_line) + + return annotator.result() + + def verbose(self): + """ + Return log string for each task. + """ + log_string = '' + probs = self.probs + boxes = self.boxes + if len(self) == 0: + return log_string if probs is not None else f'{log_string}(no detections), ' + if probs is not None: + log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, " + if boxes: + for c in boxes.cls.unique(): + n = (boxes.cls == c).sum() # detections per class + log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " + return log_string + + def save_txt(self, txt_file, save_conf=False): + """ + Save predictions into txt file. + + Args: + txt_file (str): txt file path. + save_conf (bool): save confidence score or not. + """ + boxes = self.boxes + masks = self.masks + probs = self.probs + kpts = self.keypoints + texts = [] + if probs is not None: + # Classify + [texts.append(f'{probs.data[j]:.2f} {self.names[j]}') for j in probs.top5] + elif boxes: + # Detect/segment/pose + for j, d in enumerate(boxes): + c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item()) + line = (c, *d.xywhn.view(-1)) + if masks: + seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2) + line = (c, *seg) + if kpts is not None: + kpt = kpts[j].xyn.reshape(-1).tolist() + line += (*kpt, ) + line += (conf, ) * save_conf + (() if id is None else (id, )) + texts.append(('%g ' * len(line)).rstrip() % line) + + if texts: + with open(txt_file, 'a') as f: + f.writelines(text + '\n' for text in texts) + + def save_crop(self, save_dir, file_name=Path('im.jpg')): + """ + Save cropped predictions to `save_dir/cls/file_name.jpg`. + + Args: + save_dir (str | pathlib.Path): Save path. + file_name (str | pathlib.Path): File name. + """ + if self.probs is not None: + LOGGER.warning('Warning: Classify task do not support `save_crop`.') + return + if isinstance(save_dir, str): + save_dir = Path(save_dir) + if isinstance(file_name, str): + file_name = Path(file_name) + for d in self.boxes: + save_one_box(d.xyxy, + self.orig_img.copy(), + file=save_dir / self.names[int(d.cls)] / f'{file_name.stem}.jpg', + BGR=True) + + def pandas(self): + """Convert the object to a pandas DataFrame (not yet implemented).""" + LOGGER.warning("WARNING ⚠️ 'Results.pandas' method is not yet implemented.") + + def tojson(self, normalize=False): + """Convert the object to JSON format.""" + if self.probs is not None: + LOGGER.warning('Warning: Classify task do not support `tojson` yet.') + return + + import json + + # Create list of detection dictionaries + results = [] + data = self.boxes.data.cpu().tolist() + h, w = self.orig_shape if normalize else (1, 1) + for i, row in enumerate(data): + box = {'x1': row[0] / w, 'y1': row[1] / h, 'x2': row[2] / w, 'y2': row[3] / h} + conf = row[4] + id = int(row[5]) + name = self.names[id] + result = {'name': name, 'class': id, 'confidence': conf, 'box': box} + if self.masks: + x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1] # numpy array + result['segments'] = {'x': (x / w).tolist(), 'y': (y / h).tolist()} + if self.keypoints is not None: + x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1) # torch Tensor + result['keypoints'] = {'x': (x / w).tolist(), 'y': (y / h).tolist(), 'visible': visible.tolist()} + results.append(result) + + # Convert detections to JSON + return json.dumps(results, indent=2) + + +class Boxes(BaseTensor): + """ + A class for storing and manipulating detection boxes. + + Args: + boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes, + with shape (num_boxes, 6). The last two columns should contain confidence and class values. + orig_shape (tuple): Original image size, in the format (height, width). + + Attributes: + boxes (torch.Tensor | numpy.ndarray): The detection boxes with shape (num_boxes, 6). + orig_shape (torch.Tensor | numpy.ndarray): Original image size, in the format (height, width). + is_track (bool): True if the boxes also include track IDs, False otherwise. + + Properties: + xyxy (torch.Tensor | numpy.ndarray): The boxes in xyxy format. + conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes. + cls (torch.Tensor | numpy.ndarray): The class values of the boxes. + id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available). + xywh (torch.Tensor | numpy.ndarray): The boxes in xywh format. + xyxyn (torch.Tensor | numpy.ndarray): The boxes in xyxy format normalized by original image size. + xywhn (torch.Tensor | numpy.ndarray): The boxes in xywh format normalized by original image size. + data (torch.Tensor): The raw bboxes tensor + + Methods: + cpu(): Move the object to CPU memory. + numpy(): Convert the object to a numpy array. + cuda(): Move the object to CUDA memory. + to(*args, **kwargs): Move the object to the specified device. + pandas(): Convert the object to a pandas DataFrame (not yet implemented). + """ + + def __init__(self, boxes, orig_shape) -> None: + """Initialize the Boxes class.""" + if boxes.ndim == 1: + boxes = boxes[None, :] + n = boxes.shape[-1] + assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls + super().__init__(boxes, orig_shape) + self.is_track = n == 7 + self.orig_shape = orig_shape + + @property + def xyxy(self): + """Return the boxes in xyxy format.""" + return self.data[:, :4] + + @property + def conf(self): + """Return the confidence values of the boxes.""" + return self.data[:, -2] + + @property + def cls(self): + """Return the class values of the boxes.""" + return self.data[:, -1] + + @property + def id(self): + """Return the track IDs of the boxes (if available).""" + return self.data[:, -3] if self.is_track else None + + @property + @lru_cache(maxsize=2) # maxsize 1 should suffice + def xywh(self): + """Return the boxes in xywh format.""" + return ops.xyxy2xywh(self.xyxy) + + @property + @lru_cache(maxsize=2) + def xyxyn(self): + """Return the boxes in xyxy format normalized by original image size.""" + xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy) + xyxy[..., [0, 2]] /= self.orig_shape[1] + xyxy[..., [1, 3]] /= self.orig_shape[0] + return xyxy + + @property + @lru_cache(maxsize=2) + def xywhn(self): + """Return the boxes in xywh format normalized by original image size.""" + xywh = ops.xyxy2xywh(self.xyxy) + xywh[..., [0, 2]] /= self.orig_shape[1] + xywh[..., [1, 3]] /= self.orig_shape[0] + return xywh + + @property + def boxes(self): + """Return the raw bboxes tensor (deprecated).""" + LOGGER.warning("WARNING ⚠️ 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.") + return self.data + + +class Masks(BaseTensor): + """ + A class for storing and manipulating detection masks. + + Args: + masks (torch.Tensor | np.ndarray): A tensor containing the detection masks, with shape (num_masks, height, width). + orig_shape (tuple): Original image size, in the format (height, width). + + Attributes: + masks (torch.Tensor | np.ndarray): A tensor containing the detection masks, with shape (num_masks, height, width). + orig_shape (tuple): Original image size, in the format (height, width). + + Properties: + xy (list): A list of segments (pixels) which includes x, y segments of each detection. + xyn (list): A list of segments (normalized) which includes x, y segments of each detection. + + Methods: + cpu(): Returns a copy of the masks tensor on CPU memory. + numpy(): Returns a copy of the masks tensor as a numpy array. + cuda(): Returns a copy of the masks tensor on GPU memory. + to(): Returns a copy of the masks tensor with the specified device and dtype. + """ + + def __init__(self, masks, orig_shape) -> None: + """Initialize the Masks class.""" + if masks.ndim == 2: + masks = masks[None, :] + super().__init__(masks, orig_shape) + + @property + @lru_cache(maxsize=1) + def segments(self): + """Return segments (deprecated; normalized).""" + LOGGER.warning("WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and " + "'Masks.xy' for segments (pixels) instead.") + return self.xyn + + @property + @lru_cache(maxsize=1) + def xyn(self): + """Return segments (normalized).""" + return [ + ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True) + for x in ops.masks2segments(self.data)] + + @property + @lru_cache(maxsize=1) + def xy(self): + """Return segments (pixels).""" + return [ + ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False) + for x in ops.masks2segments(self.data)] + + @property + def masks(self): + """Return the raw masks tensor (deprecated).""" + LOGGER.warning("WARNING ⚠️ 'Masks.masks' is deprecated. Use 'Masks.data' instead.") + return self.data + + def pandas(self): + """Convert the object to a pandas DataFrame (not yet implemented).""" + LOGGER.warning("WARNING ⚠️ 'Masks.pandas' method is not yet implemented.") + + +class Keypoints(BaseTensor): + """ + A class for storing and manipulating detection keypoints. + + Args: + keypoints (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_dets, num_kpts, 2/3). + orig_shape (tuple): Original image size, in the format (height, width). + + Attributes: + keypoints (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_dets, num_kpts, 2/3). + orig_shape (tuple): Original image size, in the format (height, width). + + Properties: + xy (list): A list of keypoints (pixels) which includes x, y keypoints of each detection. + xyn (list): A list of keypoints (normalized) which includes x, y keypoints of each detection. + + Methods: + cpu(): Returns a copy of the keypoints tensor on CPU memory. + numpy(): Returns a copy of the keypoints tensor as a numpy array. + cuda(): Returns a copy of the keypoints tensor on GPU memory. + to(): Returns a copy of the keypoints tensor with the specified device and dtype. + """ + + def __init__(self, keypoints, orig_shape) -> None: + if keypoints.ndim == 2: + keypoints = keypoints[None, :] + super().__init__(keypoints, orig_shape) + self.has_visible = self.data.shape[-1] == 3 + + @property + @lru_cache(maxsize=1) + def xy(self): + return self.data[..., :2] + + @property + @lru_cache(maxsize=1) + def xyn(self): + xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy) + xy[..., 0] /= self.orig_shape[1] + xy[..., 1] /= self.orig_shape[0] + return xy + + @property + @lru_cache(maxsize=1) + def conf(self): + return self.data[..., 2] if self.has_visible else None + + +class Probs(BaseTensor): + """ + A class for storing and manipulating classify predictions. + + Args: + probs (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_class, ). + + Attributes: + probs (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_class). + + Properties: + top5 (list[int]): Top 1 indice. + top1 (int): Top 5 indices. + + Methods: + cpu(): Returns a copy of the probs tensor on CPU memory. + numpy(): Returns a copy of the probs tensor as a numpy array. + cuda(): Returns a copy of the probs tensor on GPU memory. + to(): Returns a copy of the probs tensor with the specified device and dtype. + """ + + def __init__(self, probs, orig_shape=None) -> None: + super().__init__(probs, orig_shape) + + @property + @lru_cache(maxsize=1) + def top5(self): + """Return the indices of top 5.""" + return (-self.data).argsort(0)[:5].tolist() # this way works with both torch and numpy. + + @property + @lru_cache(maxsize=1) + def top1(self): + """Return the indices of top 1.""" + return int(self.data.argmax()) + + @property + @lru_cache(maxsize=1) + def top5conf(self): + """Return the confidences of top 5.""" + return self.data[self.top5] + + @property + @lru_cache(maxsize=1) + def top1conf(self): + """Return the confidences of top 1.""" + return self.data[self.top1] diff --git a/modules/ultralytics/yolo/engine/trainer.py b/modules/ultralytics/yolo/engine/trainer.py new file mode 100644 index 0000000000000000000000000000000000000000..e4925b34541b94fe9e797700b94a7f1c00a9a87c --- /dev/null +++ b/modules/ultralytics/yolo/engine/trainer.py @@ -0,0 +1,663 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Train a model on a dataset + +Usage: + $ yolo mode=train model=yolov8n.pt data=coco128.yaml imgsz=640 epochs=100 batch=16 +""" +import math +import os +import subprocess +import time +from copy import deepcopy +from datetime import datetime, timedelta +from pathlib import Path + +import numpy as np +import torch +from torch import distributed as dist +from torch import nn, optim +from torch.cuda import amp +from torch.nn.parallel import DistributedDataParallel as DDP +from tqdm import tqdm + +from ultralytics.nn.tasks import attempt_load_one_weight, attempt_load_weights +from ultralytics.yolo.cfg import get_cfg +from ultralytics.yolo.data.utils import check_cls_dataset, check_det_dataset +from ultralytics.yolo.utils import (DEFAULT_CFG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, __version__, callbacks, + clean_url, colorstr, emojis, yaml_save) +from ultralytics.yolo.utils.autobatch import check_train_batch_size +from ultralytics.yolo.utils.checks import check_amp, check_file, check_imgsz, print_args +from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command +from ultralytics.yolo.utils.files import get_latest_run, increment_path +from ultralytics.yolo.utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, init_seeds, one_cycle, + select_device, strip_optimizer) + + +class BaseTrainer: + """ + BaseTrainer + + A base class for creating trainers. + + Attributes: + args (SimpleNamespace): Configuration for the trainer. + check_resume (method): Method to check if training should be resumed from a saved checkpoint. + validator (BaseValidator): Validator instance. + model (nn.Module): Model instance. + callbacks (defaultdict): Dictionary of callbacks. + save_dir (Path): Directory to save results. + wdir (Path): Directory to save weights. + last (Path): Path to last checkpoint. + best (Path): Path to best checkpoint. + save_period (int): Save checkpoint every x epochs (disabled if < 1). + batch_size (int): Batch size for training. + epochs (int): Number of epochs to train for. + start_epoch (int): Starting epoch for training. + device (torch.device): Device to use for training. + amp (bool): Flag to enable AMP (Automatic Mixed Precision). + scaler (amp.GradScaler): Gradient scaler for AMP. + data (str): Path to data. + trainset (torch.utils.data.Dataset): Training dataset. + testset (torch.utils.data.Dataset): Testing dataset. + ema (nn.Module): EMA (Exponential Moving Average) of the model. + lf (nn.Module): Loss function. + scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler. + best_fitness (float): The best fitness value achieved. + fitness (float): Current fitness value. + loss (float): Current loss value. + tloss (float): Total loss value. + loss_names (list): List of loss names. + csv (Path): Path to results CSV file. + """ + + def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): + """ + Initializes the BaseTrainer class. + + Args: + cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. + overrides (dict, optional): Configuration overrides. Defaults to None. + """ + self.args = get_cfg(cfg, overrides) + self.device = select_device(self.args.device, self.args.batch) + self.check_resume() + self.validator = None + self.model = None + self.metrics = None + self.plots = {} + init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic) + + # Dirs + project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task + name = self.args.name or f'{self.args.mode}' + if hasattr(self.args, 'save_dir'): + self.save_dir = Path(self.args.save_dir) + else: + self.save_dir = Path( + increment_path(Path(project) / name, exist_ok=self.args.exist_ok if RANK in (-1, 0) else True)) + self.wdir = self.save_dir / 'weights' # weights dir + if RANK in (-1, 0): + self.wdir.mkdir(parents=True, exist_ok=True) # make dir + self.args.save_dir = str(self.save_dir) + yaml_save(self.save_dir / 'args.yaml', vars(self.args)) # save run args + self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # checkpoint paths + self.save_period = self.args.save_period + + self.batch_size = self.args.batch + self.epochs = self.args.epochs + self.start_epoch = 0 + if RANK == -1: + print_args(vars(self.args)) + + # Device + if self.device.type == 'cpu': + self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading + + # Model and Dataset + self.model = self.args.model + try: + if self.args.task == 'classify': + self.data = check_cls_dataset(self.args.data) + elif self.args.data.endswith('.yaml') or self.args.task in ('detect', 'segment'): + self.data = check_det_dataset(self.args.data) + if 'yaml_file' in self.data: + self.args.data = self.data['yaml_file'] # for validating 'yolo train data=url.zip' usage + except Exception as e: + raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e + + self.trainset, self.testset = self.get_dataset(self.data) + self.ema = None + + # Optimization utils init + self.lf = None + self.scheduler = None + + # Epoch level metrics + self.best_fitness = None + self.fitness = None + self.loss = None + self.tloss = None + self.loss_names = ['Loss'] + self.csv = self.save_dir / 'results.csv' + self.plot_idx = [0, 1, 2] + + # Callbacks + self.callbacks = _callbacks or callbacks.get_default_callbacks() + if RANK in (-1, 0): + callbacks.add_integration_callbacks(self) + + def add_callback(self, event: str, callback): + """ + Appends the given callback. + """ + self.callbacks[event].append(callback) + + def set_callback(self, event: str, callback): + """ + Overrides the existing callbacks with the given callback. + """ + self.callbacks[event] = [callback] + + def run_callbacks(self, event: str): + """Run all existing callbacks associated with a particular event.""" + for callback in self.callbacks.get(event, []): + callback(self) + + def train(self): + """Allow device='', device=None on Multi-GPU systems to default to device=0.""" + if isinstance(self.args.device, int) or self.args.device: # i.e. device=0 or device=[0,1,2,3] + world_size = torch.cuda.device_count() + elif torch.cuda.is_available(): # i.e. device=None or device='' + world_size = 1 # default to device 0 + else: # i.e. device='cpu' or 'mps' + world_size = 0 + + # Run subprocess if DDP training, else train normally + if world_size > 1 and 'LOCAL_RANK' not in os.environ: + # Argument checks + if self.args.rect: + LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with Multi-GPU training, setting rect=False") + self.args.rect = False + # Command + cmd, file = generate_ddp_command(world_size, self) + try: + LOGGER.info(f'DDP command: {cmd}') + subprocess.run(cmd, check=True) + except Exception as e: + raise e + finally: + ddp_cleanup(self, str(file)) + else: + self._do_train(world_size) + + def _setup_ddp(self, world_size): + """Initializes and sets the DistributedDataParallel parameters for training.""" + torch.cuda.set_device(RANK) + self.device = torch.device('cuda', RANK) + LOGGER.info(f'DDP info: RANK {RANK}, WORLD_SIZE {world_size}, DEVICE {self.device}') + os.environ['NCCL_BLOCKING_WAIT'] = '1' # set to enforce timeout + dist.init_process_group('nccl' if dist.is_nccl_available() else 'gloo', + timeout=timedelta(seconds=3600), + rank=RANK, + world_size=world_size) + + def _setup_train(self, world_size): + """ + Builds dataloaders and optimizer on correct rank process. + """ + # Model + self.run_callbacks('on_pretrain_routine_start') + ckpt = self.setup_model() + self.model = self.model.to(self.device) + self.set_model_attributes() + # Check AMP + self.amp = torch.tensor(self.args.amp).to(self.device) # True or False + if self.amp and RANK in (-1, 0): # Single-GPU and DDP + callbacks_backup = callbacks.default_callbacks.copy() # backup callbacks as check_amp() resets them + self.amp = torch.tensor(check_amp(self.model), device=self.device) + callbacks.default_callbacks = callbacks_backup # restore callbacks + if RANK > -1 and world_size > 1: # DDP + dist.broadcast(self.amp, src=0) # broadcast the tensor from rank 0 to all other ranks (returns None) + self.amp = bool(self.amp) # as boolean + self.scaler = amp.GradScaler(enabled=self.amp) + if world_size > 1: + self.model = DDP(self.model, device_ids=[RANK]) + # Check imgsz + gs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32) # grid size (max stride) + self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1) + # Batch size + if self.batch_size == -1: + if RANK == -1: # single-GPU only, estimate best batch size + self.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp) + else: + SyntaxError('batch=-1 to use AutoBatch is only available in Single-GPU training. ' + 'Please pass a valid batch size value for Multi-GPU DDP training, i.e. batch=16') + + # Dataloaders + batch_size = self.batch_size // max(world_size, 1) + self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train') + if RANK in (-1, 0): + self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode='val') + self.validator = self.get_validator() + metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix='val') + self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()? + self.ema = ModelEMA(self.model) + if self.args.plots and not self.args.v5loader: + self.plot_training_labels() + + # Optimizer + self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing + weight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs # scale weight_decay + iterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochs + self.optimizer = self.build_optimizer(model=self.model, + name=self.args.optimizer, + lr=self.args.lr0, + momentum=self.args.momentum, + decay=weight_decay, + iterations=iterations) + # Scheduler + if self.args.cos_lr: + self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf'] + else: + self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf # linear + self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf) + self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False + self.resume_training(ckpt) + self.scheduler.last_epoch = self.start_epoch - 1 # do not move + self.run_callbacks('on_pretrain_routine_end') + + def _do_train(self, world_size=1): + """Train completed, evaluate and plot if specified by arguments.""" + if world_size > 1: + self._setup_ddp(world_size) + + self._setup_train(world_size) + + self.epoch_time = None + self.epoch_time_start = time.time() + self.train_time_start = time.time() + nb = len(self.train_loader) # number of batches + nw = max(round(self.args.warmup_epochs * + nb), 100) if self.args.warmup_epochs > 0 else -1 # number of warmup iterations + last_opt_step = -1 + self.run_callbacks('on_train_start') + LOGGER.info(f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n' + f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n' + f"Logging results to {colorstr('bold', self.save_dir)}\n" + f'Starting training for {self.epochs} epochs...') + if self.args.close_mosaic: + base_idx = (self.epochs - self.args.close_mosaic) * nb + self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2]) + epoch = self.epochs # predefine for resume fully trained model edge cases + for epoch in range(self.start_epoch, self.epochs): + self.epoch = epoch + self.run_callbacks('on_train_epoch_start') + self.model.train() + if RANK != -1: + self.train_loader.sampler.set_epoch(epoch) + pbar = enumerate(self.train_loader) + # Update dataloader attributes (optional) + if epoch == (self.epochs - self.args.close_mosaic): + LOGGER.info('Closing dataloader mosaic') + if hasattr(self.train_loader.dataset, 'mosaic'): + self.train_loader.dataset.mosaic = False + if hasattr(self.train_loader.dataset, 'close_mosaic'): + self.train_loader.dataset.close_mosaic(hyp=self.args) + self.train_loader.reset() + + if RANK in (-1, 0): + LOGGER.info(self.progress_string()) + pbar = tqdm(enumerate(self.train_loader), total=nb, bar_format=TQDM_BAR_FORMAT) + self.tloss = None + self.optimizer.zero_grad() + for i, batch in pbar: + self.run_callbacks('on_train_batch_start') + # Warmup + ni = i + nb * epoch + if ni <= nw: + xi = [0, nw] # x interp + self.accumulate = max(1, np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round()) + for j, x in enumerate(self.optimizer.param_groups): + # Bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 + x['lr'] = np.interp( + ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x['initial_lr'] * self.lf(epoch)]) + if 'momentum' in x: + x['momentum'] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum]) + + # Forward + with torch.cuda.amp.autocast(self.amp): + batch = self.preprocess_batch(batch) + self.loss, self.loss_items = self.model(batch) + if RANK != -1: + self.loss *= world_size + self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \ + else self.loss_items + + # Backward + self.scaler.scale(self.loss).backward() + + # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html + if ni - last_opt_step >= self.accumulate: + self.optimizer_step() + last_opt_step = ni + + # Log + mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) + loss_len = self.tloss.shape[0] if len(self.tloss.size()) else 1 + losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0) + if RANK in (-1, 0): + pbar.set_description( + ('%11s' * 2 + '%11.4g' * (2 + loss_len)) % + (f'{epoch + 1}/{self.epochs}', mem, *losses, batch['cls'].shape[0], batch['img'].shape[-1])) + self.run_callbacks('on_batch_end') + if self.args.plots and ni in self.plot_idx: + self.plot_training_samples(batch, ni) + + self.run_callbacks('on_train_batch_end') + + self.lr = {f'lr/pg{ir}': x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers + + self.scheduler.step() + self.run_callbacks('on_train_epoch_end') + + if RANK in (-1, 0): + + # Validation + self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights']) + final_epoch = (epoch + 1 == self.epochs) or self.stopper.possible_stop + + if self.args.val or final_epoch: + self.metrics, self.fitness = self.validate() + self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr}) + self.stop = self.stopper(epoch + 1, self.fitness) + + # Save model + if self.args.save or (epoch + 1 == self.epochs): + self.save_model() + self.run_callbacks('on_model_save') + + tnow = time.time() + self.epoch_time = tnow - self.epoch_time_start + self.epoch_time_start = tnow + self.run_callbacks('on_fit_epoch_end') + torch.cuda.empty_cache() # clears GPU vRAM at end of epoch, can help with out of memory errors + + # Early Stopping + if RANK != -1: # if DDP training + broadcast_list = [self.stop if RANK == 0 else None] + dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks + if RANK != 0: + self.stop = broadcast_list[0] + if self.stop: + break # must break all DDP ranks + + if RANK in (-1, 0): + # Do final val with best.pt + LOGGER.info(f'\n{epoch - self.start_epoch + 1} epochs completed in ' + f'{(time.time() - self.train_time_start) / 3600:.3f} hours.') + self.final_eval() + if self.args.plots: + self.plot_metrics() + self.run_callbacks('on_train_end') + torch.cuda.empty_cache() + self.run_callbacks('teardown') + + def save_model(self): + """Save model checkpoints based on various conditions.""" + ckpt = { + 'epoch': self.epoch, + 'best_fitness': self.best_fitness, + 'model': deepcopy(de_parallel(self.model)).half(), + 'ema': deepcopy(self.ema.ema).half(), + 'updates': self.ema.updates, + 'optimizer': self.optimizer.state_dict(), + 'train_args': vars(self.args), # save as dict + 'date': datetime.now().isoformat(), + 'version': __version__} + + # Use dill (if exists) to serialize the lambda functions where pickle does not do this + try: + import dill as pickle + except ImportError: + import pickle + + # Save last, best and delete + torch.save(ckpt, self.last, pickle_module=pickle) + if self.best_fitness == self.fitness: + torch.save(ckpt, self.best, pickle_module=pickle) + if (self.epoch > 0) and (self.save_period > 0) and (self.epoch % self.save_period == 0): + torch.save(ckpt, self.wdir / f'epoch{self.epoch}.pt', pickle_module=pickle) + del ckpt + + @staticmethod + def get_dataset(data): + """ + Get train, val path from data dict if it exists. Returns None if data format is not recognized. + """ + return data['train'], data.get('val') or data.get('test') + + def setup_model(self): + """ + load/create/download model for any task. + """ + if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed + return + + model, weights = self.model, None + ckpt = None + if str(model).endswith('.pt'): + weights, ckpt = attempt_load_one_weight(model) + cfg = ckpt['model'].yaml + else: + cfg = model + self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1) # calls Model(cfg, weights) + return ckpt + + def optimizer_step(self): + """Perform a single step of the training optimizer with gradient clipping and EMA update.""" + self.scaler.unscale_(self.optimizer) # unscale gradients + torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients + self.scaler.step(self.optimizer) + self.scaler.update() + self.optimizer.zero_grad() + if self.ema: + self.ema.update(self.model) + + def preprocess_batch(self, batch): + """ + Allows custom preprocessing model inputs and ground truths depending on task type. + """ + return batch + + def validate(self): + """ + Runs validation on test set using self.validator. The returned dict is expected to contain "fitness" key. + """ + metrics = self.validator(self) + fitness = metrics.pop('fitness', -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found + if not self.best_fitness or self.best_fitness < fitness: + self.best_fitness = fitness + return metrics, fitness + + def get_model(self, cfg=None, weights=None, verbose=True): + """Get model and raise NotImplementedError for loading cfg files.""" + raise NotImplementedError("This task trainer doesn't support loading cfg files") + + def get_validator(self): + """Returns a NotImplementedError when the get_validator function is called.""" + raise NotImplementedError('get_validator function not implemented in trainer') + + def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'): + """ + Returns dataloader derived from torch.data.Dataloader. + """ + raise NotImplementedError('get_dataloader function not implemented in trainer') + + def build_dataset(self, img_path, mode='train', batch=None): + """Build dataset""" + raise NotImplementedError('build_dataset function not implemented in trainer') + + def label_loss_items(self, loss_items=None, prefix='train'): + """ + Returns a loss dict with labelled training loss items tensor + """ + # Not needed for classification but necessary for segmentation & detection + return {'loss': loss_items} if loss_items is not None else ['loss'] + + def set_model_attributes(self): + """ + To set or update model parameters before training. + """ + self.model.names = self.data['names'] + + def build_targets(self, preds, targets): + """Builds target tensors for training YOLO model.""" + pass + + def progress_string(self): + """Returns a string describing training progress.""" + return '' + + # TODO: may need to put these following functions into callback + def plot_training_samples(self, batch, ni): + """Plots training samples during YOLOv5 training.""" + pass + + def plot_training_labels(self): + """Plots training labels for YOLO model.""" + pass + + def save_metrics(self, metrics): + """Saves training metrics to a CSV file.""" + keys, vals = list(metrics.keys()), list(metrics.values()) + n = len(metrics) + 1 # number of cols + s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header + with open(self.csv, 'a') as f: + f.write(s + ('%23.5g,' * n % tuple([self.epoch] + vals)).rstrip(',') + '\n') + + def plot_metrics(self): + """Plot and display metrics visually.""" + pass + + def on_plot(self, name, data=None): + """Registers plots (e.g. to be consumed in callbacks)""" + self.plots[name] = {'data': data, 'timestamp': time.time()} + + def final_eval(self): + """Performs final evaluation and validation for object detection YOLO model.""" + for f in self.last, self.best: + if f.exists(): + strip_optimizer(f) # strip optimizers + if f is self.best: + LOGGER.info(f'\nValidating {f}...') + self.metrics = self.validator(model=f) + self.metrics.pop('fitness', None) + self.run_callbacks('on_fit_epoch_end') + + def check_resume(self): + """Check if resume checkpoint exists and update arguments accordingly.""" + resume = self.args.resume + if resume: + try: + exists = isinstance(resume, (str, Path)) and Path(resume).exists() + last = Path(check_file(resume) if exists else get_latest_run()) + + # Check that resume data YAML exists, otherwise strip to force re-download of dataset + ckpt_args = attempt_load_weights(last).args + if not Path(ckpt_args['data']).exists(): + ckpt_args['data'] = self.args.data + + self.args = get_cfg(ckpt_args) + self.args.model, resume = str(last), True # reinstate + except Exception as e: + raise FileNotFoundError('Resume checkpoint not found. Please pass a valid checkpoint to resume from, ' + "i.e. 'yolo train resume model=path/to/last.pt'") from e + self.resume = resume + + def resume_training(self, ckpt): + """Resume YOLO training from given epoch and best fitness.""" + if ckpt is None: + return + best_fitness = 0.0 + start_epoch = ckpt['epoch'] + 1 + if ckpt['optimizer'] is not None: + self.optimizer.load_state_dict(ckpt['optimizer']) # optimizer + best_fitness = ckpt['best_fitness'] + if self.ema and ckpt.get('ema'): + self.ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA + self.ema.updates = ckpt['updates'] + if self.resume: + assert start_epoch > 0, \ + f'{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n' \ + f"Start a new training without resuming, i.e. 'yolo train model={self.args.model}'" + LOGGER.info( + f'Resuming training from {self.args.model} from epoch {start_epoch + 1} to {self.epochs} total epochs') + if self.epochs < start_epoch: + LOGGER.info( + f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs.") + self.epochs += ckpt['epoch'] # finetune additional epochs + self.best_fitness = best_fitness + self.start_epoch = start_epoch + if start_epoch > (self.epochs - self.args.close_mosaic): + LOGGER.info('Closing dataloader mosaic') + if hasattr(self.train_loader.dataset, 'mosaic'): + self.train_loader.dataset.mosaic = False + if hasattr(self.train_loader.dataset, 'close_mosaic'): + self.train_loader.dataset.close_mosaic(hyp=self.args) + + def build_optimizer(self, model, name='auto', lr=0.001, momentum=0.9, decay=1e-5, iterations=1e5): + """ + Constructs an optimizer for the given model, based on the specified optimizer name, learning rate, + momentum, weight decay, and number of iterations. + + Args: + model (torch.nn.Module): The model for which to build an optimizer. + name (str, optional): The name of the optimizer to use. If 'auto', the optimizer is selected + based on the number of iterations. Default: 'auto'. + lr (float, optional): The learning rate for the optimizer. Default: 0.001. + momentum (float, optional): The momentum factor for the optimizer. Default: 0.9. + decay (float, optional): The weight decay for the optimizer. Default: 1e-5. + iterations (float, optional): The number of iterations, which determines the optimizer if + name is 'auto'. Default: 1e5. + + Returns: + (torch.optim.Optimizer): The constructed optimizer. + """ + + g = [], [], [] # optimizer parameter groups + bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() + if name == 'auto': + nc = getattr(model, 'nc', 10) # number of classes + lr_fit = round(0.002 * 5 / (4 + nc), 6) # lr0 fit equation to 6 decimal places + name, lr, momentum = ('SGD', 0.01, 0.9) if iterations > 10000 else ('AdamW', lr_fit, 0.9) + self.args.warmup_bias_lr = 0.0 # no higher than 0.01 for Adam + + for module_name, module in model.named_modules(): + for param_name, param in module.named_parameters(recurse=False): + fullname = f'{module_name}.{param_name}' if module_name else param_name + if 'bias' in fullname: # bias (no decay) + g[2].append(param) + elif isinstance(module, bn): # weight (no decay) + g[1].append(param) + else: # weight (with decay) + g[0].append(param) + + if name in ('Adam', 'Adamax', 'AdamW', 'NAdam', 'RAdam'): + optimizer = getattr(optim, name, optim.Adam)(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) + elif name == 'RMSProp': + optimizer = optim.RMSprop(g[2], lr=lr, momentum=momentum) + elif name == 'SGD': + optimizer = optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) + else: + raise NotImplementedError( + f"Optimizer '{name}' not found in list of available optimizers " + f'[Adam, AdamW, NAdam, RAdam, RMSProp, SGD, auto].' + 'To request support for addition optimizers please visit https://github.com/ultralytics/ultralytics.') + + optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay + optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) + LOGGER.info( + f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}, momentum={momentum}) with parameter groups " + f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias(decay=0.0)') + return optimizer diff --git a/modules/ultralytics/yolo/engine/validator.py b/modules/ultralytics/yolo/engine/validator.py new file mode 100644 index 0000000000000000000000000000000000000000..300eab9a87bd2ba2fc802894a420efb20205d80d --- /dev/null +++ b/modules/ultralytics/yolo/engine/validator.py @@ -0,0 +1,288 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Check a model's accuracy on a test or val split of a dataset + +Usage: + $ yolo mode=val model=yolov8n.pt data=coco128.yaml imgsz=640 + +Usage - formats: + $ yolo mode=val model=yolov8n.pt # PyTorch + yolov8n.torchscript # TorchScript + yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True + yolov8n_openvino_model # OpenVINO + yolov8n.engine # TensorRT + yolov8n.mlmodel # CoreML (macOS-only) + yolov8n_saved_model # TensorFlow SavedModel + yolov8n.pb # TensorFlow GraphDef + yolov8n.tflite # TensorFlow Lite + yolov8n_edgetpu.tflite # TensorFlow Edge TPU + yolov8n_paddle_model # PaddlePaddle +""" +import json +import time +from pathlib import Path + +import torch +from tqdm import tqdm + +from ultralytics.nn.autobackend import AutoBackend +from ultralytics.yolo.cfg import get_cfg +from ultralytics.yolo.data.utils import check_cls_dataset, check_det_dataset +from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks, colorstr, emojis +from ultralytics.yolo.utils.checks import check_imgsz +from ultralytics.yolo.utils.files import increment_path +from ultralytics.yolo.utils.ops import Profile +from ultralytics.yolo.utils.torch_utils import de_parallel, select_device, smart_inference_mode + + +class BaseValidator: + """ + BaseValidator + + A base class for creating validators. + + Attributes: + dataloader (DataLoader): Dataloader to use for validation. + pbar (tqdm): Progress bar to update during validation. + args (SimpleNamespace): Configuration for the validator. + model (nn.Module): Model to validate. + data (dict): Data dictionary. + device (torch.device): Device to use for validation. + batch_i (int): Current batch index. + training (bool): Whether the model is in training mode. + speed (float): Batch processing speed in seconds. + jdict (dict): Dictionary to store validation results. + save_dir (Path): Directory to save results. + """ + + def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): + """ + Initializes a BaseValidator instance. + + Args: + dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation. + save_dir (Path): Directory to save results. + pbar (tqdm.tqdm): Progress bar for displaying progress. + args (SimpleNamespace): Configuration for the validator. + """ + self.dataloader = dataloader + self.pbar = pbar + self.args = args or get_cfg(DEFAULT_CFG) + self.model = None + self.data = None + self.device = None + self.batch_i = None + self.training = True + self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} + self.jdict = None + + project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task + name = self.args.name or f'{self.args.mode}' + self.save_dir = save_dir or increment_path(Path(project) / name, + exist_ok=self.args.exist_ok if RANK in (-1, 0) else True) + (self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) + + if self.args.conf is None: + self.args.conf = 0.001 # default conf=0.001 + + self.plots = {} + self.callbacks = _callbacks or callbacks.get_default_callbacks() + + @smart_inference_mode() + def __call__(self, trainer=None, model=None): + """ + Supports validation of a pre-trained model if passed or a model being trained + if trainer is passed (trainer gets priority). + """ + self.training = trainer is not None + if self.training: + self.device = trainer.device + self.data = trainer.data + model = trainer.ema.ema or trainer.model + self.args.half = self.device.type != 'cpu' # force FP16 val during training + model = model.half() if self.args.half else model.float() + self.model = model + self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device) + self.args.plots = trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1) + model.eval() + else: + callbacks.add_integration_callbacks(self) + self.run_callbacks('on_val_start') + assert model is not None, 'Either trainer or model is needed for validation' + self.device = select_device(self.args.device, self.args.batch) + self.args.half &= self.device.type != 'cpu' + model = AutoBackend(model, device=self.device, dnn=self.args.dnn, data=self.args.data, fp16=self.args.half) + self.model = model + stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine + imgsz = check_imgsz(self.args.imgsz, stride=stride) + if engine: + self.args.batch = model.batch_size + else: + self.device = model.device + if not pt and not jit: + self.args.batch = 1 # export.py models default to batch-size 1 + LOGGER.info(f'Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') + + if isinstance(self.args.data, str) and self.args.data.endswith('.yaml'): + self.data = check_det_dataset(self.args.data) + elif self.args.task == 'classify': + self.data = check_cls_dataset(self.args.data, split=self.args.split) + else: + raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ❌")) + + if self.device.type == 'cpu': + self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading + if not pt: + self.args.rect = False + self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch) + + model.eval() + model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup + + dt = Profile(), Profile(), Profile(), Profile() + n_batches = len(self.dataloader) + desc = self.get_desc() + # NOTE: keeping `not self.training` in tqdm will eliminate pbar after segmentation evaluation during training, + # which may affect classification task since this arg is in yolov5/classify/val.py. + # bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT) + bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT) + self.init_metrics(de_parallel(model)) + self.jdict = [] # empty before each val + for batch_i, batch in enumerate(bar): + self.run_callbacks('on_val_batch_start') + self.batch_i = batch_i + # Preprocess + with dt[0]: + batch = self.preprocess(batch) + + # Inference + with dt[1]: + preds = model(batch['img']) + + # Loss + with dt[2]: + if self.training: + self.loss += trainer.criterion(preds, batch)[1] + + # Postprocess + with dt[3]: + preds = self.postprocess(preds) + # import pdb;pdb.set_trace() + try: + self.update_metrics(preds, batch) + except: + with open('wrong_file_1.txt', 'a') as f: + f.write(str(batch['im_file'])) + f.write('\n') + # continue + if self.args.plots and batch_i < 3: + self.plot_val_samples(batch, batch_i) + self.plot_predictions(batch, preds, batch_i) + # print(self.args.save_json, self.jdict) + self.run_callbacks('on_val_batch_end') + # if self.args.save_json and self.jdict: + # with open(str(self.save_dir / 'tmp_predictions.json'), 'w') as f: + # # LOGGER.info(f'Saving {f.name}...') + # json.dump(self.jdict, f) # flatten and save + stats = self.get_stats() + self.check_stats(stats) + self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1E3 for x in dt))) + self.finalize_metrics() + self.print_results() + self.run_callbacks('on_val_end') + if self.training: + model.float() + results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix='val')} + return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats + else: + LOGGER.info('Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image' % + tuple(self.speed.values())) + + if self.args.save_json and self.jdict: + with open(str(self.save_dir / 'predictions.json'), 'w') as f: + LOGGER.info(f'Saving {f.name}...') + json.dump(self.jdict, f) # flatten and save + stats = self.eval_json(stats) # update stats + if self.args.plots or self.args.save_json: + LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}") + return stats + + + def add_callback(self, event: str, callback): + """Appends the given callback.""" + self.callbacks[event].append(callback) + + def run_callbacks(self, event: str): + """Runs all callbacks associated with a specified event.""" + for callback in self.callbacks.get(event, []): + callback(self) + + def get_dataloader(self, dataset_path, batch_size): + """Get data loader from dataset path and batch size.""" + raise NotImplementedError('get_dataloader function not implemented for this validator') + + def build_dataset(self, img_path): + """Build dataset""" + raise NotImplementedError('build_dataset function not implemented in validator') + + def preprocess(self, batch): + """Preprocesses an input batch.""" + return batch + + def postprocess(self, preds): + """Describes and summarizes the purpose of 'postprocess()' but no details mentioned.""" + return preds + + def init_metrics(self, model): + """Initialize performance metrics for the YOLO model.""" + pass + + def update_metrics(self, preds, batch): + """Updates metrics based on predictions and batch.""" + pass + + def finalize_metrics(self, *args, **kwargs): + """Finalizes and returns all metrics.""" + pass + + def get_stats(self): + """Returns statistics about the model's performance.""" + return {} + + def check_stats(self, stats): + """Checks statistics.""" + pass + + def print_results(self): + """Prints the results of the model's predictions.""" + pass + + def get_desc(self): + """Get description of the YOLO model.""" + pass + + @property + def metric_keys(self): + """Returns the metric keys used in YOLO training/validation.""" + return [] + + def on_plot(self, name, data=None): + """Registers plots (e.g. to be consumed in callbacks)""" + self.plots[name] = {'data': data, 'timestamp': time.time()} + + # TODO: may need to put these following functions into callback + def plot_val_samples(self, batch, ni): + """Plots validation samples during training.""" + pass + + def plot_predictions(self, batch, preds, ni): + """Plots YOLO model predictions on batch images.""" + pass + + def pred_to_json(self, preds, batch): + """Convert predictions to JSON format.""" + pass + + def eval_json(self, stats): + """Evaluate and return JSON format of prediction statistics.""" + pass diff --git a/modules/ultralytics/yolo/nas/__init__.py b/modules/ultralytics/yolo/nas/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..eec3837d492b08db2c8be6a033b7f3870dd6e0df --- /dev/null +++ b/modules/ultralytics/yolo/nas/__init__.py @@ -0,0 +1,7 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .model import NAS +from .predict import NASPredictor +from .val import NASValidator + +__all__ = 'NASPredictor', 'NASValidator', 'NAS' diff --git a/modules/ultralytics/yolo/nas/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/nas/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9bef61ed18853220adb0d24a81388ecb0c5c6315 Binary files /dev/null and b/modules/ultralytics/yolo/nas/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/nas/__pycache__/model.cpython-312.pyc b/modules/ultralytics/yolo/nas/__pycache__/model.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aed12d609f1fe69435a033ba61b1b338cf5a1a4e Binary files /dev/null and b/modules/ultralytics/yolo/nas/__pycache__/model.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/nas/__pycache__/predict.cpython-312.pyc b/modules/ultralytics/yolo/nas/__pycache__/predict.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..311561fd9659d3d92d38ee39708823c8e7c78d27 Binary files /dev/null and b/modules/ultralytics/yolo/nas/__pycache__/predict.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/nas/__pycache__/val.cpython-312.pyc b/modules/ultralytics/yolo/nas/__pycache__/val.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d17fc74b7d44514772a2093e8e1741f8cebe19f3 Binary files /dev/null and b/modules/ultralytics/yolo/nas/__pycache__/val.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/nas/model.py b/modules/ultralytics/yolo/nas/model.py new file mode 100644 index 0000000000000000000000000000000000000000..bfe7dcdfd86274edf75634ef588c3e7eb184fa3b --- /dev/null +++ b/modules/ultralytics/yolo/nas/model.py @@ -0,0 +1,133 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +YOLO-NAS model interface. + +Usage - Predict: + from ultralytics import NAS + + model = NAS('yolo_nas_s') + results = model.predict('ultralytics/assets/bus.jpg') +""" + +from pathlib import Path + +import torch + +from ultralytics.yolo.cfg import get_cfg +from ultralytics.yolo.engine.exporter import Exporter +from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, ROOT, is_git_dir +from ultralytics.yolo.utils.checks import check_imgsz + +from ...yolo.utils.torch_utils import model_info, smart_inference_mode +from .predict import NASPredictor +from .val import NASValidator + + +class NAS: + + def __init__(self, model='yolo_nas_s.pt') -> None: + # Load or create new NAS model + import super_gradients + + self.predictor = None + suffix = Path(model).suffix + if suffix == '.pt': + self._load(model) + elif suffix == '': + self.model = super_gradients.training.models.get(model, pretrained_weights='coco') + self.task = 'detect' + self.model.args = DEFAULT_CFG_DICT # attach args to model + + # Standardize model + self.model.fuse = lambda verbose=True: self.model + self.model.stride = torch.tensor([32]) + self.model.names = dict(enumerate(self.model._class_names)) + self.model.is_fused = lambda: False # for info() + self.model.yaml = {} # for info() + self.model.pt_path = model # for export() + self.model.task = 'detect' # for export() + self.info() + + @smart_inference_mode() + def _load(self, weights: str): + self.model = torch.load(weights) + + @smart_inference_mode() + def predict(self, source=None, stream=False, **kwargs): + """ + Perform prediction using the YOLO model. + + Args: + source (str | int | PIL | np.ndarray): The source of the image to make predictions on. + Accepts all source types accepted by the YOLO model. + stream (bool): Whether to stream the predictions or not. Defaults to False. + **kwargs : Additional keyword arguments passed to the predictor. + Check the 'configuration' section in the documentation for all available options. + + Returns: + (List[ultralytics.yolo.engine.results.Results]): The prediction results. + """ + if source is None: + source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' + LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") + overrides = dict(conf=0.25, task='detect', mode='predict') + overrides.update(kwargs) # prefer kwargs + if not self.predictor: + self.predictor = NASPredictor(overrides=overrides) + self.predictor.setup_model(model=self.model) + else: # only update args if predictor is already setup + self.predictor.args = get_cfg(self.predictor.args, overrides) + return self.predictor(source, stream=stream) + + def train(self, **kwargs): + """Function trains models but raises an error as NAS models do not support training.""" + raise NotImplementedError("NAS models don't support training") + + def val(self, **kwargs): + """Run validation given dataset.""" + overrides = dict(task='detect', mode='val') + overrides.update(kwargs) # prefer kwargs + args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) + args.imgsz = check_imgsz(args.imgsz, max_dim=1) + validator = NASValidator(args=args) + validator(model=self.model) + self.metrics = validator.metrics + return validator.metrics + + @smart_inference_mode() + def export(self, **kwargs): + """ + Export model. + + Args: + **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs + """ + overrides = dict(task='detect') + overrides.update(kwargs) + overrides['mode'] = 'export' + args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) + args.task = self.task + if args.imgsz == DEFAULT_CFG.imgsz: + args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed + if args.batch == DEFAULT_CFG.batch: + args.batch = 1 # default to 1 if not modified + return Exporter(overrides=args)(model=self.model) + + def info(self, detailed=False, verbose=True): + """ + Logs model info. + + Args: + detailed (bool): Show detailed information about model. + verbose (bool): Controls verbosity. + """ + return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640) + + def __call__(self, source=None, stream=False, **kwargs): + """Calls the 'predict' function with given arguments to perform object detection.""" + return self.predict(source, stream, **kwargs) + + def __getattr__(self, attr): + """Raises error if object has no requested attribute.""" + name = self.__class__.__name__ + raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") diff --git a/modules/ultralytics/yolo/nas/predict.py b/modules/ultralytics/yolo/nas/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..e135bc1ef37fe32fcdf5947b69b2bb34096d12b7 --- /dev/null +++ b/modules/ultralytics/yolo/nas/predict.py @@ -0,0 +1,35 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch + +from ultralytics.yolo.engine.predictor import BasePredictor +from ultralytics.yolo.engine.results import Results +from ultralytics.yolo.utils import ops +from ultralytics.yolo.utils.ops import xyxy2xywh + + +class NASPredictor(BasePredictor): + + def postprocess(self, preds_in, img, orig_imgs): + """Postprocesses predictions and returns a list of Results objects.""" + + # Cat boxes and class scores + boxes = xyxy2xywh(preds_in[0][0]) + preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) + + preds = ops.non_max_suppression(preds, + self.args.conf, + self.args.iou, + agnostic=self.args.agnostic_nms, + max_det=self.args.max_det, + classes=self.args.classes) + + results = [] + for i, pred in enumerate(preds): + orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs + if not isinstance(orig_imgs, torch.Tensor): + pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) + path = self.batch[0] + img_path = path[i] if isinstance(path, list) else path + results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) + return results diff --git a/modules/ultralytics/yolo/nas/val.py b/modules/ultralytics/yolo/nas/val.py new file mode 100644 index 0000000000000000000000000000000000000000..474cf6bd04d30563784fa21e469f91df53f0b3e0 --- /dev/null +++ b/modules/ultralytics/yolo/nas/val.py @@ -0,0 +1,25 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch + +from ultralytics.yolo.utils import ops +from ultralytics.yolo.utils.ops import xyxy2xywh +from ultralytics.yolo.v8.detect import DetectionValidator + +__all__ = ['NASValidator'] + + +class NASValidator(DetectionValidator): + + def postprocess(self, preds_in): + """Apply Non-maximum suppression to prediction outputs.""" + boxes = xyxy2xywh(preds_in[0][0]) + preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) + return ops.non_max_suppression(preds, + self.args.conf, + self.args.iou, + labels=self.lb, + multi_label=False, + agnostic=self.args.single_cls, + max_det=self.args.max_det, + max_time_img=0.5) diff --git a/modules/ultralytics/yolo/utils/__init__.py b/modules/ultralytics/yolo/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1e3d0a28718db1ced8ccf5ccbfb9f1165254180e --- /dev/null +++ b/modules/ultralytics/yolo/utils/__init__.py @@ -0,0 +1,778 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import contextlib +import inspect +import logging.config +import os +import platform +import re +import subprocess +import sys +import threading +import urllib +import uuid +from pathlib import Path +from types import SimpleNamespace +from typing import Union + +import cv2 +import matplotlib.pyplot as plt +import numpy as np +import torch +import yaml + +from ultralytics import __version__ + +# PyTorch Multi-GPU DDP Constants +RANK = int(os.getenv('RANK', -1)) +LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html +WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) + +# Other Constants +FILE = Path(__file__).resolve() +ROOT = FILE.parents[2] # YOLO +DEFAULT_CFG_PATH = ROOT / 'yolo/cfg/default.yaml' +NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads +AUTOINSTALL = str(os.getenv('YOLO_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode +VERBOSE = str(os.getenv('YOLO_VERBOSE', True)).lower() == 'true' # global verbose mode +TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format +LOGGING_NAME = 'ultralytics' +MACOS, LINUX, WINDOWS = (platform.system() == x for x in ['Darwin', 'Linux', 'Windows']) # environment booleans +HELP_MSG = \ + """ + Usage examples for running YOLOv8: + + 1. Install the ultralytics package: + + pip install ultralytics + + 2. Use the Python SDK: + + from ultralytics import YOLO + + # Load a model + model = YOLO('yolov8n.yaml') # build a new model from scratch + model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training) + + # Use the model + results = model.train(data="coco128.yaml", epochs=3) # train the model + results = model.val() # evaluate model performance on the validation set + results = model('https://ultralytics.com/images/bus.jpg') # predict on an image + success = model.export(format='onnx') # export the model to ONNX format + + 3. Use the command line interface (CLI): + + YOLOv8 'yolo' CLI commands use the following syntax: + + yolo TASK MODE ARGS + + Where TASK (optional) is one of [detect, segment, classify] + MODE (required) is one of [train, val, predict, export] + ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. + See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg' + + - Train a detection model for 10 epochs with an initial learning_rate of 0.01 + yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 + + - Predict a YouTube video using a pretrained segmentation model at image size 320: + yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320 + + - Val a pretrained detection model at batch-size 1 and image size 640: + yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 + + - Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) + yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 + + - Run special commands: + yolo help + yolo checks + yolo version + yolo settings + yolo copy-cfg + yolo cfg + + Docs: https://docs.ultralytics.com + Community: https://community.ultralytics.com + GitHub: https://github.com/ultralytics/ultralytics + """ + +# Settings +torch.set_printoptions(linewidth=320, precision=4, profile='default') +np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 +cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) +os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads +os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' # for deterministic training +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # suppress verbose TF compiler warnings in Colab + + +class SimpleClass: + """ + Ultralytics SimpleClass is a base class providing helpful string representation, error reporting, and attribute + access methods for easier debugging and usage. + """ + + def __str__(self): + """Return a human-readable string representation of the object.""" + attr = [] + for a in dir(self): + v = getattr(self, a) + if not callable(v) and not a.startswith('_'): + if isinstance(v, SimpleClass): + # Display only the module and class name for subclasses + s = f'{a}: {v.__module__}.{v.__class__.__name__} object' + else: + s = f'{a}: {repr(v)}' + attr.append(s) + return f'{self.__module__}.{self.__class__.__name__} object with attributes:\n\n' + '\n'.join(attr) + + def __repr__(self): + """Return a machine-readable string representation of the object.""" + return self.__str__() + + def __getattr__(self, attr): + """Custom attribute access error message with helpful information.""" + name = self.__class__.__name__ + raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") + + +class IterableSimpleNamespace(SimpleNamespace): + """ + Ultralytics IterableSimpleNamespace is an extension class of SimpleNamespace that adds iterable functionality and + enables usage with dict() and for loops. + """ + + def __iter__(self): + """Return an iterator of key-value pairs from the namespace's attributes.""" + return iter(vars(self).items()) + + def __str__(self): + """Return a human-readable string representation of the object.""" + return '\n'.join(f'{k}={v}' for k, v in vars(self).items()) + + def __getattr__(self, attr): + """Custom attribute access error message with helpful information.""" + name = self.__class__.__name__ + raise AttributeError(f""" + '{name}' object has no attribute '{attr}'. This may be caused by a modified or out of date ultralytics + 'default.yaml' file.\nPlease update your code with 'pip install -U ultralytics' and if necessary replace + {DEFAULT_CFG_PATH} with the latest version from + https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cfg/default.yaml + """) + + def get(self, key, default=None): + """Return the value of the specified key if it exists; otherwise, return the default value.""" + return getattr(self, key, default) + + +def plt_settings(rcparams=None, backend='Agg'): + """ + Decorator to temporarily set rc parameters and the backend for a plotting function. + + Usage: + decorator: @plt_settings({"font.size": 12}) + context manager: with plt_settings({"font.size": 12}): + + Args: + rcparams (dict): Dictionary of rc parameters to set. + backend (str, optional): Name of the backend to use. Defaults to 'Agg'. + + Returns: + (Callable): Decorated function with temporarily set rc parameters and backend. This decorator can be + applied to any function that needs to have specific matplotlib rc parameters and backend for its execution. + """ + + if rcparams is None: + rcparams = {'font.size': 11} + + def decorator(func): + """Decorator to apply temporary rc parameters and backend to a function.""" + + def wrapper(*args, **kwargs): + """Sets rc parameters and backend, calls the original function, and restores the settings.""" + original_backend = plt.get_backend() + plt.switch_backend(backend) + + with plt.rc_context(rcparams): + result = func(*args, **kwargs) + + plt.switch_backend(original_backend) + return result + + return wrapper + + return decorator + + +def set_logging(name=LOGGING_NAME, verbose=True): + """Sets up logging for the given name.""" + rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings + level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR + logging.config.dictConfig({ + 'version': 1, + 'disable_existing_loggers': False, + 'formatters': { + name: { + 'format': '%(message)s'}}, + 'handlers': { + name: { + 'class': 'logging.StreamHandler', + 'formatter': name, + 'level': level}}, + 'loggers': { + name: { + 'level': level, + 'handlers': [name], + 'propagate': False}}}) + + +def emojis(string=''): + """Return platform-dependent emoji-safe version of string.""" + return string.encode().decode('ascii', 'ignore') if WINDOWS else string + + +class EmojiFilter(logging.Filter): + """ + A custom logging filter class for removing emojis in log messages. + + This filter is particularly useful for ensuring compatibility with Windows terminals + that may not support the display of emojis in log messages. + """ + + def filter(self, record): + """Filter logs by emoji unicode characters on windows.""" + record.msg = emojis(record.msg) + return super().filter(record) + + +# Set logger +set_logging(LOGGING_NAME, verbose=VERBOSE) # run before defining LOGGER +LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.) +if WINDOWS: # emoji-safe logging + LOGGER.addFilter(EmojiFilter()) + + +def yaml_save(file='data.yaml', data=None): + """ + Save YAML data to a file. + + Args: + file (str, optional): File name. Default is 'data.yaml'. + data (dict): Data to save in YAML format. + + Returns: + (None): Data is saved to the specified file. + """ + if data is None: + data = {} + file = Path(file) + if not file.parent.exists(): + # Create parent directories if they don't exist + file.parent.mkdir(parents=True, exist_ok=True) + + # Convert Path objects to strings + for k, v in data.items(): + if isinstance(v, Path): + data[k] = str(v) + + # Dump data to file in YAML format + with open(file, 'w') as f: + yaml.safe_dump(data, f, sort_keys=False, allow_unicode=True) + + +def yaml_load(file='data.yaml', append_filename=False): + """ + Load YAML data from a file. + + Args: + file (str, optional): File name. Default is 'data.yaml'. + append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False. + + Returns: + (dict): YAML data and file name. + """ + with open(file, errors='ignore', encoding='utf-8') as f: + s = f.read() # string + + # Remove special characters + if not s.isprintable(): + s = re.sub(r'[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+', '', s) + + # Add YAML filename to dict and return + return {**yaml.safe_load(s), 'yaml_file': str(file)} if append_filename else yaml.safe_load(s) + + +def yaml_print(yaml_file: Union[str, Path, dict]) -> None: + """ + Pretty prints a yaml file or a yaml-formatted dictionary. + + Args: + yaml_file: The file path of the yaml file or a yaml-formatted dictionary. + + Returns: + None + """ + yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file + dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True) + LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}") + + +# Default configuration +DEFAULT_CFG_DICT = yaml_load(DEFAULT_CFG_PATH) +for k, v in DEFAULT_CFG_DICT.items(): + if isinstance(v, str) and v.lower() == 'none': + DEFAULT_CFG_DICT[k] = None +DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys() +DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT) + + +def is_colab(): + """ + Check if the current script is running inside a Google Colab notebook. + + Returns: + (bool): True if running inside a Colab notebook, False otherwise. + """ + return 'COLAB_RELEASE_TAG' in os.environ or 'COLAB_BACKEND_VERSION' in os.environ + + +def is_kaggle(): + """ + Check if the current script is running inside a Kaggle kernel. + + Returns: + (bool): True if running inside a Kaggle kernel, False otherwise. + """ + return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' + + +def is_jupyter(): + """ + Check if the current script is running inside a Jupyter Notebook. + Verified on Colab, Jupyterlab, Kaggle, Paperspace. + + Returns: + (bool): True if running inside a Jupyter Notebook, False otherwise. + """ + with contextlib.suppress(Exception): + from IPython import get_ipython + return get_ipython() is not None + return False + + +def is_docker() -> bool: + """ + Determine if the script is running inside a Docker container. + + Returns: + (bool): True if the script is running inside a Docker container, False otherwise. + """ + file = Path('/proc/self/cgroup') + if file.exists(): + with open(file) as f: + return 'docker' in f.read() + else: + return False + + +def is_online() -> bool: + """ + Check internet connectivity by attempting to connect to a known online host. + + Returns: + (bool): True if connection is successful, False otherwise. + """ + import socket + + for host in '1.1.1.1', '8.8.8.8', '223.5.5.5': # Cloudflare, Google, AliDNS: + try: + test_connection = socket.create_connection(address=(host, 53), timeout=2) + except (socket.timeout, socket.gaierror, OSError): + continue + else: + # If the connection was successful, close it to avoid a ResourceWarning + test_connection.close() + return True + return False + + +ONLINE = is_online() + + +def is_pip_package(filepath: str = __name__) -> bool: + """ + Determines if the file at the given filepath is part of a pip package. + + Args: + filepath (str): The filepath to check. + + Returns: + (bool): True if the file is part of a pip package, False otherwise. + """ + import importlib.util + + # Get the spec for the module + spec = importlib.util.find_spec(filepath) + + # Return whether the spec is not None and the origin is not None (indicating it is a package) + return spec is not None and spec.origin is not None + + +def is_dir_writeable(dir_path: Union[str, Path]) -> bool: + """ + Check if a directory is writeable. + + Args: + dir_path (str | Path): The path to the directory. + + Returns: + (bool): True if the directory is writeable, False otherwise. + """ + return os.access(str(dir_path), os.W_OK) + + +def is_pytest_running(): + """ + Determines whether pytest is currently running or not. + + Returns: + (bool): True if pytest is running, False otherwise. + """ + return ('PYTEST_CURRENT_TEST' in os.environ) or ('pytest' in sys.modules) or ('pytest' in Path(sys.argv[0]).stem) + + +def is_github_actions_ci() -> bool: + """ + Determine if the current environment is a GitHub Actions CI Python runner. + + Returns: + (bool): True if the current environment is a GitHub Actions CI Python runner, False otherwise. + """ + return 'GITHUB_ACTIONS' in os.environ and 'RUNNER_OS' in os.environ and 'RUNNER_TOOL_CACHE' in os.environ + + +def is_git_dir(): + """ + Determines whether the current file is part of a git repository. + If the current file is not part of a git repository, returns None. + + Returns: + (bool): True if current file is part of a git repository. + """ + return get_git_dir() is not None + + +def get_git_dir(): + """ + Determines whether the current file is part of a git repository and if so, returns the repository root directory. + If the current file is not part of a git repository, returns None. + + Returns: + (Path | None): Git root directory if found or None if not found. + """ + for d in Path(__file__).parents: + if (d / '.git').is_dir(): + return d + return None # no .git dir found + + +def get_git_origin_url(): + """ + Retrieves the origin URL of a git repository. + + Returns: + (str | None): The origin URL of the git repository. + """ + if is_git_dir(): + with contextlib.suppress(subprocess.CalledProcessError): + origin = subprocess.check_output(['git', 'config', '--get', 'remote.origin.url']) + return origin.decode().strip() + return None # if not git dir or on error + + +def get_git_branch(): + """ + Returns the current git branch name. If not in a git repository, returns None. + + Returns: + (str | None): The current git branch name. + """ + if is_git_dir(): + with contextlib.suppress(subprocess.CalledProcessError): + origin = subprocess.check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) + return origin.decode().strip() + return None # if not git dir or on error + + +def get_default_args(func): + """Returns a dictionary of default arguments for a function. + + Args: + func (callable): The function to inspect. + + Returns: + (dict): A dictionary where each key is a parameter name, and each value is the default value of that parameter. + """ + signature = inspect.signature(func) + return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} + + +def get_user_config_dir(sub_dir='Ultralytics'): + """ + Get the user config directory. + + Args: + sub_dir (str): The name of the subdirectory to create. + + Returns: + (Path): The path to the user config directory. + """ + # Return the appropriate config directory for each operating system + if WINDOWS: + path = Path.home() / 'AppData' / 'Roaming' / sub_dir + elif MACOS: # macOS + path = Path.home() / 'Library' / 'Application Support' / sub_dir + elif LINUX: + path = Path.home() / '.config' / sub_dir + else: + raise ValueError(f'Unsupported operating system: {platform.system()}') + + # GCP and AWS lambda fix, only /tmp is writeable + if not is_dir_writeable(str(path.parent)): + path = Path('/tmp') / sub_dir + LOGGER.warning(f"WARNING ⚠️ user config directory is not writeable, defaulting to '{path}'.") + + # Create the subdirectory if it does not exist + path.mkdir(parents=True, exist_ok=True) + + return path + + +USER_CONFIG_DIR = Path(os.getenv('YOLO_CONFIG_DIR', get_user_config_dir())) # Ultralytics settings dir +SETTINGS_YAML = USER_CONFIG_DIR / 'settings.yaml' + + +def colorstr(*input): + """Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world').""" + *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string + colors = { + 'black': '\033[30m', # basic colors + 'red': '\033[31m', + 'green': '\033[32m', + 'yellow': '\033[33m', + 'blue': '\033[34m', + 'magenta': '\033[35m', + 'cyan': '\033[36m', + 'white': '\033[37m', + 'bright_black': '\033[90m', # bright colors + 'bright_red': '\033[91m', + 'bright_green': '\033[92m', + 'bright_yellow': '\033[93m', + 'bright_blue': '\033[94m', + 'bright_magenta': '\033[95m', + 'bright_cyan': '\033[96m', + 'bright_white': '\033[97m', + 'end': '\033[0m', # misc + 'bold': '\033[1m', + 'underline': '\033[4m'} + return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] + + +class TryExcept(contextlib.ContextDecorator): + """YOLOv8 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager.""" + + def __init__(self, msg='', verbose=True): + """Initialize TryExcept class with optional message and verbosity settings.""" + self.msg = msg + self.verbose = verbose + + def __enter__(self): + """Executes when entering TryExcept context, initializes instance.""" + pass + + def __exit__(self, exc_type, value, traceback): + """Defines behavior when exiting a 'with' block, prints error message if necessary.""" + if self.verbose and value: + print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}")) + return True + + +def threaded(func): + """Multi-threads a target function and returns thread. Usage: @threaded decorator.""" + + def wrapper(*args, **kwargs): + """Multi-threads a given function and returns the thread.""" + thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) + thread.start() + return thread + + return wrapper + + +def set_sentry(): + """ + Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and + sync=True in settings. Run 'yolo settings' to see and update settings YAML file. + + Conditions required to send errors (ALL conditions must be met or no errors will be reported): + - sentry_sdk package is installed + - sync=True in YOLO settings + - pytest is not running + - running in a pip package installation + - running in a non-git directory + - running with rank -1 or 0 + - online environment + - CLI used to run package (checked with 'yolo' as the name of the main CLI command) + + The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError + exceptions and to exclude events with 'out of memory' in their exception message. + + Additionally, the function sets custom tags and user information for Sentry events. + """ + + def before_send(event, hint): + """ + Modify the event before sending it to Sentry based on specific exception types and messages. + + Args: + event (dict): The event dictionary containing information about the error. + hint (dict): A dictionary containing additional information about the error. + + Returns: + dict: The modified event or None if the event should not be sent to Sentry. + """ + if 'exc_info' in hint: + exc_type, exc_value, tb = hint['exc_info'] + if exc_type in (KeyboardInterrupt, FileNotFoundError) \ + or 'out of memory' in str(exc_value): + return None # do not send event + + event['tags'] = { + 'sys_argv': sys.argv[0], + 'sys_argv_name': Path(sys.argv[0]).name, + 'install': 'git' if is_git_dir() else 'pip' if is_pip_package() else 'other', + 'os': ENVIRONMENT} + return event + + if SETTINGS['sync'] and \ + RANK in (-1, 0) and \ + Path(sys.argv[0]).name == 'yolo' and \ + not TESTS_RUNNING and \ + ONLINE and \ + is_pip_package() and \ + not is_git_dir(): + + # If sentry_sdk package is not installed then return and do not use Sentry + try: + import sentry_sdk # noqa + except ImportError: + return + + sentry_sdk.init( + dsn='https://5ff1556b71594bfea135ff0203a0d290@o4504521589325824.ingest.sentry.io/4504521592406016', + debug=False, + traces_sample_rate=1.0, + release=__version__, + environment='production', # 'dev' or 'production' + before_send=before_send, + ignore_errors=[KeyboardInterrupt, FileNotFoundError]) + sentry_sdk.set_user({'id': SETTINGS['uuid']}) # SHA-256 anonymized UUID hash + + # Disable all sentry logging + for logger in 'sentry_sdk', 'sentry_sdk.errors': + logging.getLogger(logger).setLevel(logging.CRITICAL) + + +def get_settings(file=SETTINGS_YAML, version='0.0.3'): + """ + Loads a global Ultralytics settings YAML file or creates one with default values if it does not exist. + + Args: + file (Path): Path to the Ultralytics settings YAML file. Defaults to 'settings.yaml' in the USER_CONFIG_DIR. + version (str): Settings version. If min settings version not met, new default settings will be saved. + + Returns: + (dict): Dictionary of settings key-value pairs. + """ + import hashlib + + from ultralytics.yolo.utils.checks import check_version + from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first + + git_dir = get_git_dir() + root = git_dir or Path() + datasets_root = (root.parent if git_dir and is_dir_writeable(root.parent) else root).resolve() + defaults = { + 'datasets_dir': str(datasets_root / 'datasets'), # default datasets directory. + 'weights_dir': str(root / 'weights'), # default weights directory. + 'runs_dir': str(root / 'runs'), # default runs directory. + 'uuid': hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), # SHA-256 anonymized UUID hash + 'sync': True, # sync analytics to help with YOLO development + 'api_key': '', # Ultralytics HUB API key (https://hub.ultralytics.com/) + 'settings_version': version} # Ultralytics settings version + + with torch_distributed_zero_first(RANK): + if not file.exists(): + yaml_save(file, defaults) + settings = yaml_load(file) + + # Check that settings keys and types match defaults + correct = \ + settings \ + and settings.keys() == defaults.keys() \ + and all(type(a) == type(b) for a, b in zip(settings.values(), defaults.values())) \ + and check_version(settings['settings_version'], version) + if not correct: + LOGGER.warning('WARNING ⚠️ Ultralytics settings reset to defaults. This is normal and may be due to a ' + 'recent ultralytics package update, but may have overwritten previous settings. ' + f"\nView and update settings with 'yolo settings' or at '{file}'") + settings = defaults # merge **defaults with **settings (prefer **settings) + yaml_save(file, settings) # save updated defaults + + return settings + + +def set_settings(kwargs, file=SETTINGS_YAML): + """ + Function that runs on a first-time ultralytics package installation to set up global settings and create necessary + directories. + """ + SETTINGS.update(kwargs) + yaml_save(file, SETTINGS) + + +def deprecation_warn(arg, new_arg, version=None): + """Issue a deprecation warning when a deprecated argument is used, suggesting an updated argument.""" + if not version: + version = float(__version__[:3]) + 0.2 # deprecate after 2nd major release + LOGGER.warning(f"WARNING ⚠️ '{arg}' is deprecated and will be removed in 'ultralytics {version}' in the future. " + f"Please use '{new_arg}' instead.") + + +def clean_url(url): + """Strip auth from URL, i.e. https://url.com/file.txt?auth -> https://url.com/file.txt.""" + url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/ + return urllib.parse.unquote(url).split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth + + +def url2file(url): + """Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt.""" + return Path(clean_url(url)).name + + +# Run below code on yolo/utils init ------------------------------------------------------------------------------------ + +# Check first-install steps +PREFIX = colorstr('Ultralytics: ') +SETTINGS = get_settings() +DATASETS_DIR = Path(SETTINGS['datasets_dir']) # global datasets directory +ENVIRONMENT = 'Colab' if is_colab() else 'Kaggle' if is_kaggle() else 'Jupyter' if is_jupyter() else \ + 'Docker' if is_docker() else platform.system() +TESTS_RUNNING = is_pytest_running() or is_github_actions_ci() +set_sentry() + +# Apply monkey patches if the script is being run from within the parent directory of the script's location +from .patches import imread, imshow, imwrite + +# torch.save = torch_save +if Path(inspect.stack()[0].filename).parent.parent.as_posix() in inspect.stack()[-1].filename: + cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow diff --git a/modules/ultralytics/yolo/utils/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..469764f094fb4aced8529baf1950b6cfa29039a3 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/autobatch.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/autobatch.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a3bbf0db8df88afe0b132fc0f56baa84174a0abd Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/autobatch.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/checks.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/checks.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..da55cc2abb742ab3896f3ed7de097972b9e6e918 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/checks.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/dist.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/dist.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5a366bff64b019e36c1d17d68463a256001473d7 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/dist.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/downloads.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/downloads.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..601535f1e533d220d081191be9d667fe7855699a Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/downloads.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/files.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/files.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..78a25f057568d41bc906892e20d9e1927f2cc035 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/files.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/instance.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/instance.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..36e17abba573c039770cecdfd610e3a006091ab0 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/instance.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/loss.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/loss.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4ce6202450bbaa5748a1f496cdafee8a49f18b49 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/loss.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/metrics.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/metrics.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d1c6390d84e6906d8040387bdd9d3a2d43898e24 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/metrics.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/ops.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/ops.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..34e7963662395f8fe3f5ad0e7c5df400f11ca500 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/ops.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/patches.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/patches.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9a2ba430a009172a6fe780dfa40bde5973fdc83d Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/patches.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/plotting.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/plotting.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c1b3f9d29c51d40a3e4b7d0acd0c6b7de5d188e7 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/plotting.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/tal.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/tal.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d9e00aee0c00df5eb5ce2a06f9358b67fc80142 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/tal.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/__pycache__/torch_utils.cpython-312.pyc b/modules/ultralytics/yolo/utils/__pycache__/torch_utils.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..68c43af91932bf392d3fade7fd8efb4ddf02c304 Binary files /dev/null and b/modules/ultralytics/yolo/utils/__pycache__/torch_utils.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/autobatch.py b/modules/ultralytics/yolo/utils/autobatch.py new file mode 100644 index 0000000000000000000000000000000000000000..0645f81ebfe7ff50776e18f8e8f03ce5f7aa0998 --- /dev/null +++ b/modules/ultralytics/yolo/utils/autobatch.py @@ -0,0 +1,90 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch. +""" + +from copy import deepcopy + +import numpy as np +import torch + +from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, colorstr +from ultralytics.yolo.utils.torch_utils import profile + + +def check_train_batch_size(model, imgsz=640, amp=True): + """ + Check YOLO training batch size using the autobatch() function. + + Args: + model (torch.nn.Module): YOLO model to check batch size for. + imgsz (int): Image size used for training. + amp (bool): If True, use automatic mixed precision (AMP) for training. + + Returns: + (int): Optimal batch size computed using the autobatch() function. + """ + + with torch.cuda.amp.autocast(amp): + return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size + + +def autobatch(model, imgsz=640, fraction=0.67, batch_size=DEFAULT_CFG.batch): + """ + Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory. + + Args: + model (torch.nn.module): YOLO model to compute batch size for. + imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640. + fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.67. + batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16. + + Returns: + (int): The optimal batch size. + """ + + # Check device + prefix = colorstr('AutoBatch: ') + LOGGER.info(f'{prefix}Computing optimal batch size for imgsz={imgsz}') + device = next(model.parameters()).device # get model device + if device.type == 'cpu': + LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}') + return batch_size + if torch.backends.cudnn.benchmark: + LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}') + return batch_size + + # Inspect CUDA memory + gb = 1 << 30 # bytes to GiB (1024 ** 3) + d = str(device).upper() # 'CUDA:0' + properties = torch.cuda.get_device_properties(device) # device properties + t = properties.total_memory / gb # GiB total + r = torch.cuda.memory_reserved(device) / gb # GiB reserved + a = torch.cuda.memory_allocated(device) / gb # GiB allocated + f = t - (r + a) # GiB free + LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free') + + # Profile batch sizes + batch_sizes = [1, 2, 4, 8, 16] + try: + img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes] + results = profile(img, model, n=3, device=device) + + # Fit a solution + y = [x[2] for x in results if x] # memory [2] + p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit + b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) + if None in results: # some sizes failed + i = results.index(None) # first fail index + if b >= batch_sizes[i]: # y intercept above failure point + b = batch_sizes[max(i - 1, 0)] # select prior safe point + if b < 1 or b > 1024: # b outside of safe range + b = batch_size + LOGGER.info(f'{prefix}WARNING ⚠️ CUDA anomaly detected, using default batch-size {batch_size}.') + + fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted + LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅') + return b + except Exception as e: + LOGGER.warning(f'{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.') + return batch_size diff --git a/modules/ultralytics/yolo/utils/benchmarks.py b/modules/ultralytics/yolo/utils/benchmarks.py new file mode 100644 index 0000000000000000000000000000000000000000..a277d6b7c3bd8284fcf27281d6c6a8bb0705c928 --- /dev/null +++ b/modules/ultralytics/yolo/utils/benchmarks.py @@ -0,0 +1,362 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Benchmark a YOLO model formats for speed and accuracy + +Usage: + from ultralytics.yolo.utils.benchmarks import ProfileModels, benchmark + ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile() + run_benchmarks(model='yolov8n.pt', imgsz=160) + +Format | `format=argument` | Model +--- | --- | --- +PyTorch | - | yolov8n.pt +TorchScript | `torchscript` | yolov8n.torchscript +ONNX | `onnx` | yolov8n.onnx +OpenVINO | `openvino` | yolov8n_openvino_model/ +TensorRT | `engine` | yolov8n.engine +CoreML | `coreml` | yolov8n.mlmodel +TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ +TensorFlow GraphDef | `pb` | yolov8n.pb +TensorFlow Lite | `tflite` | yolov8n.tflite +TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite +TensorFlow.js | `tfjs` | yolov8n_web_model/ +PaddlePaddle | `paddle` | yolov8n_paddle_model/ +""" + +import glob +import platform +import time +from pathlib import Path + +import numpy as np +import torch.cuda +from tqdm import tqdm + +from ultralytics import YOLO +from ultralytics.yolo.engine.exporter import export_formats +from ultralytics.yolo.utils import LINUX, LOGGER, MACOS, ROOT, SETTINGS +from ultralytics.yolo.utils.checks import check_requirements, check_yolo +from ultralytics.yolo.utils.downloads import download +from ultralytics.yolo.utils.files import file_size +from ultralytics.yolo.utils.torch_utils import select_device + + +def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt', + imgsz=160, + half=False, + int8=False, + device='cpu', + hard_fail=False): + """ + Benchmark a YOLO model across different formats for speed and accuracy. + + Args: + model (str | Path | optional): Path to the model file or directory. Default is + Path(SETTINGS['weights_dir']) / 'yolov8n.pt'. + imgsz (int, optional): Image size for the benchmark. Default is 160. + half (bool, optional): Use half-precision for the model if True. Default is False. + int8 (bool, optional): Use int8-precision for the model if True. Default is False. + device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'. + hard_fail (bool | float | optional): If True or a float, assert benchmarks pass with given metric. + Default is False. + + Returns: + df (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size, + metric, and inference time. + """ + + import pandas as pd + pd.options.display.max_columns = 10 + pd.options.display.width = 120 + device = select_device(device, verbose=False) + if isinstance(model, (str, Path)): + model = YOLO(model) + + y = [] + t0 = time.time() + for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU) + emoji, filename = '❌', None # export defaults + try: + assert i != 9 or LINUX, 'Edge TPU export only supported on Linux' + if i == 10: + assert MACOS or LINUX, 'TF.js export only supported on macOS and Linux' + if 'cpu' in device.type: + assert cpu, 'inference not supported on CPU' + if 'cuda' in device.type: + assert gpu, 'inference not supported on GPU' + + # Export + if format == '-': + filename = model.ckpt_path or model.cfg + export = model # PyTorch format + else: + filename = model.export(imgsz=imgsz, format=format, half=half, int8=int8, device=device, verbose=False) + export = YOLO(filename, task=model.task) + assert suffix in str(filename), 'export failed' + emoji = '❎' # indicates export succeeded + + # Predict + assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported + assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML + if not (ROOT / 'assets/bus.jpg').exists(): + download(url='https://ultralytics.com/images/bus.jpg', dir=ROOT / 'assets') + export.predict(ROOT / 'assets/bus.jpg', imgsz=imgsz, device=device, half=half) + + # Validate + if model.task == 'detect': + data, key = 'coco8.yaml', 'metrics/mAP50-95(B)' + elif model.task == 'segment': + data, key = 'coco8-seg.yaml', 'metrics/mAP50-95(M)' + elif model.task == 'classify': + data, key = 'imagenet100', 'metrics/accuracy_top5' + elif model.task == 'pose': + data, key = 'coco8-pose.yaml', 'metrics/mAP50-95(P)' + + results = export.val(data=data, + batch=1, + imgsz=imgsz, + plots=False, + device=device, + half=half, + int8=int8, + verbose=False) + metric, speed = results.results_dict[key], results.speed['inference'] + y.append([name, '✅', round(file_size(filename), 1), round(metric, 4), round(speed, 2)]) + except Exception as e: + if hard_fail: + assert type(e) is AssertionError, f'Benchmark hard_fail for {name}: {e}' + LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}') + y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference + + # Print results + check_yolo(device=device) # print system info + df = pd.DataFrame(y, columns=['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)']) + + name = Path(model.ckpt_path).name + s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n' + LOGGER.info(s) + with open('benchmarks.log', 'a', errors='ignore', encoding='utf-8') as f: + f.write(s) + + if hard_fail and isinstance(hard_fail, float): + metrics = df[key].array # values to compare to floor + floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n + assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: one or more metric(s) < floor {floor}' + + return df + + +class ProfileModels: + """ + ProfileModels class for profiling different models on ONNX and TensorRT. + + This class profiles the performance of different models, provided their paths. The profiling includes parameters such as + model speed and FLOPs. + + Attributes: + paths (list): Paths of the models to profile. + num_timed_runs (int): Number of timed runs for the profiling. Default is 100. + num_warmup_runs (int): Number of warmup runs before profiling. Default is 10. + min_time (float): Minimum number of seconds to profile for. Default is 60. + imgsz (int): Image size used in the models. Default is 640. + + Methods: + profile(): Profiles the models and prints the result. + """ + + def __init__(self, + paths: list, + num_timed_runs=100, + num_warmup_runs=10, + min_time=60, + imgsz=640, + trt=True, + device=None): + self.paths = paths + self.num_timed_runs = num_timed_runs + self.num_warmup_runs = num_warmup_runs + self.min_time = min_time + self.imgsz = imgsz + self.trt = trt # run TensorRT profiling + self.device = device or torch.device(0 if torch.cuda.is_available() else 'cpu') + + def profile(self): + files = self.get_files() + + if not files: + print('No matching *.pt or *.onnx files found.') + return + + table_rows = [] + output = [] + for file in files: + engine_file = file.with_suffix('.engine') + if file.suffix in ('.pt', '.yaml'): + model = YOLO(str(file)) + model.fuse() # to report correct params and GFLOPs in model.info() + model_info = model.info() + if self.trt and self.device.type != 'cpu' and not engine_file.is_file(): + engine_file = model.export(format='engine', + half=True, + imgsz=self.imgsz, + device=self.device, + verbose=False) + onnx_file = model.export(format='onnx', + half=True, + imgsz=self.imgsz, + simplify=True, + device=self.device, + verbose=False) + elif file.suffix == '.onnx': + model_info = self.get_onnx_model_info(file) + onnx_file = file + else: + continue + + t_engine = self.profile_tensorrt_model(str(engine_file)) + t_onnx = self.profile_onnx_model(str(onnx_file)) + table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info)) + output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info)) + + self.print_table(table_rows) + return output + + def get_files(self): + files = [] + for path in self.paths: + path = Path(path) + if path.is_dir(): + extensions = ['*.pt', '*.onnx', '*.yaml'] + files.extend([file for ext in extensions for file in glob.glob(str(path / ext))]) + elif path.suffix in {'.pt', '.yaml'}: # add non-existing + files.append(str(path)) + else: + files.extend(glob.glob(str(path))) + + print(f'Profiling: {sorted(files)}') + return [Path(file) for file in sorted(files)] + + def get_onnx_model_info(self, onnx_file: str): + # return (num_layers, num_params, num_gradients, num_flops) + return 0.0, 0.0, 0.0, 0.0 + + def iterative_sigma_clipping(self, data, sigma=2, max_iters=3): + data = np.array(data) + for _ in range(max_iters): + mean, std = np.mean(data), np.std(data) + clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)] + if len(clipped_data) == len(data): + break + data = clipped_data + return data + + def profile_tensorrt_model(self, engine_file: str): + if not self.trt or not Path(engine_file).is_file(): + return 0.0, 0.0 + + # Model and input + model = YOLO(engine_file) + input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32 + + # Warmup runs + elapsed = 0.0 + for _ in range(3): + start_time = time.time() + for _ in range(self.num_warmup_runs): + model(input_data, imgsz=self.imgsz, verbose=False) + elapsed = time.time() - start_time + + # Compute number of runs as higher of min_time or num_timed_runs + num_runs = max(round(self.min_time / elapsed * self.num_warmup_runs), self.num_timed_runs * 50) + + # Timed runs + run_times = [] + for _ in tqdm(range(num_runs), desc=engine_file): + results = model(input_data, imgsz=self.imgsz, verbose=False) + run_times.append(results[0].speed['inference']) # Convert to milliseconds + + run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping + return np.mean(run_times), np.std(run_times) + + def profile_onnx_model(self, onnx_file: str): + check_requirements('onnxruntime') + import onnxruntime as ort + + # Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider' + sess_options = ort.SessionOptions() + sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL + sess_options.intra_op_num_threads = 8 # Limit the number of threads + sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider']) + + input_tensor = sess.get_inputs()[0] + input_type = input_tensor.type + + # Mapping ONNX datatype to numpy datatype + if 'float16' in input_type: + input_dtype = np.float16 + elif 'float' in input_type: + input_dtype = np.float32 + elif 'double' in input_type: + input_dtype = np.float64 + elif 'int64' in input_type: + input_dtype = np.int64 + elif 'int32' in input_type: + input_dtype = np.int32 + else: + raise ValueError(f'Unsupported ONNX datatype {input_type}') + + input_data = np.random.rand(*input_tensor.shape).astype(input_dtype) + input_name = input_tensor.name + output_name = sess.get_outputs()[0].name + + # Warmup runs + elapsed = 0.0 + for _ in range(3): + start_time = time.time() + for _ in range(self.num_warmup_runs): + sess.run([output_name], {input_name: input_data}) + elapsed = time.time() - start_time + + # Compute number of runs as higher of min_time or num_timed_runs + num_runs = max(round(self.min_time / elapsed * self.num_warmup_runs), self.num_timed_runs) + + # Timed runs + run_times = [] + for _ in tqdm(range(num_runs), desc=onnx_file): + start_time = time.time() + sess.run([output_name], {input_name: input_data}) + run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds + + run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping + return np.mean(run_times), np.std(run_times) + + def generate_table_row(self, model_name, t_onnx, t_engine, model_info): + layers, params, gradients, flops = model_info + return f'| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |' + + def generate_results_dict(self, model_name, t_onnx, t_engine, model_info): + layers, params, gradients, flops = model_info + return { + 'model/name': model_name, + 'model/parameters': params, + 'model/GFLOPs': round(flops, 3), + 'model/speed_ONNX(ms)': round(t_onnx[0], 3), + 'model/speed_TensorRT(ms)': round(t_engine[0], 3)} + + def print_table(self, table_rows): + gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU' + header = f'| Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
{gpu} TensorRT
(ms) | params
(M) | FLOPs
(B) |' + separator = '|-------------|---------------------|--------------------|------------------------------|-----------------------------------|------------------|-----------------|' + + print(f'\n\n{header}') + print(separator) + for row in table_rows: + print(row) + + +if __name__ == '__main__': + # Benchmark all export formats + benchmark() + + # Profiling models on ONNX and TensorRT + ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']) diff --git a/modules/ultralytics/yolo/utils/callbacks/__init__.py b/modules/ultralytics/yolo/utils/callbacks/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..8ad4ad6e7b4726d5c8405a217ab2a3cf9cb3440d --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/__init__.py @@ -0,0 +1,5 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .base import add_integration_callbacks, default_callbacks, get_default_callbacks + +__all__ = 'add_integration_callbacks', 'default_callbacks', 'get_default_callbacks' diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2c74c440b638fbfa69a4218b7f0998745e485e13 Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/base.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/base.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..86bef6ad26fb4abbc2264895036ec0bfddd4f3bd Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/base.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/clearml.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/clearml.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dee339abb902a77ec1076e31d03c02e56fb6d374 Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/clearml.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/comet.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/comet.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09fba998d7260ad3a05064f122ac09abe051b009 Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/comet.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/dvc.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/dvc.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..faaf0be7327ecf707c3583e249743e690ffcd12e Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/dvc.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/hub.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/hub.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f8a08359bc588372b27fa4e4aa8dbc7a7ea91fd9 Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/hub.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/mlflow.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/mlflow.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..668fdaca48e014eb0063e2f684cb13a9fcf11fb5 Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/mlflow.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/neptune.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/neptune.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..94f06dca96280b2cf00db2523dee8ed0c80b1ea5 Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/neptune.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/raytune.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/raytune.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b874965324a873cdebef60e4300989aacf166a9c Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/raytune.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/tensorboard.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/tensorboard.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..00c7ff4c8c7c2c111786b185127f551bb04681c0 Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/tensorboard.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/__pycache__/wb.cpython-312.pyc b/modules/ultralytics/yolo/utils/callbacks/__pycache__/wb.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8c0723fb67439dd45add80eda92bd298361e25cf Binary files /dev/null and b/modules/ultralytics/yolo/utils/callbacks/__pycache__/wb.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/utils/callbacks/base.py b/modules/ultralytics/yolo/utils/callbacks/base.py new file mode 100644 index 0000000000000000000000000000000000000000..0b1734798ffb760f92c9ea098e996d4637b082ea --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/base.py @@ -0,0 +1,212 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Base callbacks +""" + +from collections import defaultdict +from copy import deepcopy + +# Trainer callbacks ---------------------------------------------------------------------------------------------------- + + +def on_pretrain_routine_start(trainer): + """Called before the pretraining routine starts.""" + pass + + +def on_pretrain_routine_end(trainer): + """Called after the pretraining routine ends.""" + pass + + +def on_train_start(trainer): + """Called when the training starts.""" + pass + + +def on_train_epoch_start(trainer): + """Called at the start of each training epoch.""" + pass + + +def on_train_batch_start(trainer): + """Called at the start of each training batch.""" + pass + + +def optimizer_step(trainer): + """Called when the optimizer takes a step.""" + pass + + +def on_before_zero_grad(trainer): + """Called before the gradients are set to zero.""" + pass + + +def on_train_batch_end(trainer): + """Called at the end of each training batch.""" + pass + + +def on_train_epoch_end(trainer): + """Called at the end of each training epoch.""" + pass + + +def on_fit_epoch_end(trainer): + """Called at the end of each fit epoch (train + val).""" + pass + + +def on_model_save(trainer): + """Called when the model is saved.""" + pass + + +def on_train_end(trainer): + """Called when the training ends.""" + pass + + +def on_params_update(trainer): + """Called when the model parameters are updated.""" + pass + + +def teardown(trainer): + """Called during the teardown of the training process.""" + pass + + +# Validator callbacks -------------------------------------------------------------------------------------------------- + + +def on_val_start(validator): + """Called when the validation starts.""" + pass + + +def on_val_batch_start(validator): + """Called at the start of each validation batch.""" + pass + + +def on_val_batch_end(validator): + """Called at the end of each validation batch.""" + pass + + +def on_val_end(validator): + """Called when the validation ends.""" + pass + + +# Predictor callbacks -------------------------------------------------------------------------------------------------- + + +def on_predict_start(predictor): + """Called when the prediction starts.""" + pass + + +def on_predict_batch_start(predictor): + """Called at the start of each prediction batch.""" + pass + + +def on_predict_batch_end(predictor): + """Called at the end of each prediction batch.""" + pass + + +def on_predict_postprocess_end(predictor): + """Called after the post-processing of the prediction ends.""" + pass + + +def on_predict_end(predictor): + """Called when the prediction ends.""" + pass + + +# Exporter callbacks --------------------------------------------------------------------------------------------------- + + +def on_export_start(exporter): + """Called when the model export starts.""" + pass + + +def on_export_end(exporter): + """Called when the model export ends.""" + pass + + +default_callbacks = { + # Run in trainer + 'on_pretrain_routine_start': [on_pretrain_routine_start], + 'on_pretrain_routine_end': [on_pretrain_routine_end], + 'on_train_start': [on_train_start], + 'on_train_epoch_start': [on_train_epoch_start], + 'on_train_batch_start': [on_train_batch_start], + 'optimizer_step': [optimizer_step], + 'on_before_zero_grad': [on_before_zero_grad], + 'on_train_batch_end': [on_train_batch_end], + 'on_train_epoch_end': [on_train_epoch_end], + 'on_fit_epoch_end': [on_fit_epoch_end], # fit = train + val + 'on_model_save': [on_model_save], + 'on_train_end': [on_train_end], + 'on_params_update': [on_params_update], + 'teardown': [teardown], + + # Run in validator + 'on_val_start': [on_val_start], + 'on_val_batch_start': [on_val_batch_start], + 'on_val_batch_end': [on_val_batch_end], + 'on_val_end': [on_val_end], + + # Run in predictor + 'on_predict_start': [on_predict_start], + 'on_predict_batch_start': [on_predict_batch_start], + 'on_predict_postprocess_end': [on_predict_postprocess_end], + 'on_predict_batch_end': [on_predict_batch_end], + 'on_predict_end': [on_predict_end], + + # Run in exporter + 'on_export_start': [on_export_start], + 'on_export_end': [on_export_end]} + + +def get_default_callbacks(): + """ + Return a copy of the default_callbacks dictionary with lists as default values. + + Returns: + (defaultdict): A defaultdict with keys from default_callbacks and empty lists as default values. + """ + return defaultdict(list, deepcopy(default_callbacks)) + + +def add_integration_callbacks(instance): + """ + Add integration callbacks from various sources to the instance's callbacks. + + Args: + instance (Trainer, Predictor, Validator, Exporter): An object with a 'callbacks' attribute that is a dictionary + of callback lists. + """ + from .clearml import callbacks as clearml_cb + from .comet import callbacks as comet_cb + from .dvc import callbacks as dvc_cb + from .hub import callbacks as hub_cb + from .mlflow import callbacks as mlflow_cb + from .neptune import callbacks as neptune_cb + from .raytune import callbacks as tune_cb + from .tensorboard import callbacks as tensorboard_cb + from .wb import callbacks as wb_cb + + for x in clearml_cb, comet_cb, hub_cb, mlflow_cb, neptune_cb, tune_cb, tensorboard_cb, wb_cb, dvc_cb: + for k, v in x.items(): + if v not in instance.callbacks[k]: # prevent duplicate callbacks addition + instance.callbacks[k].append(v) # callback[name].append(func) diff --git a/modules/ultralytics/yolo/utils/callbacks/clearml.py b/modules/ultralytics/yolo/utils/callbacks/clearml.py new file mode 100644 index 0000000000000000000000000000000000000000..2cfdd73e0e58d913fca0c6caf599fbb27060c732 --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/clearml.py @@ -0,0 +1,143 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import re + +import matplotlib.image as mpimg +import matplotlib.pyplot as plt + +from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING +from ultralytics.yolo.utils.torch_utils import model_info_for_loggers + +try: + import clearml + from clearml import Task + from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO + from clearml.binding.matplotlib_bind import PatchedMatplotlib + + assert hasattr(clearml, '__version__') # verify package is not directory + assert not TESTS_RUNNING # do not log pytest +except (ImportError, AssertionError): + clearml = None + + +def _log_debug_samples(files, title='Debug Samples') -> None: + """ + Log files (images) as debug samples in the ClearML task. + + Args: + files (list): A list of file paths in PosixPath format. + title (str): A title that groups together images with the same values. + """ + task = Task.current_task() + if task: + for f in files: + if f.exists(): + it = re.search(r'_batch(\d+)', f.name) + iteration = int(it.groups()[0]) if it else 0 + task.get_logger().report_image(title=title, + series=f.name.replace(it.group(), ''), + local_path=str(f), + iteration=iteration) + + +def _log_plot(title, plot_path) -> None: + """ + Log an image as a plot in the plot section of ClearML. + + Args: + title (str): The title of the plot. + plot_path (str): The path to the saved image file. + """ + img = mpimg.imread(plot_path) + fig = plt.figure() + ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks + ax.imshow(img) + + Task.current_task().get_logger().report_matplotlib_figure(title=title, + series='', + figure=fig, + report_interactive=False) + + +def on_pretrain_routine_start(trainer): + """Runs at start of pretraining routine; initializes and connects/ logs task to ClearML.""" + try: + task = Task.current_task() + if task: + # Make sure the automatic pytorch and matplotlib bindings are disabled! + # We are logging these plots and model files manually in the integration + PatchPyTorchModelIO.update_current_task(None) + PatchedMatplotlib.update_current_task(None) + else: + task = Task.init(project_name=trainer.args.project or 'YOLOv8', + task_name=trainer.args.name, + tags=['YOLOv8'], + output_uri=True, + reuse_last_task_id=False, + auto_connect_frameworks={ + 'pytorch': False, + 'matplotlib': False}) + LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, ' + 'please add clearml-init and connect your arguments before initializing YOLO.') + task.connect(vars(trainer.args), name='General') + except Exception as e: + LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}') + + +def on_train_epoch_end(trainer): + task = Task.current_task() + + if task: + """Logs debug samples for the first epoch of YOLO training.""" + if trainer.epoch == 1: + _log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic') + """Report the current training progress.""" + for k, v in trainer.validator.metrics.results_dict.items(): + task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch) + + +def on_fit_epoch_end(trainer): + """Reports model information to logger at the end of an epoch.""" + task = Task.current_task() + if task: + # You should have access to the validation bboxes under jdict + task.get_logger().report_scalar(title='Epoch Time', + series='Epoch Time', + value=trainer.epoch_time, + iteration=trainer.epoch) + if trainer.epoch == 0: + for k, v in model_info_for_loggers(trainer).items(): + task.get_logger().report_single_value(k, v) + + +def on_val_end(validator): + """Logs validation results including labels and predictions.""" + if Task.current_task(): + # Log val_labels and val_pred + _log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation') + + +def on_train_end(trainer): + """Logs final model and its name on training completion.""" + task = Task.current_task() + if task: + # Log final results, CM matrix + PR plots + files = [ + 'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png', + *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] + files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter + for f in files: + _log_plot(title=f.stem, plot_path=f) + # Report final metrics + for k, v in trainer.validator.metrics.results_dict.items(): + task.get_logger().report_single_value(k, v) + # Log the final model + task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) + + +callbacks = { + 'on_pretrain_routine_start': on_pretrain_routine_start, + 'on_train_epoch_end': on_train_epoch_end, + 'on_fit_epoch_end': on_fit_epoch_end, + 'on_val_end': on_val_end, + 'on_train_end': on_train_end} if clearml else {} diff --git a/modules/ultralytics/yolo/utils/callbacks/comet.py b/modules/ultralytics/yolo/utils/callbacks/comet.py new file mode 100644 index 0000000000000000000000000000000000000000..94aeb8f64c8abc39564d1cac25c3c6eb55ad3dce --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/comet.py @@ -0,0 +1,368 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import os +from pathlib import Path + +from ultralytics.yolo.utils import LOGGER, RANK, TESTS_RUNNING, ops +from ultralytics.yolo.utils.torch_utils import model_info_for_loggers + +try: + import comet_ml + + assert not TESTS_RUNNING # do not log pytest + assert hasattr(comet_ml, '__version__') # verify package is not directory +except (ImportError, AssertionError): + comet_ml = None + +# Ensures certain logging functions only run for supported tasks +COMET_SUPPORTED_TASKS = ['detect'] + +# Names of plots created by YOLOv8 that are logged to Comet +EVALUATION_PLOT_NAMES = 'F1_curve', 'P_curve', 'R_curve', 'PR_curve', 'confusion_matrix' +LABEL_PLOT_NAMES = 'labels', 'labels_correlogram' + +_comet_image_prediction_count = 0 + + +def _get_comet_mode(): + return os.getenv('COMET_MODE', 'online') + + +def _get_comet_model_name(): + return os.getenv('COMET_MODEL_NAME', 'YOLOv8') + + +def _get_eval_batch_logging_interval(): + return int(os.getenv('COMET_EVAL_BATCH_LOGGING_INTERVAL', 1)) + + +def _get_max_image_predictions_to_log(): + return int(os.getenv('COMET_MAX_IMAGE_PREDICTIONS', 100)) + + +def _scale_confidence_score(score): + scale = float(os.getenv('COMET_MAX_CONFIDENCE_SCORE', 100.0)) + return score * scale + + +def _should_log_confusion_matrix(): + return os.getenv('COMET_EVAL_LOG_CONFUSION_MATRIX', 'false').lower() == 'true' + + +def _should_log_image_predictions(): + return os.getenv('COMET_EVAL_LOG_IMAGE_PREDICTIONS', 'true').lower() == 'true' + + +def _get_experiment_type(mode, project_name): + """Return an experiment based on mode and project name.""" + if mode == 'offline': + return comet_ml.OfflineExperiment(project_name=project_name) + + return comet_ml.Experiment(project_name=project_name) + + +def _create_experiment(args): + """Ensures that the experiment object is only created in a single process during distributed training.""" + if RANK not in (-1, 0): + return + try: + comet_mode = _get_comet_mode() + _project_name = os.getenv('COMET_PROJECT_NAME', args.project) + experiment = _get_experiment_type(comet_mode, _project_name) + experiment.log_parameters(vars(args)) + experiment.log_others({ + 'eval_batch_logging_interval': _get_eval_batch_logging_interval(), + 'log_confusion_matrix_on_eval': _should_log_confusion_matrix(), + 'log_image_predictions': _should_log_image_predictions(), + 'max_image_predictions': _get_max_image_predictions_to_log(), }) + experiment.log_other('Created from', 'yolov8') + + except Exception as e: + LOGGER.warning(f'WARNING ⚠️ Comet installed but not initialized correctly, not logging this run. {e}') + + +def _fetch_trainer_metadata(trainer): + """Returns metadata for YOLO training including epoch and asset saving status.""" + curr_epoch = trainer.epoch + 1 + + train_num_steps_per_epoch = len(trainer.train_loader.dataset) // trainer.batch_size + curr_step = curr_epoch * train_num_steps_per_epoch + final_epoch = curr_epoch == trainer.epochs + + save = trainer.args.save + save_period = trainer.args.save_period + save_interval = curr_epoch % save_period == 0 + save_assets = save and save_period > 0 and save_interval and not final_epoch + + return dict( + curr_epoch=curr_epoch, + curr_step=curr_step, + save_assets=save_assets, + final_epoch=final_epoch, + ) + + +def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad): + """YOLOv8 resizes images during training and the label values + are normalized based on this resized shape. This function rescales the + bounding box labels to the original image shape. + """ + + resized_image_height, resized_image_width = resized_image_shape + + # Convert normalized xywh format predictions to xyxy in resized scale format + box = ops.xywhn2xyxy(box, h=resized_image_height, w=resized_image_width) + # Scale box predictions from resized image scale back to original image scale + box = ops.scale_boxes(resized_image_shape, box, original_image_shape, ratio_pad) + # Convert bounding box format from xyxy to xywh for Comet logging + box = ops.xyxy2xywh(box) + # Adjust xy center to correspond top-left corner + box[:2] -= box[2:] / 2 + box = box.tolist() + + return box + + +def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map=None): + """Format ground truth annotations for detection.""" + indices = batch['batch_idx'] == img_idx + bboxes = batch['bboxes'][indices] + if len(bboxes) == 0: + LOGGER.debug(f'COMET WARNING: Image: {image_path} has no bounding boxes labels') + return None + + cls_labels = batch['cls'][indices].squeeze(1).tolist() + if class_name_map: + cls_labels = [str(class_name_map[label]) for label in cls_labels] + + original_image_shape = batch['ori_shape'][img_idx] + resized_image_shape = batch['resized_shape'][img_idx] + ratio_pad = batch['ratio_pad'][img_idx] + + data = [] + for box, label in zip(bboxes, cls_labels): + box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad) + data.append({ + 'boxes': [box], + 'label': f'gt_{label}', + 'score': _scale_confidence_score(1.0), }) + + return {'name': 'ground_truth', 'data': data} + + +def _format_prediction_annotations_for_detection(image_path, metadata, class_label_map=None): + """Format YOLO predictions for object detection visualization.""" + stem = image_path.stem + image_id = int(stem) if stem.isnumeric() else stem + + predictions = metadata.get(image_id) + if not predictions: + LOGGER.debug(f'COMET WARNING: Image: {image_path} has no bounding boxes predictions') + return None + + data = [] + for prediction in predictions: + boxes = prediction['bbox'] + score = _scale_confidence_score(prediction['score']) + cls_label = prediction['category_id'] + if class_label_map: + cls_label = str(class_label_map[cls_label]) + + data.append({'boxes': [boxes], 'label': cls_label, 'score': score}) + + return {'name': 'prediction', 'data': data} + + +def _fetch_annotations(img_idx, image_path, batch, prediction_metadata_map, class_label_map): + """Join the ground truth and prediction annotations if they exist.""" + ground_truth_annotations = _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, + class_label_map) + prediction_annotations = _format_prediction_annotations_for_detection(image_path, prediction_metadata_map, + class_label_map) + + annotations = [ + annotation for annotation in [ground_truth_annotations, prediction_annotations] if annotation is not None] + return [annotations] if annotations else None + + +def _create_prediction_metadata_map(model_predictions): + """Create metadata map for model predictions by groupings them based on image ID.""" + pred_metadata_map = {} + for prediction in model_predictions: + pred_metadata_map.setdefault(prediction['image_id'], []) + pred_metadata_map[prediction['image_id']].append(prediction) + + return pred_metadata_map + + +def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch): + """Log the confusion matrix to Comet experiment.""" + conf_mat = trainer.validator.confusion_matrix.matrix + names = list(trainer.data['names'].values()) + ['background'] + experiment.log_confusion_matrix( + matrix=conf_mat, + labels=names, + max_categories=len(names), + epoch=curr_epoch, + step=curr_step, + ) + + +def _log_images(experiment, image_paths, curr_step, annotations=None): + """Logs images to the experiment with optional annotations.""" + if annotations: + for image_path, annotation in zip(image_paths, annotations): + experiment.log_image(image_path, name=image_path.stem, step=curr_step, annotations=annotation) + + else: + for image_path in image_paths: + experiment.log_image(image_path, name=image_path.stem, step=curr_step) + + +def _log_image_predictions(experiment, validator, curr_step): + """Logs predicted boxes for a single image during training.""" + global _comet_image_prediction_count + + task = validator.args.task + if task not in COMET_SUPPORTED_TASKS: + return + + jdict = validator.jdict + if not jdict: + return + + predictions_metadata_map = _create_prediction_metadata_map(jdict) + dataloader = validator.dataloader + class_label_map = validator.names + + batch_logging_interval = _get_eval_batch_logging_interval() + max_image_predictions = _get_max_image_predictions_to_log() + + for batch_idx, batch in enumerate(dataloader): + if (batch_idx + 1) % batch_logging_interval != 0: + continue + + image_paths = batch['im_file'] + for img_idx, image_path in enumerate(image_paths): + if _comet_image_prediction_count >= max_image_predictions: + return + + image_path = Path(image_path) + annotations = _fetch_annotations( + img_idx, + image_path, + batch, + predictions_metadata_map, + class_label_map, + ) + _log_images( + experiment, + [image_path], + curr_step, + annotations=annotations, + ) + _comet_image_prediction_count += 1 + + +def _log_plots(experiment, trainer): + """Logs evaluation plots and label plots for the experiment.""" + plot_filenames = [trainer.save_dir / f'{plots}.png' for plots in EVALUATION_PLOT_NAMES] + _log_images(experiment, plot_filenames, None) + + label_plot_filenames = [trainer.save_dir / f'{labels}.jpg' for labels in LABEL_PLOT_NAMES] + _log_images(experiment, label_plot_filenames, None) + + +def _log_model(experiment, trainer): + """Log the best-trained model to Comet.ml.""" + model_name = _get_comet_model_name() + experiment.log_model( + model_name, + file_or_folder=str(trainer.best), + file_name='best.pt', + overwrite=True, + ) + + +def on_pretrain_routine_start(trainer): + """Creates or resumes a CometML experiment at the start of a YOLO pre-training routine.""" + experiment = comet_ml.get_global_experiment() + is_alive = getattr(experiment, 'alive', False) + if not experiment or not is_alive: + _create_experiment(trainer.args) + + +def on_train_epoch_end(trainer): + """Log metrics and save batch images at the end of training epochs.""" + experiment = comet_ml.get_global_experiment() + if not experiment: + return + + metadata = _fetch_trainer_metadata(trainer) + curr_epoch = metadata['curr_epoch'] + curr_step = metadata['curr_step'] + + experiment.log_metrics( + trainer.label_loss_items(trainer.tloss, prefix='train'), + step=curr_step, + epoch=curr_epoch, + ) + + if curr_epoch == 1: + _log_images(experiment, trainer.save_dir.glob('train_batch*.jpg'), curr_step) + + +def on_fit_epoch_end(trainer): + """Logs model assets at the end of each epoch.""" + experiment = comet_ml.get_global_experiment() + if not experiment: + return + + metadata = _fetch_trainer_metadata(trainer) + curr_epoch = metadata['curr_epoch'] + curr_step = metadata['curr_step'] + save_assets = metadata['save_assets'] + + experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch) + experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch) + if curr_epoch == 1: + experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch) + + if not save_assets: + return + + _log_model(experiment, trainer) + if _should_log_confusion_matrix(): + _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch) + if _should_log_image_predictions(): + _log_image_predictions(experiment, trainer.validator, curr_step) + + +def on_train_end(trainer): + """Perform operations at the end of training.""" + experiment = comet_ml.get_global_experiment() + if not experiment: + return + + metadata = _fetch_trainer_metadata(trainer) + curr_epoch = metadata['curr_epoch'] + curr_step = metadata['curr_step'] + plots = trainer.args.plots + + _log_model(experiment, trainer) + if plots: + _log_plots(experiment, trainer) + + _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch) + _log_image_predictions(experiment, trainer.validator, curr_step) + experiment.end() + + global _comet_image_prediction_count + _comet_image_prediction_count = 0 + + +callbacks = { + 'on_pretrain_routine_start': on_pretrain_routine_start, + 'on_train_epoch_end': on_train_epoch_end, + 'on_fit_epoch_end': on_fit_epoch_end, + 'on_train_end': on_train_end} if comet_ml else {} diff --git a/modules/ultralytics/yolo/utils/callbacks/dvc.py b/modules/ultralytics/yolo/utils/callbacks/dvc.py new file mode 100644 index 0000000000000000000000000000000000000000..63ec368752a6fd35b413cceb7633df93f8cfb421 --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/dvc.py @@ -0,0 +1,136 @@ +# Ultralytics YOLO 🚀, GPL-3.0 license +import os + +import pkg_resources as pkg + +from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING +from ultralytics.yolo.utils.torch_utils import model_info_for_loggers + +try: + from importlib.metadata import version + + import dvclive + + assert not TESTS_RUNNING # do not log pytest + + ver = version('dvclive') + if pkg.parse_version(ver) < pkg.parse_version('2.11.0'): + LOGGER.debug(f'DVCLive is detected but version {ver} is incompatible (>=2.11 required).') + dvclive = None # noqa: F811 +except (ImportError, AssertionError, TypeError): + dvclive = None + +# DVCLive logger instance +live = None +_processed_plots = {} + +# `on_fit_epoch_end` is called on final validation (probably need to be fixed) +# for now this is the way we distinguish final evaluation of the best model vs +# last epoch validation +_training_epoch = False + + +def _logger_disabled(): + return os.getenv('ULTRALYTICS_DVC_DISABLED', 'false').lower() == 'true' + + +def _log_images(image_path, prefix=''): + if live: + live.log_image(os.path.join(prefix, image_path.name), image_path) + + +def _log_plots(plots, prefix=''): + for name, params in plots.items(): + timestamp = params['timestamp'] + if _processed_plots.get(name) != timestamp: + _log_images(name, prefix) + _processed_plots[name] = timestamp + + +def _log_confusion_matrix(validator): + targets = [] + preds = [] + matrix = validator.confusion_matrix.matrix + names = list(validator.names.values()) + if validator.confusion_matrix.task == 'detect': + names += ['background'] + + for ti, pred in enumerate(matrix.T.astype(int)): + for pi, num in enumerate(pred): + targets.extend([names[ti]] * num) + preds.extend([names[pi]] * num) + + live.log_sklearn_plot('confusion_matrix', targets, preds, name='cf.json', normalized=True) + + +def on_pretrain_routine_start(trainer): + try: + global live + if not _logger_disabled(): + live = dvclive.Live(save_dvc_exp=True) + LOGGER.info( + 'DVCLive is detected and auto logging is enabled (can be disabled with `ULTRALYTICS_DVC_DISABLED=true`).' + ) + else: + LOGGER.debug('DVCLive is detected and auto logging is disabled via `ULTRALYTICS_DVC_DISABLED`.') + live = None + except Exception as e: + LOGGER.warning(f'WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}') + + +def on_pretrain_routine_end(trainer): + _log_plots(trainer.plots, 'train') + + +def on_train_start(trainer): + if live: + live.log_params(trainer.args) + + +def on_train_epoch_start(trainer): + global _training_epoch + _training_epoch = True + + +def on_fit_epoch_end(trainer): + global _training_epoch + if live and _training_epoch: + all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr} + for metric, value in all_metrics.items(): + live.log_metric(metric, value) + + if trainer.epoch == 0: + for metric, value in model_info_for_loggers(trainer).items(): + live.log_metric(metric, value, plot=False) + + _log_plots(trainer.plots, 'train') + _log_plots(trainer.validator.plots, 'val') + + live.next_step() + _training_epoch = False + + +def on_train_end(trainer): + if live: + # At the end log the best metrics. It runs validator on the best model internally. + all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr} + for metric, value in all_metrics.items(): + live.log_metric(metric, value, plot=False) + + _log_plots(trainer.plots, 'eval') + _log_plots(trainer.validator.plots, 'eval') + _log_confusion_matrix(trainer.validator) + + if trainer.best.exists(): + live.log_artifact(trainer.best, copy=True) + + live.end() + + +callbacks = { + 'on_pretrain_routine_start': on_pretrain_routine_start, + 'on_pretrain_routine_end': on_pretrain_routine_end, + 'on_train_start': on_train_start, + 'on_train_epoch_start': on_train_epoch_start, + 'on_fit_epoch_end': on_fit_epoch_end, + 'on_train_end': on_train_end} if dvclive else {} diff --git a/modules/ultralytics/yolo/utils/callbacks/hub.py b/modules/ultralytics/yolo/utils/callbacks/hub.py new file mode 100644 index 0000000000000000000000000000000000000000..e3b34272ea725951e1d40a33f8fd8ff6b0e9315a --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/hub.py @@ -0,0 +1,87 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import json +from time import time + +from ultralytics.hub.utils import PREFIX, events +from ultralytics.yolo.utils import LOGGER +from ultralytics.yolo.utils.torch_utils import model_info_for_loggers + + +def on_pretrain_routine_end(trainer): + """Logs info before starting timer for upload rate limit.""" + session = getattr(trainer, 'hub_session', None) + if session: + # Start timer for upload rate limit + LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀') + session.timers = {'metrics': time(), 'ckpt': time()} # start timer on session.rate_limit + + +def on_fit_epoch_end(trainer): + """Uploads training progress metrics at the end of each epoch.""" + session = getattr(trainer, 'hub_session', None) + if session: + # Upload metrics after val end + all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics} + if trainer.epoch == 0: + all_plots = {**all_plots, **model_info_for_loggers(trainer)} + session.metrics_queue[trainer.epoch] = json.dumps(all_plots) + if time() - session.timers['metrics'] > session.rate_limits['metrics']: + session.upload_metrics() + session.timers['metrics'] = time() # reset timer + session.metrics_queue = {} # reset queue + + +def on_model_save(trainer): + """Saves checkpoints to Ultralytics HUB with rate limiting.""" + session = getattr(trainer, 'hub_session', None) + if session: + # Upload checkpoints with rate limiting + is_best = trainer.best_fitness == trainer.fitness + if time() - session.timers['ckpt'] > session.rate_limits['ckpt']: + LOGGER.info(f'{PREFIX}Uploading checkpoint https://hub.ultralytics.com/models/{session.model_id}') + session.upload_model(trainer.epoch, trainer.last, is_best) + session.timers['ckpt'] = time() # reset timer + + +def on_train_end(trainer): + """Upload final model and metrics to Ultralytics HUB at the end of training.""" + session = getattr(trainer, 'hub_session', None) + if session: + # Upload final model and metrics with exponential standoff + LOGGER.info(f'{PREFIX}Syncing final model...') + session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics.get('metrics/mAP50-95(B)', 0), final=True) + session.alive = False # stop heartbeats + LOGGER.info(f'{PREFIX}Done ✅\n' + f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀') + + +def on_train_start(trainer): + """Run events on train start.""" + events(trainer.args) + + +def on_val_start(validator): + """Runs events on validation start.""" + events(validator.args) + + +def on_predict_start(predictor): + """Run events on predict start.""" + events(predictor.args) + + +def on_export_start(exporter): + """Run events on export start.""" + events(exporter.args) + + +callbacks = { + 'on_pretrain_routine_end': on_pretrain_routine_end, + 'on_fit_epoch_end': on_fit_epoch_end, + 'on_model_save': on_model_save, + 'on_train_end': on_train_end, + 'on_train_start': on_train_start, + 'on_val_start': on_val_start, + 'on_predict_start': on_predict_start, + 'on_export_start': on_export_start} diff --git a/modules/ultralytics/yolo/utils/callbacks/mlflow.py b/modules/ultralytics/yolo/utils/callbacks/mlflow.py new file mode 100644 index 0000000000000000000000000000000000000000..f97d4723d406ffc69e02008e22b874bf28bc7774 --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/mlflow.py @@ -0,0 +1,70 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import os +import re +from pathlib import Path + +from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING, colorstr + +try: + import mlflow + + assert not TESTS_RUNNING # do not log pytest + assert hasattr(mlflow, '__version__') # verify package is not directory +except (ImportError, AssertionError): + mlflow = None + + +def on_pretrain_routine_end(trainer): + """Logs training parameters to MLflow.""" + global mlflow, run, run_id, experiment_name + + if os.environ.get('MLFLOW_TRACKING_URI') is None: + mlflow = None + + if mlflow: + mlflow_location = os.environ['MLFLOW_TRACKING_URI'] # "http://192.168.xxx.xxx:5000" + mlflow.set_tracking_uri(mlflow_location) + + experiment_name = os.environ.get('MLFLOW_EXPERIMENT') or trainer.args.project or '/Shared/YOLOv8' + experiment = mlflow.get_experiment_by_name(experiment_name) + if experiment is None: + mlflow.create_experiment(experiment_name) + mlflow.set_experiment(experiment_name) + + prefix = colorstr('MLFlow: ') + try: + run, active_run = mlflow, mlflow.active_run() + if not active_run: + active_run = mlflow.start_run(experiment_id=experiment.experiment_id) + run_id = active_run.info.run_id + LOGGER.info(f'{prefix}Using run_id({run_id}) at {mlflow_location}') + run.log_params(vars(trainer.model.args)) + except Exception as err: + LOGGER.error(f'{prefix}Failing init - {repr(err)}') + LOGGER.warning(f'{prefix}Continuing without Mlflow') + + +def on_fit_epoch_end(trainer): + """Logs training metrics to Mlflow.""" + if mlflow: + metrics_dict = {f"{re.sub('[()]', '', k)}": float(v) for k, v in trainer.metrics.items()} + run.log_metrics(metrics=metrics_dict, step=trainer.epoch) + + +def on_train_end(trainer): + """Called at end of train loop to log model artifact info.""" + if mlflow: + root_dir = Path(__file__).resolve().parents[3] + run.log_artifact(trainer.last) + run.log_artifact(trainer.best) + run.pyfunc.log_model(artifact_path=experiment_name, + code_path=[str(root_dir)], + artifacts={'model_path': str(trainer.save_dir)}, + python_model=run.pyfunc.PythonModel()) + + +callbacks = { + 'on_pretrain_routine_end': on_pretrain_routine_end, + 'on_fit_epoch_end': on_fit_epoch_end, + 'on_train_end': on_train_end} if mlflow else {} diff --git a/modules/ultralytics/yolo/utils/callbacks/neptune.py b/modules/ultralytics/yolo/utils/callbacks/neptune.py new file mode 100644 index 0000000000000000000000000000000000000000..be6434124283b352db8ca040ee85ba892f5264b1 --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/neptune.py @@ -0,0 +1,103 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import matplotlib.image as mpimg +import matplotlib.pyplot as plt + +from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING +from ultralytics.yolo.utils.torch_utils import model_info_for_loggers + +try: + import neptune + from neptune.types import File + + assert not TESTS_RUNNING # do not log pytest + assert hasattr(neptune, '__version__') +except (ImportError, AssertionError): + neptune = None + +run = None # NeptuneAI experiment logger instance + + +def _log_scalars(scalars, step=0): + """Log scalars to the NeptuneAI experiment logger.""" + if run: + for k, v in scalars.items(): + run[k].append(value=v, step=step) + + +def _log_images(imgs_dict, group=''): + """Log scalars to the NeptuneAI experiment logger.""" + if run: + for k, v in imgs_dict.items(): + run[f'{group}/{k}'].upload(File(v)) + + +def _log_plot(title, plot_path): + """Log plots to the NeptuneAI experiment logger.""" + """ + Log image as plot in the plot section of NeptuneAI + + arguments: + title (str) Title of the plot + plot_path (PosixPath or str) Path to the saved image file + """ + img = mpimg.imread(plot_path) + fig = plt.figure() + ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks + ax.imshow(img) + run[f'Plots/{title}'].upload(fig) + + +def on_pretrain_routine_start(trainer): + """Callback function called before the training routine starts.""" + try: + global run + run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8']) + run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()} + except Exception as e: + LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}') + + +def on_train_epoch_end(trainer): + """Callback function called at end of each training epoch.""" + _log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1) + _log_scalars(trainer.lr, trainer.epoch + 1) + if trainer.epoch == 1: + _log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic') + + +def on_fit_epoch_end(trainer): + """Callback function called at end of each fit (train+val) epoch.""" + if run and trainer.epoch == 0: + run['Configuration/Model'] = model_info_for_loggers(trainer) + _log_scalars(trainer.metrics, trainer.epoch + 1) + + +def on_val_end(validator): + """Callback function called at end of each validation.""" + if run: + # Log val_labels and val_pred + _log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation') + + +def on_train_end(trainer): + """Callback function called at end of training.""" + if run: + # Log final results, CM matrix + PR plots + files = [ + 'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png', + *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] + files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter + for f in files: + _log_plot(title=f.stem, plot_path=f) + # Log the final model + run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str( + trainer.best))) + + +callbacks = { + 'on_pretrain_routine_start': on_pretrain_routine_start, + 'on_train_epoch_end': on_train_epoch_end, + 'on_fit_epoch_end': on_fit_epoch_end, + 'on_val_end': on_val_end, + 'on_train_end': on_train_end} if neptune else {} diff --git a/modules/ultralytics/yolo/utils/callbacks/raytune.py b/modules/ultralytics/yolo/utils/callbacks/raytune.py new file mode 100644 index 0000000000000000000000000000000000000000..1f532252a552e6813f8a4cdb835f85b8071daff0 --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/raytune.py @@ -0,0 +1,20 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +try: + import ray + from ray import tune + from ray.air import session +except (ImportError, AssertionError): + tune = None + + +def on_fit_epoch_end(trainer): + """Sends training metrics to Ray Tune at end of each epoch.""" + if ray.tune.is_session_enabled(): + metrics = trainer.metrics + metrics['epoch'] = trainer.epoch + session.report(metrics) + + +callbacks = { + 'on_fit_epoch_end': on_fit_epoch_end, } if tune else {} diff --git a/modules/ultralytics/yolo/utils/callbacks/tensorboard.py b/modules/ultralytics/yolo/utils/callbacks/tensorboard.py new file mode 100644 index 0000000000000000000000000000000000000000..a436b9ce90993c8d8ff993719c1662d6e481ba75 --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/tensorboard.py @@ -0,0 +1,47 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING, colorstr + +try: + from torch.utils.tensorboard import SummaryWriter + + assert not TESTS_RUNNING # do not log pytest +except (ImportError, AssertionError): + SummaryWriter = None + +writer = None # TensorBoard SummaryWriter instance + + +def _log_scalars(scalars, step=0): + """Logs scalar values to TensorBoard.""" + if writer: + for k, v in scalars.items(): + writer.add_scalar(k, v, step) + + +def on_pretrain_routine_start(trainer): + """Initialize TensorBoard logging with SummaryWriter.""" + if SummaryWriter: + try: + global writer + writer = SummaryWriter(str(trainer.save_dir)) + prefix = colorstr('TensorBoard: ') + LOGGER.info(f"{prefix}Start with 'tensorboard --logdir {trainer.save_dir}', view at http://localhost:6006/") + except Exception as e: + LOGGER.warning(f'WARNING ⚠️ TensorBoard not initialized correctly, not logging this run. {e}') + + +def on_batch_end(trainer): + """Logs scalar statistics at the end of a training batch.""" + _log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1) + + +def on_fit_epoch_end(trainer): + """Logs epoch metrics at end of training epoch.""" + _log_scalars(trainer.metrics, trainer.epoch + 1) + + +callbacks = { + 'on_pretrain_routine_start': on_pretrain_routine_start, + 'on_fit_epoch_end': on_fit_epoch_end, + 'on_batch_end': on_batch_end} diff --git a/modules/ultralytics/yolo/utils/callbacks/wb.py b/modules/ultralytics/yolo/utils/callbacks/wb.py new file mode 100644 index 0000000000000000000000000000000000000000..827f797349dbe43bfaec4a2d22a6b700832826c4 --- /dev/null +++ b/modules/ultralytics/yolo/utils/callbacks/wb.py @@ -0,0 +1,60 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +from ultralytics.yolo.utils import TESTS_RUNNING +from ultralytics.yolo.utils.torch_utils import model_info_for_loggers + +try: + import wandb as wb + + assert hasattr(wb, '__version__') + assert not TESTS_RUNNING # do not log pytest +except (ImportError, AssertionError): + wb = None + +_processed_plots = {} + + +def _log_plots(plots, step): + for name, params in plots.items(): + timestamp = params['timestamp'] + if _processed_plots.get(name, None) != timestamp: + wb.run.log({name.stem: wb.Image(str(name))}, step=step) + _processed_plots[name] = timestamp + + +def on_pretrain_routine_start(trainer): + """Initiate and start project if module is present.""" + wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args)) + + +def on_fit_epoch_end(trainer): + """Logs training metrics and model information at the end of an epoch.""" + wb.run.log(trainer.metrics, step=trainer.epoch + 1) + _log_plots(trainer.plots, step=trainer.epoch + 1) + _log_plots(trainer.validator.plots, step=trainer.epoch + 1) + if trainer.epoch == 0: + wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1) + + +def on_train_epoch_end(trainer): + """Log metrics and save images at the end of each training epoch.""" + wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1) + wb.run.log(trainer.lr, step=trainer.epoch + 1) + if trainer.epoch == 1: + _log_plots(trainer.plots, step=trainer.epoch + 1) + + +def on_train_end(trainer): + """Save the best model as an artifact at end of training.""" + _log_plots(trainer.validator.plots, step=trainer.epoch + 1) + _log_plots(trainer.plots, step=trainer.epoch + 1) + art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model') + if trainer.best.exists(): + art.add_file(trainer.best) + wb.run.log_artifact(art) + + +callbacks = { + 'on_pretrain_routine_start': on_pretrain_routine_start, + 'on_train_epoch_end': on_train_epoch_end, + 'on_fit_epoch_end': on_fit_epoch_end, + 'on_train_end': on_train_end} if wb else {} diff --git a/modules/ultralytics/yolo/utils/checks.py b/modules/ultralytics/yolo/utils/checks.py new file mode 100644 index 0000000000000000000000000000000000000000..a2d571f600dab0b324ff4e606416c3e545eef81e --- /dev/null +++ b/modules/ultralytics/yolo/utils/checks.py @@ -0,0 +1,425 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +import contextlib +import glob +import inspect +import math +import os +import platform +import re +import shutil +import subprocess +from pathlib import Path +from typing import Optional + +import cv2 +import numpy as np +import pkg_resources as pkg +import psutil +import requests +import torch +from matplotlib import font_manager + +from ultralytics.yolo.utils import (AUTOINSTALL, LOGGER, ONLINE, ROOT, USER_CONFIG_DIR, TryExcept, clean_url, colorstr, + downloads, emojis, is_colab, is_docker, is_jupyter, is_kaggle, is_online, + is_pip_package, url2file) + + +def is_ascii(s) -> bool: + """ + Check if a string is composed of only ASCII characters. + + Args: + s (str): String to be checked. + + Returns: + bool: True if the string is composed only of ASCII characters, False otherwise. + """ + # Convert list, tuple, None, etc. to string + s = str(s) + + # Check if the string is composed of only ASCII characters + return all(ord(c) < 128 for c in s) + + +def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0): + """ + Verify image size is a multiple of the given stride in each dimension. If the image size is not a multiple of the + stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value. + + Args: + imgsz (int | cList[int]): Image size. + stride (int): Stride value. + min_dim (int): Minimum number of dimensions. + floor (int): Minimum allowed value for image size. + + Returns: + (List[int]): Updated image size. + """ + # Convert stride to integer if it is a tensor + stride = int(stride.max() if isinstance(stride, torch.Tensor) else stride) + + # Convert image size to list if it is an integer + if isinstance(imgsz, int): + imgsz = [imgsz] + elif isinstance(imgsz, (list, tuple)): + imgsz = list(imgsz) + else: + raise TypeError(f"'imgsz={imgsz}' is of invalid type {type(imgsz).__name__}. " + f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'") + + # Apply max_dim + if len(imgsz) > max_dim: + msg = "'train' and 'val' imgsz must be an integer, while 'predict' and 'export' imgsz may be a [h, w] list " \ + "or an integer, i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'" + if max_dim != 1: + raise ValueError(f'imgsz={imgsz} is not a valid image size. {msg}') + LOGGER.warning(f"WARNING ⚠️ updating to 'imgsz={max(imgsz)}'. {msg}") + imgsz = [max(imgsz)] + # Make image size a multiple of the stride + sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz] + + # Print warning message if image size was updated + if sz != imgsz: + LOGGER.warning(f'WARNING ⚠️ imgsz={imgsz} must be multiple of max stride {stride}, updating to {sz}') + + # Add missing dimensions if necessary + sz = [sz[0], sz[0]] if min_dim == 2 and len(sz) == 1 else sz[0] if min_dim == 1 and len(sz) == 1 else sz + + return sz + + +def check_version(current: str = '0.0.0', + minimum: str = '0.0.0', + name: str = 'version ', + pinned: bool = False, + hard: bool = False, + verbose: bool = False) -> bool: + """ + Check current version against the required minimum version. + + Args: + current (str): Current version. + minimum (str): Required minimum version. + name (str): Name to be used in warning message. + pinned (bool): If True, versions must match exactly. If False, minimum version must be satisfied. + hard (bool): If True, raise an AssertionError if the minimum version is not met. + verbose (bool): If True, print warning message if minimum version is not met. + + Returns: + (bool): True if minimum version is met, False otherwise. + """ + current, minimum = (pkg.parse_version(x) for x in (current, minimum)) + result = (current == minimum) if pinned else (current >= minimum) # bool + warning_message = f'WARNING ⚠️ {name}{minimum} is required by YOLOv8, but {name}{current} is currently installed' + if hard: + assert result, emojis(warning_message) # assert min requirements met + if verbose and not result: + LOGGER.warning(warning_message) + return result + + +def check_latest_pypi_version(package_name='ultralytics'): + """ + Returns the latest version of a PyPI package without downloading or installing it. + + Parameters: + package_name (str): The name of the package to find the latest version for. + + Returns: + (str): The latest version of the package. + """ + with contextlib.suppress(Exception): + requests.packages.urllib3.disable_warnings() # Disable the InsecureRequestWarning + response = requests.get(f'https://pypi.org/pypi/{package_name}/json', timeout=3) + if response.status_code == 200: + return response.json()['info']['version'] + return None + + +def check_pip_update_available(): + """ + Checks if a new version of the ultralytics package is available on PyPI. + + Returns: + (bool): True if an update is available, False otherwise. + """ + if ONLINE and is_pip_package(): + with contextlib.suppress(Exception): + from ultralytics import __version__ + latest = check_latest_pypi_version() + if pkg.parse_version(__version__) < pkg.parse_version(latest): # update is available + LOGGER.info(f'New https://pypi.org/project/ultralytics/{latest} available 😃 ' + f"Update with 'pip install -U ultralytics'") + return True + return False + + +def check_font(font='Arial.ttf'): + """ + Find font locally or download to user's configuration directory if it does not already exist. + + Args: + font (str): Path or name of font. + + Returns: + file (Path): Resolved font file path. + """ + name = Path(font).name + + # Check USER_CONFIG_DIR + file = USER_CONFIG_DIR / name + if file.exists(): + return file + + # Check system fonts + matches = [s for s in font_manager.findSystemFonts() if font in s] + if any(matches): + return matches[0] + + # Download to USER_CONFIG_DIR if missing + url = f'https://ultralytics.com/assets/{name}' + if downloads.is_url(url): + downloads.safe_download(url=url, file=file) + return file + + +def check_python(minimum: str = '3.7.0') -> bool: + """ + Check current python version against the required minimum version. + + Args: + minimum (str): Required minimum version of python. + + Returns: + None + """ + return check_version(platform.python_version(), minimum, name='Python ', hard=True) + + +@TryExcept() +def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=(), install=True, cmds=''): + """ + Check if installed dependencies meet YOLOv8 requirements and attempt to auto-update if needed. + + Args: + requirements (Union[Path, str, List[str]]): Path to a requirements.txt file, a single package requirement as a + string, or a list of package requirements as strings. + exclude (Tuple[str]): Tuple of package names to exclude from checking. + install (bool): If True, attempt to auto-update packages that don't meet requirements. + cmds (str): Additional commands to pass to the pip install command when auto-updating. + """ + prefix = colorstr('red', 'bold', 'requirements:') + check_python() # check python version + file = None + if isinstance(requirements, Path): # requirements.txt file + file = requirements.resolve() + assert file.exists(), f'{prefix} {file} not found, check failed.' + with file.open() as f: + requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude] + elif isinstance(requirements, str): + requirements = [requirements] + + s = '' # console string + n = 0 # number of packages updates + for r in requirements: + try: + pkg.require(r) + except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met + try: # attempt to import (slower but more accurate) + import importlib + importlib.import_module(next(pkg.parse_requirements(r)).name) + except ImportError: + s += f'"{r}" ' + n += 1 + + if s: + if install and AUTOINSTALL: # check environment variable + LOGGER.info(f"{prefix} Ultralytics requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...") + try: + assert is_online(), 'AutoUpdate skipped (offline)' + LOGGER.info(subprocess.check_output(f'pip install --no-cache {s} {cmds}', shell=True).decode()) + s = f"{prefix} {n} package{'s' * (n > 1)} updated per {file or requirements}\n" \ + f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" + LOGGER.info(s) + except Exception as e: + LOGGER.warning(f'{prefix} ❌ {e}') + return False + else: + return False + + return True + + +def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''): + """Check file(s) for acceptable suffix.""" + if file and suffix: + if isinstance(suffix, str): + suffix = (suffix, ) + for f in file if isinstance(file, (list, tuple)) else [file]: + s = Path(f).suffix.lower().strip() # file suffix + if len(s): + assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}, not {s}' + + +def check_yolov5u_filename(file: str, verbose: bool = True): + """Replace legacy YOLOv5 filenames with updated YOLOv5u filenames.""" + if ('yolov3' in file or 'yolov5' in file) and 'u' not in file: + original_file = file + file = re.sub(r'(.*yolov5([nsmlx]))\.pt', '\\1u.pt', file) # i.e. yolov5n.pt -> yolov5nu.pt + file = re.sub(r'(.*yolov5([nsmlx])6)\.pt', '\\1u.pt', file) # i.e. yolov5n6.pt -> yolov5n6u.pt + file = re.sub(r'(.*yolov3(|-tiny|-spp))\.pt', '\\1u.pt', file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt + if file != original_file and verbose: + LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are " + f'trained with https://github.com/ultralytics/ultralytics and feature improved performance vs ' + f'standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n') + return file + + +def check_file(file, suffix='', download=True, hard=True): + """Search/download file (if necessary) and return path.""" + check_suffix(file, suffix) # optional + file = str(file).strip() # convert to string and strip spaces + file = check_yolov5u_filename(file) # yolov5n -> yolov5nu + if not file or ('://' not in file and Path(file).exists()): # exists ('://' check required in Windows Python<3.10) + return file + elif download and file.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')): # download + url = file # warning: Pathlib turns :// -> :/ + file = url2file(file) # '%2F' to '/', split https://url.com/file.txt?auth + if Path(file).exists(): + LOGGER.info(f'Found {clean_url(url)} locally at {file}') # file already exists + else: + downloads.safe_download(url=url, file=file, unzip=False) + return file + else: # search + files = [] + for d in 'models', 'datasets', 'tracker/cfg', 'yolo/cfg': # search directories + files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file + if not files and hard: + raise FileNotFoundError(f"'{file}' does not exist") + elif len(files) > 1 and hard: + raise FileNotFoundError(f"Multiple files match '{file}', specify exact path: {files}") + return files[0] if len(files) else [] # return file + + +def check_yaml(file, suffix=('.yaml', '.yml'), hard=True): + """Search/download YAML file (if necessary) and return path, checking suffix.""" + return check_file(file, suffix, hard=hard) + + +def check_imshow(warn=False): + """Check if environment supports image displays.""" + try: + assert not any((is_colab(), is_kaggle(), is_docker())) + cv2.imshow('test', np.zeros((1, 1, 3))) + cv2.waitKey(1) + cv2.destroyAllWindows() + cv2.waitKey(1) + return True + except Exception as e: + if warn: + LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}') + return False + + +def check_yolo(verbose=True, device=''): + """Return a human-readable YOLO software and hardware summary.""" + from ultralytics.yolo.utils.torch_utils import select_device + + if is_jupyter(): + if check_requirements('wandb', install=False): + os.system('pip uninstall -y wandb') # uninstall wandb: unwanted account creation prompt with infinite hang + if is_colab(): + shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory + + if verbose: + # System info + gib = 1 << 30 # bytes per GiB + ram = psutil.virtual_memory().total + total, used, free = shutil.disk_usage('/') + s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)' + with contextlib.suppress(Exception): # clear display if ipython is installed + from IPython import display + display.clear_output() + else: + s = '' + + select_device(device=device, newline=False) + LOGGER.info(f'Setup complete ✅ {s}') + + +def check_amp(model): + """ + This function checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLOv8 model. + If the checks fail, it means there are anomalies with AMP on the system that may cause NaN losses or zero-mAP + results, so AMP will be disabled during training. + + Args: + model (nn.Module): A YOLOv8 model instance. + + Returns: + (bool): Returns True if the AMP functionality works correctly with YOLOv8 model, else False. + + Raises: + AssertionError: If the AMP checks fail, indicating anomalies with the AMP functionality on the system. + """ + device = next(model.parameters()).device # get model device + if device.type in ('cpu', 'mps'): + return False # AMP only used on CUDA devices + + def amp_allclose(m, im): + """All close FP32 vs AMP results.""" + a = m(im, device=device, verbose=False)[0].boxes.data # FP32 inference + with torch.cuda.amp.autocast(True): + b = m(im, device=device, verbose=False)[0].boxes.data # AMP inference + del m + return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance + + f = ROOT / 'assets/bus.jpg' # image to check + im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if ONLINE else np.ones((640, 640, 3)) + prefix = colorstr('AMP: ') + LOGGER.info(f'{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...') + warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False." + try: + from ultralytics import YOLO + assert amp_allclose(YOLO('yolov8n.pt'), im) + LOGGER.info(f'{prefix}checks passed ✅') + except ConnectionError: + LOGGER.warning(f'{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. {warning_msg}') + except (AttributeError, ModuleNotFoundError): + LOGGER.warning( + f'{prefix}checks skipped ⚠️. Unable to load YOLOv8n due to possible Ultralytics package modifications. {warning_msg}' + ) + except AssertionError: + LOGGER.warning(f'{prefix}checks failed ❌. Anomalies were detected with AMP on your system that may lead to ' + f'NaN losses or zero-mAP results, so AMP will be disabled during training.') + return False + return True + + +def git_describe(path=ROOT): # path must be a directory + # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe + try: + assert (Path(path) / '.git').is_dir() + return subprocess.check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1] + except AssertionError: + return '' + + +def print_args(args: Optional[dict] = None, show_file=True, show_func=False): + """Print function arguments (optional args dict).""" + + def strip_auth(v): + """Clean longer Ultralytics HUB URLs by stripping potential authentication information.""" + return clean_url(v) if (isinstance(v, str) and v.startswith('http') and len(v) > 100) else v + + x = inspect.currentframe().f_back # previous frame + file, _, func, _, _ = inspect.getframeinfo(x) + if args is None: # get args automatically + args, _, _, frm = inspect.getargvalues(x) + args = {k: v for k, v in frm.items() if k in args} + try: + file = Path(file).resolve().relative_to(ROOT).with_suffix('') + except ValueError: + file = Path(file).stem + s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '') + LOGGER.info(colorstr(s) + ', '.join(f'{k}={strip_auth(v)}' for k, v in args.items())) diff --git a/modules/ultralytics/yolo/utils/dist.py b/modules/ultralytics/yolo/utils/dist.py new file mode 100644 index 0000000000000000000000000000000000000000..6de029f5c96ea237d8b9e4fc5f8e1d605f506d35 --- /dev/null +++ b/modules/ultralytics/yolo/utils/dist.py @@ -0,0 +1,67 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import os +import re +import shutil +import socket +import sys +import tempfile +from pathlib import Path + +from . import USER_CONFIG_DIR +from .torch_utils import TORCH_1_9 + + +def find_free_network_port() -> int: + """Finds a free port on localhost. + + It is useful in single-node training when we don't want to connect to a real main node but have to set the + `MASTER_PORT` environment variable. + """ + with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: + s.bind(('127.0.0.1', 0)) + return s.getsockname()[1] # port + + +def generate_ddp_file(trainer): + """Generates a DDP file and returns its file name.""" + module, name = f'{trainer.__class__.__module__}.{trainer.__class__.__name__}'.rsplit('.', 1) + + content = f'''overrides = {vars(trainer.args)} \nif __name__ == "__main__": + from {module} import {name} + from ultralytics.yolo.utils import DEFAULT_CFG_DICT + + cfg = DEFAULT_CFG_DICT.copy() + cfg.update(save_dir='') # handle the extra key 'save_dir' + trainer = {name}(cfg=cfg, overrides=overrides) + trainer.train()''' + (USER_CONFIG_DIR / 'DDP').mkdir(exist_ok=True) + with tempfile.NamedTemporaryFile(prefix='_temp_', + suffix=f'{id(trainer)}.py', + mode='w+', + encoding='utf-8', + dir=USER_CONFIG_DIR / 'DDP', + delete=False) as file: + file.write(content) + return file.name + + +def generate_ddp_command(world_size, trainer): + """Generates and returns command for distributed training.""" + import __main__ # noqa local import to avoid https://github.com/Lightning-AI/lightning/issues/15218 + if not trainer.resume: + shutil.rmtree(trainer.save_dir) # remove the save_dir + file = str(Path(sys.argv[0]).resolve()) + safe_pattern = re.compile(r'^[a-zA-Z0-9_. /\\-]{1,128}$') # allowed characters and maximum of 100 characters + if not (safe_pattern.match(file) and Path(file).exists() and file.endswith('.py')): # using CLI + file = generate_ddp_file(trainer) + dist_cmd = 'torch.distributed.run' if TORCH_1_9 else 'torch.distributed.launch' + port = find_free_network_port() + cmd = [sys.executable, '-m', dist_cmd, '--nproc_per_node', f'{world_size}', '--master_port', f'{port}', file] + return cmd, file + + +def ddp_cleanup(trainer, file): + """Delete temp file if created.""" + if f'{id(trainer)}.py' in file: # if temp_file suffix in file + os.remove(file) diff --git a/modules/ultralytics/yolo/utils/downloads.py b/modules/ultralytics/yolo/utils/downloads.py new file mode 100644 index 0000000000000000000000000000000000000000..c69b18ffb2adbc08225b73b9911ad62dff3f5e5e --- /dev/null +++ b/modules/ultralytics/yolo/utils/downloads.py @@ -0,0 +1,258 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import contextlib +import shutil +import subprocess +from itertools import repeat +from multiprocessing.pool import ThreadPool +from pathlib import Path +from urllib import parse, request +from zipfile import BadZipFile, ZipFile, is_zipfile + +import requests +import torch +from tqdm import tqdm + +from ultralytics.yolo.utils import LOGGER, checks, clean_url, emojis, is_online, url2file + +GITHUB_ASSET_NAMES = [f'yolov8{k}{suffix}.pt' for k in 'nsmlx' for suffix in ('', '6', '-cls', '-seg', '-pose')] + \ + [f'yolov5{k}u.pt' for k in 'nsmlx'] + \ + [f'yolov3{k}u.pt' for k in ('', '-spp', '-tiny')] + \ + [f'sam_{k}.pt' for k in 'bl'] + \ + [f'rtdetr-{k}.pt' for k in 'lx'] +GITHUB_ASSET_STEMS = [Path(k).stem for k in GITHUB_ASSET_NAMES] + + +def is_url(url, check=True): + """Check if string is URL and check if URL exists.""" + with contextlib.suppress(Exception): + url = str(url) + result = parse.urlparse(url) + assert all([result.scheme, result.netloc]) # check if is url + if check: + with request.urlopen(url) as response: + return response.getcode() == 200 # check if exists online + return True + return False + + +def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')): + """ + Unzips a *.zip file to the specified path, excluding files containing strings in the exclude list. + + If the zipfile does not contain a single top-level directory, the function will create a new + directory with the same name as the zipfile (without the extension) to extract its contents. + If a path is not provided, the function will use the parent directory of the zipfile as the default path. + + Args: + file (str): The path to the zipfile to be extracted. + path (str, optional): The path to extract the zipfile to. Defaults to None. + exclude (tuple, optional): A tuple of filename strings to be excluded. Defaults to ('.DS_Store', '__MACOSX'). + + Raises: + BadZipFile: If the provided file does not exist or is not a valid zipfile. + + Returns: + (Path): The path to the directory where the zipfile was extracted. + """ + if not (Path(file).exists() and is_zipfile(file)): + raise BadZipFile(f"File '{file}' does not exist or is a bad zip file.") + if path is None: + path = Path(file).parent # default path + + with ZipFile(file) as zipObj: + file_list = [f for f in zipObj.namelist() if all(x not in f for x in exclude)] + top_level_dirs = {Path(f).parts[0] for f in file_list} + + if len(top_level_dirs) > 1 or not file_list[0].endswith('/'): + path = Path(path) / Path(file).stem # define new unzip directory + + for f in file_list: + zipObj.extract(f, path=path) + + return path # return unzip dir + + +def check_disk_space(url='https://ultralytics.com/assets/coco128.zip', sf=1.5, hard=True): + """ + Check if there is sufficient disk space to download and store a file. + + Args: + url (str, optional): The URL to the file. Defaults to 'https://ultralytics.com/assets/coco128.zip'. + sf (float, optional): Safety factor, the multiplier for the required free space. Defaults to 2.0. + hard (bool, optional): Whether to throw an error or not on insufficient disk space. Defaults to True. + + Returns: + (bool): True if there is sufficient disk space, False otherwise. + """ + with contextlib.suppress(Exception): + gib = 1 << 30 # bytes per GiB + data = int(requests.head(url).headers['Content-Length']) / gib # file size (GB) + total, used, free = (x / gib for x in shutil.disk_usage('/')) # bytes + if data * sf < free: + return True # sufficient space + + # Insufficient space + text = (f'WARNING ⚠️ Insufficient free disk space {free:.1f} GB < {data * sf:.3f} GB required, ' + f'Please free {data * sf - free:.1f} GB additional disk space and try again.') + if hard: + raise MemoryError(text) + else: + LOGGER.warning(text) + return False + + # Pass if error + return True + + +def safe_download(url, + file=None, + dir=None, + unzip=True, + delete=False, + curl=False, + retry=3, + min_bytes=1E0, + progress=True): + """ + Downloads files from a URL, with options for retrying, unzipping, and deleting the downloaded file. + + Args: + url (str): The URL of the file to be downloaded. + file (str, optional): The filename of the downloaded file. + If not provided, the file will be saved with the same name as the URL. + dir (str, optional): The directory to save the downloaded file. + If not provided, the file will be saved in the current working directory. + unzip (bool, optional): Whether to unzip the downloaded file. Default: True. + delete (bool, optional): Whether to delete the downloaded file after unzipping. Default: False. + curl (bool, optional): Whether to use curl command line tool for downloading. Default: False. + retry (int, optional): The number of times to retry the download in case of failure. Default: 3. + min_bytes (float, optional): The minimum number of bytes that the downloaded file should have, to be considered + a successful download. Default: 1E0. + progress (bool, optional): Whether to display a progress bar during the download. Default: True. + """ + f = dir / url2file(url) if dir else Path(file) # URL converted to filename + if '://' not in str(url) and Path(url).is_file(): # URL exists ('://' check required in Windows Python<3.10) + f = Path(url) # filename + elif not f.is_file(): # URL and file do not exist + assert dir or file, 'dir or file required for download' + f = dir / url2file(url) if dir else Path(file) + desc = f'Downloading {clean_url(url)} to {f}' + LOGGER.info(f'{desc}...') + f.parent.mkdir(parents=True, exist_ok=True) # make directory if missing + check_disk_space(url) + for i in range(retry + 1): + try: + if curl or i > 0: # curl download with retry, continue + s = 'sS' * (not progress) # silent + r = subprocess.run(['curl', '-#', f'-{s}L', url, '-o', f, '--retry', '3', '-C', '-']).returncode + assert r == 0, f'Curl return value {r}' + else: # urllib download + method = 'torch' + if method == 'torch': + torch.hub.download_url_to_file(url, f, progress=progress) + else: + from ultralytics.yolo.utils import TQDM_BAR_FORMAT + with request.urlopen(url) as response, tqdm(total=int(response.getheader('Content-Length', 0)), + desc=desc, + disable=not progress, + unit='B', + unit_scale=True, + unit_divisor=1024, + bar_format=TQDM_BAR_FORMAT) as pbar: + with open(f, 'wb') as f_opened: + for data in response: + f_opened.write(data) + pbar.update(len(data)) + + if f.exists(): + if f.stat().st_size > min_bytes: + break # success + f.unlink() # remove partial downloads + except Exception as e: + if i == 0 and not is_online(): + raise ConnectionError(emojis(f'❌ Download failure for {url}. Environment is not online.')) from e + elif i >= retry: + raise ConnectionError(emojis(f'❌ Download failure for {url}. Retry limit reached.')) from e + LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...') + + if unzip and f.exists() and f.suffix in ('', '.zip', '.tar', '.gz'): + unzip_dir = dir or f.parent # unzip to dir if provided else unzip in place + LOGGER.info(f'Unzipping {f} to {unzip_dir}...') + if is_zipfile(f): + unzip_dir = unzip_file(file=f, path=unzip_dir) # unzip + elif f.suffix == '.tar': + subprocess.run(['tar', 'xf', f, '--directory', unzip_dir], check=True) # unzip + elif f.suffix == '.gz': + subprocess.run(['tar', 'xfz', f, '--directory', unzip_dir], check=True) # unzip + if delete: + f.unlink() # remove zip + return unzip_dir + + +def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'): + """Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.2', etc.""" + from ultralytics.yolo.utils import SETTINGS # scoped for circular import + + def github_assets(repository, version='latest'): + """Return GitHub repo tag and assets (i.e. ['yolov8n.pt', 'yolov8s.pt', ...]).""" + if version != 'latest': + version = f'tags/{version}' # i.e. tags/v6.2 + response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api + return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets + + # YOLOv3/5u updates + file = str(file) + file = checks.check_yolov5u_filename(file) + file = Path(file.strip().replace("'", '')) + if file.exists(): + return str(file) + elif (SETTINGS['weights_dir'] / file).exists(): + return str(SETTINGS['weights_dir'] / file) + else: + # URL specified + name = Path(parse.unquote(str(file))).name # decode '%2F' to '/' etc. + if str(file).startswith(('http:/', 'https:/')): # download + url = str(file).replace(':/', '://') # Pathlib turns :// -> :/ + file = url2file(name) # parse authentication https://url.com/file.txt?auth... + if Path(file).is_file(): + LOGGER.info(f'Found {clean_url(url)} locally at {file}') # file already exists + else: + safe_download(url=url, file=file, min_bytes=1E5) + return file + + # GitHub assets + assets = GITHUB_ASSET_NAMES + try: + tag, assets = github_assets(repo, release) + except Exception: + try: + tag, assets = github_assets(repo) # latest release + except Exception: + try: + tag = subprocess.check_output(['git', 'tag']).decode().split()[-1] + except Exception: + tag = release + + file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required) + if name in assets: + safe_download(url=f'https://github.com/{repo}/releases/download/{tag}/{name}', file=file, min_bytes=1E5) + + return str(file) + + +def download(url, dir=Path.cwd(), unzip=True, delete=False, curl=False, threads=1, retry=3): + """Downloads and unzips files concurrently if threads > 1, else sequentially.""" + dir = Path(dir) + dir.mkdir(parents=True, exist_ok=True) # make directory + if threads > 1: + with ThreadPool(threads) as pool: + pool.map( + lambda x: safe_download( + url=x[0], dir=x[1], unzip=unzip, delete=delete, curl=curl, retry=retry, progress=threads <= 1), + zip(url, repeat(dir))) + pool.close() + pool.join() + else: + for u in [url] if isinstance(url, (str, Path)) else url: + safe_download(url=u, dir=dir, unzip=unzip, delete=delete, curl=curl, retry=retry) diff --git a/modules/ultralytics/yolo/utils/errors.py b/modules/ultralytics/yolo/utils/errors.py new file mode 100644 index 0000000000000000000000000000000000000000..7163d4d2576fc78ed25f36bf3a4ec06981ea94e6 --- /dev/null +++ b/modules/ultralytics/yolo/utils/errors.py @@ -0,0 +1,10 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from ultralytics.yolo.utils import emojis + + +class HUBModelError(Exception): + + def __init__(self, message='Model not found. Please check model URL and try again.'): + """Create an exception for when a model is not found.""" + super().__init__(emojis(message)) diff --git a/modules/ultralytics/yolo/utils/files.py b/modules/ultralytics/yolo/utils/files.py new file mode 100644 index 0000000000000000000000000000000000000000..2a13c4eb2bdad8a2ca8672ceb08c39c19ba59679 --- /dev/null +++ b/modules/ultralytics/yolo/utils/files.py @@ -0,0 +1,100 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import contextlib +import glob +import os +import shutil +from datetime import datetime +from pathlib import Path + + +class WorkingDirectory(contextlib.ContextDecorator): + """Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager.""" + + def __init__(self, new_dir): + """Sets the working directory to 'new_dir' upon instantiation.""" + self.dir = new_dir # new dir + self.cwd = Path.cwd().resolve() # current dir + + def __enter__(self): + """Changes the current directory to the specified directory.""" + os.chdir(self.dir) + + def __exit__(self, exc_type, exc_val, exc_tb): + """Restore the current working directory on context exit.""" + os.chdir(self.cwd) + + +def increment_path(path, exist_ok=False, sep='', mkdir=False): + """ + Increments a file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc. + + If the path exists and exist_ok is not set to True, the path will be incremented by appending a number and sep to + the end of the path. If the path is a file, the file extension will be preserved. If the path is a directory, the + number will be appended directly to the end of the path. If mkdir is set to True, the path will be created as a + directory if it does not already exist. + + Args: + path (str, pathlib.Path): Path to increment. + exist_ok (bool, optional): If True, the path will not be incremented and returned as-is. Defaults to False. + sep (str, optional): Separator to use between the path and the incrementation number. Defaults to ''. + mkdir (bool, optional): Create a directory if it does not exist. Defaults to False. + + Returns: + (pathlib.Path): Incremented path. + """ + path = Path(path) # os-agnostic + if path.exists() and not exist_ok: + path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '') + + # Method 1 + for n in range(2, 9999): + p = f'{path}{sep}{n}{suffix}' # increment path + if not os.path.exists(p): # + break + path = Path(p) + + if mkdir: + path.mkdir(parents=True, exist_ok=True) # make directory + + return path + + +def file_age(path=__file__): + """Return days since last file update.""" + dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta + return dt.days # + dt.seconds / 86400 # fractional days + + +def file_date(path=__file__): + """Return human-readable file modification date, i.e. '2021-3-26'.""" + t = datetime.fromtimestamp(Path(path).stat().st_mtime) + return f'{t.year}-{t.month}-{t.day}' + + +def file_size(path): + """Return file/dir size (MB).""" + if isinstance(path, (str, Path)): + mb = 1 << 20 # bytes to MiB (1024 ** 2) + path = Path(path) + if path.is_file(): + return path.stat().st_size / mb + elif path.is_dir(): + return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb + return 0.0 + + +def get_latest_run(search_dir='.'): + """Return path to most recent 'last.pt' in /runs (i.e. to --resume from).""" + last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) + return max(last_list, key=os.path.getctime) if last_list else '' + + +def make_dirs(dir='new_dir/'): + # Create folders + dir = Path(dir) + if dir.exists(): + shutil.rmtree(dir) # delete dir + for p in dir, dir / 'labels', dir / 'images': + p.mkdir(parents=True, exist_ok=True) # make dir + return dir diff --git a/modules/ultralytics/yolo/utils/instance.py b/modules/ultralytics/yolo/utils/instance.py new file mode 100644 index 0000000000000000000000000000000000000000..3566f6e2ea70cc7ac1db46a04a9d1546e3792ac9 --- /dev/null +++ b/modules/ultralytics/yolo/utils/instance.py @@ -0,0 +1,391 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from collections import abc +from itertools import repeat +from numbers import Number +from typing import List + +import numpy as np + +from .ops import ltwh2xywh, ltwh2xyxy, resample_segments, xywh2ltwh, xywh2xyxy, xyxy2ltwh, xyxy2xywh + + +def _ntuple(n): + """From PyTorch internals.""" + + def parse(x): + """Parse bounding boxes format between XYWH and LTWH.""" + return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n)) + + return parse + + +to_4tuple = _ntuple(4) + +# `xyxy` means left top and right bottom +# `xywh` means center x, center y and width, height(yolo format) +# `ltwh` means left top and width, height(coco format) +_formats = ['xyxy', 'xywh', 'ltwh'] + +__all__ = 'Bboxes', # tuple or list + + +class Bboxes: + """Now only numpy is supported.""" + + def __init__(self, bboxes, format='xyxy') -> None: + assert format in _formats, f'Invalid bounding box format: {format}, format must be one of {_formats}' + bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes + assert bboxes.ndim == 2 + assert bboxes.shape[1] == 4 + self.bboxes = bboxes + self.format = format + # self.normalized = normalized + + # def convert(self, format): + # assert format in _formats + # if self.format == format: + # bboxes = self.bboxes + # elif self.format == "xyxy": + # if format == "xywh": + # bboxes = xyxy2xywh(self.bboxes) + # else: + # bboxes = xyxy2ltwh(self.bboxes) + # elif self.format == "xywh": + # if format == "xyxy": + # bboxes = xywh2xyxy(self.bboxes) + # else: + # bboxes = xywh2ltwh(self.bboxes) + # else: + # if format == "xyxy": + # bboxes = ltwh2xyxy(self.bboxes) + # else: + # bboxes = ltwh2xywh(self.bboxes) + # + # return Bboxes(bboxes, format) + + def convert(self, format): + """Converts bounding box format from one type to another.""" + assert format in _formats, f'Invalid bounding box format: {format}, format must be one of {_formats}' + if self.format == format: + return + elif self.format == 'xyxy': + bboxes = xyxy2xywh(self.bboxes) if format == 'xywh' else xyxy2ltwh(self.bboxes) + elif self.format == 'xywh': + bboxes = xywh2xyxy(self.bboxes) if format == 'xyxy' else xywh2ltwh(self.bboxes) + else: + bboxes = ltwh2xyxy(self.bboxes) if format == 'xyxy' else ltwh2xywh(self.bboxes) + self.bboxes = bboxes + self.format = format + + def areas(self): + """Return box areas.""" + self.convert('xyxy') + return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1]) + + # def denormalize(self, w, h): + # if not self.normalized: + # return + # assert (self.bboxes <= 1.0).all() + # self.bboxes[:, 0::2] *= w + # self.bboxes[:, 1::2] *= h + # self.normalized = False + # + # def normalize(self, w, h): + # if self.normalized: + # return + # assert (self.bboxes > 1.0).any() + # self.bboxes[:, 0::2] /= w + # self.bboxes[:, 1::2] /= h + # self.normalized = True + + def mul(self, scale): + """ + Args: + scale (tuple | list | int): the scale for four coords. + """ + if isinstance(scale, Number): + scale = to_4tuple(scale) + assert isinstance(scale, (tuple, list)) + assert len(scale) == 4 + self.bboxes[:, 0] *= scale[0] + self.bboxes[:, 1] *= scale[1] + self.bboxes[:, 2] *= scale[2] + self.bboxes[:, 3] *= scale[3] + + def add(self, offset): + """ + Args: + offset (tuple | list | int): the offset for four coords. + """ + if isinstance(offset, Number): + offset = to_4tuple(offset) + assert isinstance(offset, (tuple, list)) + assert len(offset) == 4 + self.bboxes[:, 0] += offset[0] + self.bboxes[:, 1] += offset[1] + self.bboxes[:, 2] += offset[2] + self.bboxes[:, 3] += offset[3] + + def __len__(self): + """Return the number of boxes.""" + return len(self.bboxes) + + @classmethod + def concatenate(cls, boxes_list: List['Bboxes'], axis=0) -> 'Bboxes': + """ + Concatenate a list of Bboxes objects into a single Bboxes object. + + Args: + boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate. + axis (int, optional): The axis along which to concatenate the bounding boxes. + Defaults to 0. + + Returns: + Bboxes: A new Bboxes object containing the concatenated bounding boxes. + + Note: + The input should be a list or tuple of Bboxes objects. + """ + assert isinstance(boxes_list, (list, tuple)) + if not boxes_list: + return cls(np.empty(0)) + assert all(isinstance(box, Bboxes) for box in boxes_list) + + if len(boxes_list) == 1: + return boxes_list[0] + return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis)) + + def __getitem__(self, index) -> 'Bboxes': + """ + Retrieve a specific bounding box or a set of bounding boxes using indexing. + + Args: + index (int, slice, or np.ndarray): The index, slice, or boolean array to select + the desired bounding boxes. + + Returns: + Bboxes: A new Bboxes object containing the selected bounding boxes. + + Raises: + AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix. + + Note: + When using boolean indexing, make sure to provide a boolean array with the same + length as the number of bounding boxes. + """ + if isinstance(index, int): + return Bboxes(self.bboxes[index].view(1, -1)) + b = self.bboxes[index] + assert b.ndim == 2, f'Indexing on Bboxes with {index} failed to return a matrix!' + return Bboxes(b) + + +class Instances: + + def __init__(self, bboxes, segments=None, keypoints=None, bbox_format='xywh', normalized=True) -> None: + """ + Args: + bboxes (ndarray): bboxes with shape [N, 4]. + segments (list | ndarray): segments. + keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3]. + """ + if segments is None: + segments = [] + self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format) + self.keypoints = keypoints + self.normalized = normalized + + if len(segments) > 0: + # list[np.array(1000, 2)] * num_samples + segments = resample_segments(segments) + # (N, 1000, 2) + segments = np.stack(segments, axis=0) + else: + segments = np.zeros((0, 1000, 2), dtype=np.float32) + self.segments = segments + + def convert_bbox(self, format): + """Convert bounding box format.""" + self._bboxes.convert(format=format) + + @property + def bbox_areas(self): + """Calculate the area of bounding boxes.""" + return self._bboxes.areas() + + def scale(self, scale_w, scale_h, bbox_only=False): + """this might be similar with denormalize func but without normalized sign.""" + self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h)) + if bbox_only: + return + self.segments[..., 0] *= scale_w + self.segments[..., 1] *= scale_h + if self.keypoints is not None: + self.keypoints[..., 0] *= scale_w + self.keypoints[..., 1] *= scale_h + + def denormalize(self, w, h): + """Denormalizes boxes, segments, and keypoints from normalized coordinates.""" + if not self.normalized: + return + self._bboxes.mul(scale=(w, h, w, h)) + self.segments[..., 0] *= w + self.segments[..., 1] *= h + if self.keypoints is not None: + self.keypoints[..., 0] *= w + self.keypoints[..., 1] *= h + self.normalized = False + + def normalize(self, w, h): + """Normalize bounding boxes, segments, and keypoints to image dimensions.""" + if self.normalized: + return + self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h)) + self.segments[..., 0] /= w + self.segments[..., 1] /= h + if self.keypoints is not None: + self.keypoints[..., 0] /= w + self.keypoints[..., 1] /= h + self.normalized = True + + def add_padding(self, padw, padh): + """Handle rect and mosaic situation.""" + assert not self.normalized, 'you should add padding with absolute coordinates.' + self._bboxes.add(offset=(padw, padh, padw, padh)) + self.segments[..., 0] += padw + self.segments[..., 1] += padh + if self.keypoints is not None: + self.keypoints[..., 0] += padw + self.keypoints[..., 1] += padh + + def __getitem__(self, index) -> 'Instances': + """ + Retrieve a specific instance or a set of instances using indexing. + + Args: + index (int, slice, or np.ndarray): The index, slice, or boolean array to select + the desired instances. + + Returns: + Instances: A new Instances object containing the selected bounding boxes, + segments, and keypoints if present. + + Note: + When using boolean indexing, make sure to provide a boolean array with the same + length as the number of instances. + """ + segments = self.segments[index] if len(self.segments) else self.segments + keypoints = self.keypoints[index] if self.keypoints is not None else None + bboxes = self.bboxes[index] + bbox_format = self._bboxes.format + return Instances( + bboxes=bboxes, + segments=segments, + keypoints=keypoints, + bbox_format=bbox_format, + normalized=self.normalized, + ) + + def flipud(self, h): + """Flips the coordinates of bounding boxes, segments, and keypoints vertically.""" + if self._bboxes.format == 'xyxy': + y1 = self.bboxes[:, 1].copy() + y2 = self.bboxes[:, 3].copy() + self.bboxes[:, 1] = h - y2 + self.bboxes[:, 3] = h - y1 + else: + self.bboxes[:, 1] = h - self.bboxes[:, 1] + self.segments[..., 1] = h - self.segments[..., 1] + if self.keypoints is not None: + self.keypoints[..., 1] = h - self.keypoints[..., 1] + + def fliplr(self, w): + """Reverses the order of the bounding boxes and segments horizontally.""" + if self._bboxes.format == 'xyxy': + x1 = self.bboxes[:, 0].copy() + x2 = self.bboxes[:, 2].copy() + self.bboxes[:, 0] = w - x2 + self.bboxes[:, 2] = w - x1 + else: + self.bboxes[:, 0] = w - self.bboxes[:, 0] + self.segments[..., 0] = w - self.segments[..., 0] + if self.keypoints is not None: + self.keypoints[..., 0] = w - self.keypoints[..., 0] + + def clip(self, w, h): + """Clips bounding boxes, segments, and keypoints values to stay within image boundaries.""" + ori_format = self._bboxes.format + self.convert_bbox(format='xyxy') + self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w) + self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h) + if ori_format != 'xyxy': + self.convert_bbox(format=ori_format) + self.segments[..., 0] = self.segments[..., 0].clip(0, w) + self.segments[..., 1] = self.segments[..., 1].clip(0, h) + if self.keypoints is not None: + self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w) + self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h) + + def remove_zero_area_boxes(self): + """Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height. This removes them.""" + good = self.bbox_areas > 0 + if not all(good): + self._bboxes = self._bboxes[good] + if len(self.segments): + self.segments = self.segments[good] + if self.keypoints is not None: + self.keypoints = self.keypoints[good] + return good + + def update(self, bboxes, segments=None, keypoints=None): + """Updates instance variables.""" + self._bboxes = Bboxes(bboxes, format=self._bboxes.format) + if segments is not None: + self.segments = segments + if keypoints is not None: + self.keypoints = keypoints + + def __len__(self): + """Return the length of the instance list.""" + return len(self.bboxes) + + @classmethod + def concatenate(cls, instances_list: List['Instances'], axis=0) -> 'Instances': + """ + Concatenates a list of Instances objects into a single Instances object. + + Args: + instances_list (List[Instances]): A list of Instances objects to concatenate. + axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0. + + Returns: + Instances: A new Instances object containing the concatenated bounding boxes, + segments, and keypoints if present. + + Note: + The `Instances` objects in the list should have the same properties, such as + the format of the bounding boxes, whether keypoints are present, and if the + coordinates are normalized. + """ + assert isinstance(instances_list, (list, tuple)) + if not instances_list: + return cls(np.empty(0)) + assert all(isinstance(instance, Instances) for instance in instances_list) + + if len(instances_list) == 1: + return instances_list[0] + + use_keypoint = instances_list[0].keypoints is not None + bbox_format = instances_list[0]._bboxes.format + normalized = instances_list[0].normalized + + cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis) + cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis) + cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None + return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized) + + @property + def bboxes(self): + """Return bounding boxes.""" + return self._bboxes.bboxes diff --git a/modules/ultralytics/yolo/utils/loss.py b/modules/ultralytics/yolo/utils/loss.py new file mode 100644 index 0000000000000000000000000000000000000000..71ed0a5263df16163173a5fd4f84815c1de3cd57 --- /dev/null +++ b/modules/ultralytics/yolo/utils/loss.py @@ -0,0 +1,392 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ultralytics.yolo.utils.metrics import OKS_SIGMA +from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh +from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors + +from .metrics import bbox_iou +from .tal import bbox2dist + + +class VarifocalLoss(nn.Module): + """Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367.""" + + def __init__(self): + """Initialize the VarifocalLoss class.""" + super().__init__() + + def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0): + """Computes varfocal loss.""" + weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label + with torch.cuda.amp.autocast(enabled=False): + loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') * + weight).mean(1).sum() + return loss + + +# Losses +class FocalLoss(nn.Module): + """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5).""" + + def __init__(self, ): + super().__init__() + + def forward(self, pred, label, gamma=1.5, alpha=0.25): + """Calculates and updates confusion matrix for object detection/classification tasks.""" + loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none') + # p_t = torch.exp(-loss) + # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability + + # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py + pred_prob = pred.sigmoid() # prob from logits + p_t = label * pred_prob + (1 - label) * (1 - pred_prob) + modulating_factor = (1.0 - p_t) ** gamma + loss *= modulating_factor + if alpha > 0: + alpha_factor = label * alpha + (1 - label) * (1 - alpha) + loss *= alpha_factor + return loss.mean(1).sum() + + +class BboxLoss(nn.Module): + + def __init__(self, reg_max, use_dfl=False): + """Initialize the BboxLoss module with regularization maximum and DFL settings.""" + super().__init__() + self.reg_max = reg_max + self.use_dfl = use_dfl + + def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask): + """IoU loss.""" + weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1) + iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True) + loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum + + # DFL loss + if self.use_dfl: + target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max) + loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight + loss_dfl = loss_dfl.sum() / target_scores_sum + else: + loss_dfl = torch.tensor(0.0).to(pred_dist.device) + + return loss_iou, loss_dfl + + @staticmethod + def _df_loss(pred_dist, target): + """Return sum of left and right DFL losses.""" + # Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 + tl = target.long() # target left + tr = tl + 1 # target right + wl = tr - target # weight left + wr = 1 - wl # weight right + return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl + + F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True) + + +class KeypointLoss(nn.Module): + + def __init__(self, sigmas) -> None: + super().__init__() + self.sigmas = sigmas + + def forward(self, pred_kpts, gt_kpts, kpt_mask, area): + """Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints.""" + d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2 + kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9) + # e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula + e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval + return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean() + + +# Criterion class for computing Detection training losses +class v8DetectionLoss: + + def __init__(self, model): # model must be de-paralleled + + device = next(model.parameters()).device # get model device + h = model.args # hyperparameters + + m = model.model[-1] # Detect() module + self.bce = nn.BCEWithLogitsLoss(reduction='none') + self.hyp = h + self.stride = m.stride # model strides + self.nc = m.nc # number of classes + self.no = m.no + self.reg_max = m.reg_max + self.device = device + + self.use_dfl = m.reg_max > 1 + + self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0) + self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device) + self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device) + + def preprocess(self, targets, batch_size, scale_tensor): + """Preprocesses the target counts and matches with the input batch size to output a tensor.""" + if targets.shape[0] == 0: + out = torch.zeros(batch_size, 0, 5, device=self.device) + else: + i = targets[:, 0] # image index + _, counts = i.unique(return_counts=True) + counts = counts.to(dtype=torch.int32) + out = torch.zeros(batch_size, counts.max(), 5, device=self.device) + for j in range(batch_size): + matches = i == j + n = matches.sum() + if n: + out[j, :n] = targets[matches, 1:] + out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor)) + return out + + def bbox_decode(self, anchor_points, pred_dist): + """Decode predicted object bounding box coordinates from anchor points and distribution.""" + if self.use_dfl: + b, a, c = pred_dist.shape # batch, anchors, channels + pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype)) + # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype)) + # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2) + return dist2bbox(pred_dist, anchor_points, xywh=False) + + def __call__(self, preds, batch): + """Calculate the sum of the loss for box, cls and dfl multiplied by batch size.""" + loss = torch.zeros(3, device=self.device) # box, cls, dfl + feats = preds[1] if isinstance(preds, tuple) else preds + pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( + (self.reg_max * 4, self.nc), 1) + + pred_scores = pred_scores.permute(0, 2, 1).contiguous() + pred_distri = pred_distri.permute(0, 2, 1).contiguous() + + dtype = pred_scores.dtype + batch_size = pred_scores.shape[0] + imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) + anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) + + # targets + targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1) + targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) + gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy + mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) + + # pboxes + pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) + + _, target_bboxes, target_scores, fg_mask, _ = self.assigner( + pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), + anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) + + target_scores_sum = max(target_scores.sum(), 1) + + # cls loss + # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way + loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE + + # bbox loss + if fg_mask.sum(): + target_bboxes /= stride_tensor + loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, + target_scores_sum, fg_mask) + + loss[0] *= self.hyp.box # box gain + loss[1] *= self.hyp.cls # cls gain + loss[2] *= self.hyp.dfl # dfl gain + + return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) + + +# Criterion class for computing training losses +class v8SegmentationLoss(v8DetectionLoss): + + def __init__(self, model): # model must be de-paralleled + super().__init__(model) + self.nm = model.model[-1].nm # number of masks + self.overlap = model.args.overlap_mask + + def __call__(self, preds, batch): + """Calculate and return the loss for the YOLO model.""" + loss = torch.zeros(4, device=self.device) # box, cls, dfl + feats, pred_masks, proto = preds if len(preds) == 3 else preds[1] + batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width + pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( + (self.reg_max * 4, self.nc), 1) + + # b, grids, .. + pred_scores = pred_scores.permute(0, 2, 1).contiguous() + pred_distri = pred_distri.permute(0, 2, 1).contiguous() + pred_masks = pred_masks.permute(0, 2, 1).contiguous() + + dtype = pred_scores.dtype + imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) + anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) + + # targets + try: + batch_idx = batch['batch_idx'].view(-1, 1) + targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1) + targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) + gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy + mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) + except RuntimeError as e: + raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n' + "This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, " + "i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a " + "correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' " + 'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e + + # pboxes + pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) + + _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner( + pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), + anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) + + target_scores_sum = max(target_scores.sum(), 1) + + # cls loss + # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way + loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE + + if fg_mask.sum(): + # bbox loss + loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor, + target_scores, target_scores_sum, fg_mask) + # masks loss + masks = batch['masks'].to(self.device).float() + if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample + masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0] + + for i in range(batch_size): + if fg_mask[i].sum(): + mask_idx = target_gt_idx[i][fg_mask[i]] + if self.overlap: + gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0) + else: + gt_mask = masks[batch_idx.view(-1) == i][mask_idx] + xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]] + marea = xyxy2xywh(xyxyn)[:, 2:].prod(1) + mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device) + loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea) # seg + + # WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove + else: + loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss + + # WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove + else: + loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss + + loss[0] *= self.hyp.box # box gain + loss[1] *= self.hyp.box / batch_size # seg gain + loss[2] *= self.hyp.cls # cls gain + loss[3] *= self.hyp.dfl # dfl gain + + return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) + + def single_mask_loss(self, gt_mask, pred, proto, xyxy, area): + """Mask loss for one image.""" + pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80) + loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none') + return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean() + + +# Criterion class for computing training losses +class v8PoseLoss(v8DetectionLoss): + + def __init__(self, model): # model must be de-paralleled + super().__init__(model) + self.kpt_shape = model.model[-1].kpt_shape + self.bce_pose = nn.BCEWithLogitsLoss() + is_pose = self.kpt_shape == [17, 3] + nkpt = self.kpt_shape[0] # number of keypoints + sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt + self.keypoint_loss = KeypointLoss(sigmas=sigmas) + + def __call__(self, preds, batch): + """Calculate the total loss and detach it.""" + loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility + feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1] + pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( + (self.reg_max * 4, self.nc), 1) + + # b, grids, .. + pred_scores = pred_scores.permute(0, 2, 1).contiguous() + pred_distri = pred_distri.permute(0, 2, 1).contiguous() + pred_kpts = pred_kpts.permute(0, 2, 1).contiguous() + + dtype = pred_scores.dtype + imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) + anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) + + # targets + batch_size = pred_scores.shape[0] + batch_idx = batch['batch_idx'].view(-1, 1) + targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1) + targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) + gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy + mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) + + # pboxes + pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) + pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3) + + _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner( + pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), + anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) + + target_scores_sum = max(target_scores.sum(), 1) + + # cls loss + # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way + loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE + + # bbox loss + if fg_mask.sum(): + target_bboxes /= stride_tensor + loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, + target_scores_sum, fg_mask) + keypoints = batch['keypoints'].to(self.device).float().clone() + keypoints[..., 0] *= imgsz[1] + keypoints[..., 1] *= imgsz[0] + for i in range(batch_size): + if fg_mask[i].sum(): + idx = target_gt_idx[i][fg_mask[i]] + gt_kpt = keypoints[batch_idx.view(-1) == i][idx] # (n, 51) + gt_kpt[..., 0] /= stride_tensor[fg_mask[i]] + gt_kpt[..., 1] /= stride_tensor[fg_mask[i]] + area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True) + pred_kpt = pred_kpts[i][fg_mask[i]] + kpt_mask = gt_kpt[..., 2] != 0 + loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss + # kpt_score loss + if pred_kpt.shape[-1] == 3: + loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss + + loss[0] *= self.hyp.box # box gain + loss[1] *= self.hyp.pose / batch_size # pose gain + loss[2] *= self.hyp.kobj / batch_size # kobj gain + loss[3] *= self.hyp.cls # cls gain + loss[4] *= self.hyp.dfl # dfl gain + + return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) + + def kpts_decode(self, anchor_points, pred_kpts): + """Decodes predicted keypoints to image coordinates.""" + y = pred_kpts.clone() + y[..., :2] *= 2.0 + y[..., 0] += anchor_points[:, [0]] - 0.5 + y[..., 1] += anchor_points[:, [1]] - 0.5 + return y + + +class v8ClassificationLoss: + + def __call__(self, preds, batch): + """Compute the classification loss between predictions and true labels.""" + loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64 + loss_items = loss.detach() + return loss, loss_items diff --git a/modules/ultralytics/yolo/utils/metrics.py b/modules/ultralytics/yolo/utils/metrics.py new file mode 100644 index 0000000000000000000000000000000000000000..cd903213feb85e8e2dd517194c30f10a26bac359 --- /dev/null +++ b/modules/ultralytics/yolo/utils/metrics.py @@ -0,0 +1,977 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Model validation metrics +""" +import math +import warnings +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np +import torch + +from ultralytics.yolo.utils import LOGGER, SimpleClass, TryExcept, plt_settings + +OKS_SIGMA = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0 + + +# Boxes +def box_area(box): + """Return box area, where box shape is xyxy(4,n).""" + return (box[2] - box[0]) * (box[3] - box[1]) + + +def bbox_ioa(box1, box2, eps=1e-7): + """ + Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format. + + Args: + box1 (np.array): A numpy array of shape (n, 4) representing n bounding boxes. + box2 (np.array): A numpy array of shape (m, 4) representing m bounding boxes. + eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. + + Returns: + (np.array): A numpy array of shape (n, m) representing the intersection over box2 area. + """ + + # Get the coordinates of bounding boxes + b1_x1, b1_y1, b1_x2, b1_y2 = box1.T + b2_x1, b2_y1, b2_x2, b2_y2 = box2.T + + # Intersection area + inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \ + (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0) + + # box2 area + box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps + + # Intersection over box2 area + return inter_area / box2_area + + +def box_iou(box1, box2, eps=1e-7): + """ + Calculate intersection-over-union (IoU) of boxes. + Both sets of boxes are expected to be in (x1, y1, x2, y2) format. + Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py + + Args: + box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes. + box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes. + eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. + + Returns: + (torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2. + """ + + # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) + (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2) + inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2) + + # IoU = inter / (area1 + area2 - inter) + return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps) + + +def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): + """ + Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4). + + Args: + box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4). + box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4). + xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in + (x1, y1, x2, y2) format. Defaults to True. + GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False. + DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False. + CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False. + eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. + + Returns: + (torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags. + """ + + # Get the coordinates of bounding boxes + if xywh: # transform from xywh to xyxy + (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) + w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 + b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ + b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ + else: # x1, y1, x2, y2 = box1 + b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) + b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) + w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps + w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps + + # Intersection area + inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \ + (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0) + + # Union Area + union = w1 * h1 + w2 * h2 - inter + eps + + # IoU + iou = inter / union + if CIoU or DIoU or GIoU: + cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width + ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height + if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 + c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared + rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 + if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 + v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) + with torch.no_grad(): + alpha = v / (v - iou + (1 + eps)) + return iou - (rho2 / c2 + v * alpha) # CIoU + return iou - rho2 / c2 # DIoU + c_area = cw * ch + eps # convex area + return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf + return iou # IoU + + +def mask_iou(mask1, mask2, eps=1e-7): + """ + Calculate masks IoU. + + Args: + mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the + product of image width and height. + mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the + product of image width and height. + eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. + + Returns: + (torch.Tensor): A tensor of shape (N, M) representing masks IoU. + """ + intersection = torch.matmul(mask1, mask2.T).clamp_(0) + union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection + return intersection / (union + eps) + + +def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7): + """ + Calculate Object Keypoint Similarity (OKS). + + Args: + kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints. + kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints. + area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth. + sigma (list): A list containing 17 values representing keypoint scales. + eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. + + Returns: + (torch.Tensor): A tensor of shape (N, M) representing keypoint similarities. + """ + d = (kpt1[:, None, :, 0] - kpt2[..., 0]) ** 2 + (kpt1[:, None, :, 1] - kpt2[..., 1]) ** 2 # (N, M, 17) + sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype) # (17, ) + kpt_mask = kpt1[..., 2] != 0 # (N, 17) + e = d / (2 * sigma) ** 2 / (area[:, None, None] + eps) / 2 # from cocoeval + # e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2 # from formula + return (torch.exp(-e) * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps) + + +def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 + # return positive, negative label smoothing BCE targets + return 1.0 - 0.5 * eps, 0.5 * eps + + +class ConfusionMatrix: + """ + A class for calculating and updating a confusion matrix for object detection and classification tasks. + + Attributes: + task (str): The type of task, either 'detect' or 'classify'. + matrix (np.array): The confusion matrix, with dimensions depending on the task. + nc (int): The number of classes. + conf (float): The confidence threshold for detections. + iou_thres (float): The Intersection over Union threshold. + """ + + def __init__(self, nc, conf=0.25, iou_thres=0.45, task='detect'): + """Initialize attributes for the YOLO model.""" + self.task = task + self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc)) + self.nc = nc # number of classes + self.conf = conf + self.iou_thres = iou_thres + + def process_cls_preds(self, preds, targets): + """ + Update confusion matrix for classification task + + Args: + preds (Array[N, min(nc,5)]): Predicted class labels. + targets (Array[N, 1]): Ground truth class labels. + """ + preds, targets = torch.cat(preds)[:, 0], torch.cat(targets) + for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()): + self.matrix[p][t] += 1 + + def process_batch(self, detections, labels): + """ + Update confusion matrix for object detection task. + + Args: + detections (Array[N, 6]): Detected bounding boxes and their associated information. + Each row should contain (x1, y1, x2, y2, conf, class). + labels (Array[M, 5]): Ground truth bounding boxes and their associated class labels. + Each row should contain (class, x1, y1, x2, y2). + """ + if detections is None: + gt_classes = labels.int() + for gc in gt_classes: + self.matrix[self.nc, gc] += 1 # background FN + return + + detections = detections[detections[:, 4] > self.conf] + gt_classes = labels[:, 0].int() + detection_classes = detections[:, 5].int() + iou = box_iou(labels[:, 1:], detections[:, :4]) + + x = torch.where(iou > self.iou_thres) + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + else: + matches = np.zeros((0, 3)) + + n = matches.shape[0] > 0 + m0, m1, _ = matches.transpose().astype(int) + for i, gc in enumerate(gt_classes): + j = m0 == i + if n and sum(j) == 1: + self.matrix[detection_classes[m1[j]], gc] += 1 # correct + else: + self.matrix[self.nc, gc] += 1 # true background + + if n: + for i, dc in enumerate(detection_classes): + if not any(m1 == i): + self.matrix[dc, self.nc] += 1 # predicted background + + def matrix(self): + """Returns the confusion matrix.""" + return self.matrix + + def tp_fp(self): + """Returns true positives and false positives.""" + tp = self.matrix.diagonal() # true positives + fp = self.matrix.sum(1) - tp # false positives + # fn = self.matrix.sum(0) - tp # false negatives (missed detections) + return (tp[:-1], fp[:-1]) if self.task == 'detect' else (tp, fp) # remove background class if task=detect + + @TryExcept('WARNING ⚠️ ConfusionMatrix plot failure') + @plt_settings() + def plot(self, normalize=True, save_dir='', names=(), on_plot=None): + """ + Plot the confusion matrix using seaborn and save it to a file. + + Args: + normalize (bool): Whether to normalize the confusion matrix. + save_dir (str): Directory where the plot will be saved. + names (tuple): Names of classes, used as labels on the plot. + on_plot (func): An optional callback to pass plots path and data when they are rendered. + """ + import seaborn as sn + + array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns + array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) + + fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True) + nc, nn = self.nc, len(names) # number of classes, names + sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size + labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels + ticklabels = (list(names) + ['background']) if labels else 'auto' + with warnings.catch_warnings(): + warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered + sn.heatmap(array, + ax=ax, + annot=nc < 30, + annot_kws={ + 'size': 8}, + cmap='Blues', + fmt='.2f' if normalize else '.0f', + square=True, + vmin=0.0, + xticklabels=ticklabels, + yticklabels=ticklabels).set_facecolor((1, 1, 1)) + title = 'Confusion Matrix' + ' Normalized' * normalize + ax.set_xlabel('True') + ax.set_ylabel('Predicted') + ax.set_title(title) + plot_fname = Path(save_dir) / f'{title.lower().replace(" ", "_")}.png' + fig.savefig(plot_fname, dpi=250) + plt.close(fig) + if on_plot: + on_plot(plot_fname) + + def print(self): + """ + Print the confusion matrix to the console. + """ + for i in range(self.nc + 1): + LOGGER.info(' '.join(map(str, self.matrix[i]))) + + +def smooth(y, f=0.05): + """Box filter of fraction f.""" + nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd) + p = np.ones(nf // 2) # ones padding + yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded + return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed + + +@plt_settings() +def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=(), on_plot=None): + """Plots a precision-recall curve.""" + fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) + py = np.stack(py, axis=1) + + if 0 < len(names) < 21: # display per-class legend if < 21 classes + for i, y in enumerate(py.T): + ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) + else: + ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) + + ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) + ax.set_xlabel('Recall') + ax.set_ylabel('Precision') + ax.set_xlim(0, 1) + ax.set_ylim(0, 1) + ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left') + ax.set_title('Precision-Recall Curve') + fig.savefig(save_dir, dpi=250) + plt.close(fig) + if on_plot: + on_plot(save_dir) + + +@plt_settings() +def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric', on_plot=None): + """Plots a metric-confidence curve.""" + fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) + + if 0 < len(names) < 21: # display per-class legend if < 21 classes + for i, y in enumerate(py): + ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) + else: + ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) + + y = smooth(py.mean(0), 0.05) + ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') + ax.set_xlabel(xlabel) + ax.set_ylabel(ylabel) + ax.set_xlim(0, 1) + ax.set_ylim(0, 1) + ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left') + ax.set_title(f'{ylabel}-Confidence Curve') + fig.savefig(save_dir, dpi=250) + plt.close(fig) + if on_plot: + on_plot(save_dir) + + +def compute_ap(recall, precision): + """ + Compute the average precision (AP) given the recall and precision curves. + + Arguments: + recall (list): The recall curve. + precision (list): The precision curve. + + Returns: + (float): Average precision. + (np.ndarray): Precision envelope curve. + (np.ndarray): Modified recall curve with sentinel values added at the beginning and end. + """ + + # Append sentinel values to beginning and end + mrec = np.concatenate(([0.0], recall, [1.0])) + mpre = np.concatenate(([1.0], precision, [0.0])) + + # Compute the precision envelope + mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) + + # Integrate area under curve + method = 'interp' # methods: 'continuous', 'interp' + if method == 'interp': + x = np.linspace(0, 1, 101) # 101-point interp (COCO) + ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate + else: # 'continuous' + i = np.where(mrec[1:] != mrec[:-1])[0] # points where x-axis (recall) changes + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve + + return ap, mpre, mrec + + +def ap_per_class(tp, + conf, + pred_cls, + target_cls, + plot=False, + on_plot=None, + save_dir=Path(), + names=(), + eps=1e-16, + prefix=''): + """ + Computes the average precision per class for object detection evaluation. + + Args: + tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False). + conf (np.ndarray): Array of confidence scores of the detections. + pred_cls (np.ndarray): Array of predicted classes of the detections. + target_cls (np.ndarray): Array of true classes of the detections. + plot (bool, optional): Whether to plot PR curves or not. Defaults to False. + on_plot (func, optional): A callback to pass plots path and data when they are rendered. Defaults to None. + save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path. + names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple. + eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16. + prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string. + + Returns: + (tuple): A tuple of six arrays and one array of unique classes, where: + tp (np.ndarray): True positive counts for each class. + fp (np.ndarray): False positive counts for each class. + p (np.ndarray): Precision values at each confidence threshold. + r (np.ndarray): Recall values at each confidence threshold. + f1 (np.ndarray): F1-score values at each confidence threshold. + ap (np.ndarray): Average precision for each class at different IoU thresholds. + unique_classes (np.ndarray): An array of unique classes that have data. + + """ + + # Sort by objectness + i = np.argsort(-conf) + tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] + + # Find unique classes + unique_classes, nt = np.unique(target_cls, return_counts=True) + nc = unique_classes.shape[0] # number of classes, number of detections + + # Create Precision-Recall curve and compute AP for each class + px, py = np.linspace(0, 1, 1000), [] # for plotting + ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) + for ci, c in enumerate(unique_classes): + i = pred_cls == c + n_l = nt[ci] # number of labels + n_p = i.sum() # number of predictions + if n_p == 0 or n_l == 0: + continue + + # Accumulate FPs and TPs + fpc = (1 - tp[i]).cumsum(0) + tpc = tp[i].cumsum(0) + + # Recall + recall = tpc / (n_l + eps) # recall curve + r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases + + # Precision + precision = tpc / (tpc + fpc) # precision curve + p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score + + # AP from recall-precision curve + for j in range(tp.shape[1]): + ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) + if plot and j == 0: + py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 + + # Compute F1 (harmonic mean of precision and recall) + f1 = 2 * p * r / (p + r + eps) + names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data + names = dict(enumerate(names)) # to dict + if plot: + plot_pr_curve(px, py, ap, save_dir / f'{prefix}PR_curve.png', names, on_plot=on_plot) + plot_mc_curve(px, f1, save_dir / f'{prefix}F1_curve.png', names, ylabel='F1', on_plot=on_plot) + plot_mc_curve(px, p, save_dir / f'{prefix}P_curve.png', names, ylabel='Precision', on_plot=on_plot) + plot_mc_curve(px, r, save_dir / f'{prefix}R_curve.png', names, ylabel='Recall', on_plot=on_plot) + + i = smooth(f1.mean(0), 0.1).argmax() # max F1 index + p, r, f1 = p[:, i], r[:, i], f1[:, i] + tp = (r * nt).round() # true positives + fp = (tp / (p + eps) - tp).round() # false positives + return tp, fp, p, r, f1, ap, unique_classes.astype(int) + + +class Metric(SimpleClass): + """ + Class for computing evaluation metrics for YOLOv8 model. + + Attributes: + p (list): Precision for each class. Shape: (nc,). + r (list): Recall for each class. Shape: (nc,). + f1 (list): F1 score for each class. Shape: (nc,). + all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10). + ap_class_index (list): Index of class for each AP score. Shape: (nc,). + nc (int): Number of classes. + + Methods: + ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or []. + ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or []. + mp(): Mean precision of all classes. Returns: Float. + mr(): Mean recall of all classes. Returns: Float. + map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float. + map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float. + map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float. + mean_results(): Mean of results, returns mp, mr, map50, map. + class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i]. + maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,). + fitness(): Model fitness as a weighted combination of metrics. Returns: Float. + update(results): Update metric attributes with new evaluation results. + + """ + + def __init__(self) -> None: + self.p = [] # (nc, ) + self.r = [] # (nc, ) + self.f1 = [] # (nc, ) + self.all_ap = [] # (nc, 10) + self.ap_class_index = [] # (nc, ) + self.nc = 0 + + @property + def ap50(self): + """ + Returns the Average Precision (AP) at an IoU threshold of 0.5 for all classes. + + Returns: + (np.ndarray, list): Array of shape (nc,) with AP50 values per class, or an empty list if not available. + """ + return self.all_ap[:, 0] if len(self.all_ap) else [] + + @property + def ap(self): + """ + Returns the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes. + + Returns: + (np.ndarray, list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available. + """ + return self.all_ap.mean(1) if len(self.all_ap) else [] + + @property + def mp(self): + """ + Returns the Mean Precision of all classes. + + Returns: + (float): The mean precision of all classes. + """ + return self.p.mean() if len(self.p) else 0.0 + + @property + def mr(self): + """ + Returns the Mean Recall of all classes. + + Returns: + (float): The mean recall of all classes. + """ + return self.r.mean() if len(self.r) else 0.0 + + @property + def map50(self): + """ + Returns the mean Average Precision (mAP) at an IoU threshold of 0.5. + + Returns: + (float): The mAP50 at an IoU threshold of 0.5. + """ + return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0 + + @property + def map75(self): + """ + Returns the mean Average Precision (mAP) at an IoU threshold of 0.75. + + Returns: + (float): The mAP50 at an IoU threshold of 0.75. + """ + return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0 + + @property + def map(self): + """ + Returns the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05. + + Returns: + (float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05. + """ + return self.all_ap.mean() if len(self.all_ap) else 0.0 + + def mean_results(self): + """Mean of results, return mp, mr, map50, map.""" + return [self.mp, self.mr, self.map50, self.map] + + def class_result(self, i): + """class-aware result, return p[i], r[i], ap50[i], ap[i].""" + return self.p[i], self.r[i], self.ap50[i], self.ap[i] + + @property + def maps(self): + """mAP of each class.""" + maps = np.zeros(self.nc) + self.map + for i, c in enumerate(self.ap_class_index): + maps[c] = self.ap[i] + return maps + + def fitness(self): + """Model fitness as a weighted combination of metrics.""" + w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] + return (np.array(self.mean_results()) * w).sum() + + def update(self, results): + """ + Args: + results (tuple): A tuple of (p, r, ap, f1, ap_class) + """ + self.p, self.r, self.f1, self.all_ap, self.ap_class_index = results + + +class DetMetrics(SimpleClass): + """ + This class is a utility class for computing detection metrics such as precision, recall, and mean average precision + (mAP) of an object detection model. + + Args: + save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory. + plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False. + on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None. + names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple. + + Attributes: + save_dir (Path): A path to the directory where the output plots will be saved. + plot (bool): A flag that indicates whether to plot the precision-recall curves for each class. + on_plot (func): An optional callback to pass plots path and data when they are rendered. + names (tuple of str): A tuple of strings that represents the names of the classes. + box (Metric): An instance of the Metric class for storing the results of the detection metrics. + speed (dict): A dictionary for storing the execution time of different parts of the detection process. + + Methods: + process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions. + keys: Returns a list of keys for accessing the computed detection metrics. + mean_results: Returns a list of mean values for the computed detection metrics. + class_result(i): Returns a list of values for the computed detection metrics for a specific class. + maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds. + fitness: Computes the fitness score based on the computed detection metrics. + ap_class_index: Returns a list of class indices sorted by their average precision (AP) values. + results_dict: Returns a dictionary that maps detection metric keys to their computed values. + """ + + def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None: + self.save_dir = save_dir + self.plot = plot + self.on_plot = on_plot + self.names = names + self.box = Metric() + self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} + + def process(self, tp, conf, pred_cls, target_cls): + """Process predicted results for object detection and update metrics.""" + results = ap_per_class(tp, + conf, + pred_cls, + target_cls, + plot=self.plot, + save_dir=self.save_dir, + names=self.names, + on_plot=self.on_plot)[2:] + self.box.nc = len(self.names) + self.box.update(results) + + @property + def keys(self): + """Returns a list of keys for accessing specific metrics.""" + return ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)'] + + def mean_results(self): + """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95.""" + return self.box.mean_results() + + def class_result(self, i): + """Return the result of evaluating the performance of an object detection model on a specific class.""" + return self.box.class_result(i) + + @property + def maps(self): + """Returns mean Average Precision (mAP) scores per class.""" + return self.box.maps + + @property + def fitness(self): + """Returns the fitness of box object.""" + return self.box.fitness() + + @property + def ap_class_index(self): + """Returns the average precision index per class.""" + return self.box.ap_class_index + + @property + def results_dict(self): + """Returns dictionary of computed performance metrics and statistics.""" + return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness])) + + +class SegmentMetrics(SimpleClass): + """ + Calculates and aggregates detection and segmentation metrics over a given set of classes. + + Args: + save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory. + plot (bool): Whether to save the detection and segmentation plots. Default is False. + on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None. + names (list): List of class names. Default is an empty list. + + Attributes: + save_dir (Path): Path to the directory where the output plots should be saved. + plot (bool): Whether to save the detection and segmentation plots. + on_plot (func): An optional callback to pass plots path and data when they are rendered. + names (list): List of class names. + box (Metric): An instance of the Metric class to calculate box detection metrics. + seg (Metric): An instance of the Metric class to calculate mask segmentation metrics. + speed (dict): Dictionary to store the time taken in different phases of inference. + + Methods: + process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions. + mean_results(): Returns the mean of the detection and segmentation metrics over all the classes. + class_result(i): Returns the detection and segmentation metrics of class `i`. + maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95. + fitness: Returns the fitness scores, which are a single weighted combination of metrics. + ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP). + results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score. + """ + + def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None: + self.save_dir = save_dir + self.plot = plot + self.on_plot = on_plot + self.names = names + self.box = Metric() + self.seg = Metric() + self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} + + def process(self, tp_b, tp_m, conf, pred_cls, target_cls): + """ + Processes the detection and segmentation metrics over the given set of predictions. + + Args: + tp_b (list): List of True Positive boxes. + tp_m (list): List of True Positive masks. + conf (list): List of confidence scores. + pred_cls (list): List of predicted classes. + target_cls (list): List of target classes. + """ + + results_mask = ap_per_class(tp_m, + conf, + pred_cls, + target_cls, + plot=self.plot, + on_plot=self.on_plot, + save_dir=self.save_dir, + names=self.names, + prefix='Mask')[2:] + self.seg.nc = len(self.names) + self.seg.update(results_mask) + results_box = ap_per_class(tp_b, + conf, + pred_cls, + target_cls, + plot=self.plot, + on_plot=self.on_plot, + save_dir=self.save_dir, + names=self.names, + prefix='Box')[2:] + self.box.nc = len(self.names) + self.box.update(results_box) + + @property + def keys(self): + """Returns a list of keys for accessing metrics.""" + return [ + 'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)', + 'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)'] + + def mean_results(self): + """Return the mean metrics for bounding box and segmentation results.""" + return self.box.mean_results() + self.seg.mean_results() + + def class_result(self, i): + """Returns classification results for a specified class index.""" + return self.box.class_result(i) + self.seg.class_result(i) + + @property + def maps(self): + """Returns mAP scores for object detection and semantic segmentation models.""" + return self.box.maps + self.seg.maps + + @property + def fitness(self): + """Get the fitness score for both segmentation and bounding box models.""" + return self.seg.fitness() + self.box.fitness() + + @property + def ap_class_index(self): + """Boxes and masks have the same ap_class_index.""" + return self.box.ap_class_index + + @property + def results_dict(self): + """Returns results of object detection model for evaluation.""" + return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness])) + + +class PoseMetrics(SegmentMetrics): + """ + Calculates and aggregates detection and pose metrics over a given set of classes. + + Args: + save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory. + plot (bool): Whether to save the detection and segmentation plots. Default is False. + on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None. + names (list): List of class names. Default is an empty list. + + Attributes: + save_dir (Path): Path to the directory where the output plots should be saved. + plot (bool): Whether to save the detection and segmentation plots. + on_plot (func): An optional callback to pass plots path and data when they are rendered. + names (list): List of class names. + box (Metric): An instance of the Metric class to calculate box detection metrics. + pose (Metric): An instance of the Metric class to calculate mask segmentation metrics. + speed (dict): Dictionary to store the time taken in different phases of inference. + + Methods: + process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions. + mean_results(): Returns the mean of the detection and segmentation metrics over all the classes. + class_result(i): Returns the detection and segmentation metrics of class `i`. + maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95. + fitness: Returns the fitness scores, which are a single weighted combination of metrics. + ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP). + results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score. + """ + + def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None: + super().__init__(save_dir, plot, names) + self.save_dir = save_dir + self.plot = plot + self.on_plot = on_plot + self.names = names + self.box = Metric() + self.pose = Metric() + self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} + + def __getattr__(self, attr): + """Raises an AttributeError if an invalid attribute is accessed.""" + name = self.__class__.__name__ + raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") + + def process(self, tp_b, tp_p, conf, pred_cls, target_cls): + """ + Processes the detection and pose metrics over the given set of predictions. + + Args: + tp_b (list): List of True Positive boxes. + tp_p (list): List of True Positive keypoints. + conf (list): List of confidence scores. + pred_cls (list): List of predicted classes. + target_cls (list): List of target classes. + """ + + results_pose = ap_per_class(tp_p, + conf, + pred_cls, + target_cls, + plot=self.plot, + on_plot=self.on_plot, + save_dir=self.save_dir, + names=self.names, + prefix='Pose')[2:] + self.pose.nc = len(self.names) + self.pose.update(results_pose) + results_box = ap_per_class(tp_b, + conf, + pred_cls, + target_cls, + plot=self.plot, + on_plot=self.on_plot, + save_dir=self.save_dir, + names=self.names, + prefix='Box')[2:] + self.box.nc = len(self.names) + self.box.update(results_box) + + @property + def keys(self): + """Returns list of evaluation metric keys.""" + return [ + 'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)', + 'metrics/precision(P)', 'metrics/recall(P)', 'metrics/mAP50(P)', 'metrics/mAP50-95(P)'] + + def mean_results(self): + """Return the mean results of box and pose.""" + return self.box.mean_results() + self.pose.mean_results() + + def class_result(self, i): + """Return the class-wise detection results for a specific class i.""" + return self.box.class_result(i) + self.pose.class_result(i) + + @property + def maps(self): + """Returns the mean average precision (mAP) per class for both box and pose detections.""" + return self.box.maps + self.pose.maps + + @property + def fitness(self): + """Computes classification metrics and speed using the `targets` and `pred` inputs.""" + return self.pose.fitness() + self.box.fitness() + + +class ClassifyMetrics(SimpleClass): + """ + Class for computing classification metrics including top-1 and top-5 accuracy. + + Attributes: + top1 (float): The top-1 accuracy. + top5 (float): The top-5 accuracy. + speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline. + + Properties: + fitness (float): The fitness of the model, which is equal to top-5 accuracy. + results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness. + keys (List[str]): A list of keys for the results_dict. + + Methods: + process(targets, pred): Processes the targets and predictions to compute classification metrics. + """ + + def __init__(self) -> None: + self.top1 = 0 + self.top5 = 0 + self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} + + def process(self, targets, pred): + """Target classes and predicted classes.""" + pred, targets = torch.cat(pred), torch.cat(targets) + correct = (targets[:, None] == pred).float() + acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy + self.top1, self.top5 = acc.mean(0).tolist() + + @property + def fitness(self): + """Returns top-5 accuracy as fitness score.""" + return self.top5 + + @property + def results_dict(self): + """Returns a dictionary with model's performance metrics and fitness score.""" + return dict(zip(self.keys + ['fitness'], [self.top1, self.top5, self.fitness])) + + @property + def keys(self): + """Returns a list of keys for the results_dict property.""" + return ['metrics/accuracy_top1', 'metrics/accuracy_top5'] diff --git a/modules/ultralytics/yolo/utils/ops.py b/modules/ultralytics/yolo/utils/ops.py new file mode 100644 index 0000000000000000000000000000000000000000..6270ca6d78a0375da42b6542467d0ec8c2aab3bd --- /dev/null +++ b/modules/ultralytics/yolo/utils/ops.py @@ -0,0 +1,712 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import contextlib +import math +import re +import time + +import cv2 +import numpy as np +import torch +import torch.nn.functional as F +import torchvision + +from ultralytics.yolo.utils import LOGGER + +from .metrics import box_iou + + +class Profile(contextlib.ContextDecorator): + """ + YOLOv8 Profile class. + Usage: as a decorator with @Profile() or as a context manager with 'with Profile():' + """ + + def __init__(self, t=0.0): + """ + Initialize the Profile class. + + Args: + t (float): Initial time. Defaults to 0.0. + """ + self.t = t + self.cuda = torch.cuda.is_available() + + def __enter__(self): + """ + Start timing. + """ + self.start = self.time() + return self + + def __exit__(self, type, value, traceback): + """ + Stop timing. + """ + self.dt = self.time() - self.start # delta-time + self.t += self.dt # accumulate dt + + def time(self): + """ + Get current time. + """ + if self.cuda: + torch.cuda.synchronize() + return time.time() + + +def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) + # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ + # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') + # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') + # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco + # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet + return [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, + 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] + + +def segment2box(segment, width=640, height=640): + """ + Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) + + Args: + segment (torch.Tensor): the segment label + width (int): the width of the image. Defaults to 640 + height (int): The height of the image. Defaults to 640 + + Returns: + (np.ndarray): the minimum and maximum x and y values of the segment. + """ + # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) + x, y = segment.T # segment xy + inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) + x, y, = x[inside], y[inside] + return np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype) if any(x) else np.zeros( + 4, dtype=segment.dtype) # xyxy + + +def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None): + """ + Rescales bounding boxes (in the format of xyxy) from the shape of the image they were originally specified in + (img1_shape) to the shape of a different image (img0_shape). + + Args: + img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width). + boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2) + img0_shape (tuple): the shape of the target image, in the format of (height, width). + ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be + calculated based on the size difference between the two images. + + Returns: + boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2) + """ + if ratio_pad is None: # calculate from img0_shape + gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new + pad = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1), round( + (img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1) # wh padding + else: + gain = ratio_pad[0][0] + pad = ratio_pad[1] + + boxes[..., [0, 2]] -= pad[0] # x padding + boxes[..., [1, 3]] -= pad[1] # y padding + boxes[..., :4] /= gain + clip_boxes(boxes, img0_shape) + return boxes + + +def make_divisible(x, divisor): + """ + Returns the nearest number that is divisible by the given divisor. + + Args: + x (int): The number to make divisible. + divisor (int | torch.Tensor): The divisor. + + Returns: + (int): The nearest number divisible by the divisor. + """ + if isinstance(divisor, torch.Tensor): + divisor = int(divisor.max()) # to int + return math.ceil(x / divisor) * divisor + + +def non_max_suppression( + prediction, + conf_thres=0.25, + iou_thres=0.45, + classes=None, + agnostic=False, + multi_label=False, + labels=(), + max_det=300, + nc=0, # number of classes (optional) + max_time_img=0.05, + max_nms=30000, + max_wh=7680, +): + """ + Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box. + + Arguments: + prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes) + containing the predicted boxes, classes, and masks. The tensor should be in the format + output by a model, such as YOLO. + conf_thres (float): The confidence threshold below which boxes will be filtered out. + Valid values are between 0.0 and 1.0. + iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS. + Valid values are between 0.0 and 1.0. + classes (List[int]): A list of class indices to consider. If None, all classes will be considered. + agnostic (bool): If True, the model is agnostic to the number of classes, and all + classes will be considered as one. + multi_label (bool): If True, each box may have multiple labels. + labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner + list contains the apriori labels for a given image. The list should be in the format + output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2). + max_det (int): The maximum number of boxes to keep after NMS. + nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks. + max_time_img (float): The maximum time (seconds) for processing one image. + max_nms (int): The maximum number of boxes into torchvision.ops.nms(). + max_wh (int): The maximum box width and height in pixels + + Returns: + (List[torch.Tensor]): A list of length batch_size, where each element is a tensor of + shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns + (x1, y1, x2, y2, confidence, class, mask1, mask2, ...). + """ + + # Checks + assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' + assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' + if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out) + prediction = prediction[0] # select only inference output + + device = prediction.device + mps = 'mps' in device.type # Apple MPS + if mps: # MPS not fully supported yet, convert tensors to CPU before NMS + prediction = prediction.cpu() + bs = prediction.shape[0] # batch size + nc = nc or (prediction.shape[1] - 4) # number of classes + nm = prediction.shape[1] - nc - 4 + mi = 4 + nc # mask start index + xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates + + # Settings + # min_wh = 2 # (pixels) minimum box width and height + time_limit = 0.5 + max_time_img * bs # seconds to quit after + redundant = True # require redundant detections + multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) + merge = False # use merge-NMS + + t = time.time() + output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs + for xi, x in enumerate(prediction): # image index, image inference + # Apply constraints + # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height + x = x.transpose(0, -1)[xc[xi]] # confidence + + # Cat apriori labels if autolabelling + if labels and len(labels[xi]): + lb = labels[xi] + v = torch.zeros((len(lb), nc + nm + 5), device=x.device) + v[:, :4] = lb[:, 1:5] # box + v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls + x = torch.cat((x, v), 0) + + # If none remain process next image + if not x.shape[0]: + continue + + # Detections matrix nx6 (xyxy, conf, cls) + box, cls, mask = x.split((4, nc, nm), 1) + box = xywh2xyxy(box) # center_x, center_y, width, height) to (x1, y1, x2, y2) + if multi_label: + i, j = (cls > conf_thres).nonzero(as_tuple=False).T + x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1) + else: # best class only + conf, j = cls.max(1, keepdim=True) + x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres] + + # Filter by class + if classes is not None: + x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] + + # Apply finite constraint + # if not torch.isfinite(x).all(): + # x = x[torch.isfinite(x).all(1)] + + # Check shape + n = x.shape[0] # number of boxes + if not n: # no boxes + continue + x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes + + # Batched NMS + c = x[:, 5:6] * (0 if agnostic else max_wh) # classes + boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores + i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS + i = i[:max_det] # limit detections + if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) + # Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) + iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix + weights = iou * scores[None] # box weights + x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes + if redundant: + i = i[iou.sum(1) > 1] # require redundancy + + output[xi] = x[i] + if mps: + output[xi] = output[xi].to(device) + if (time.time() - t) > time_limit: + LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded') + break # time limit exceeded + + return output + + +def clip_boxes(boxes, shape): + """ + It takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the + shape + + Args: + boxes (torch.Tensor): the bounding boxes to clip + shape (tuple): the shape of the image + """ + if isinstance(boxes, torch.Tensor): # faster individually + boxes[..., 0].clamp_(0, shape[1]) # x1 + boxes[..., 1].clamp_(0, shape[0]) # y1 + boxes[..., 2].clamp_(0, shape[1]) # x2 + boxes[..., 3].clamp_(0, shape[0]) # y2 + else: # np.array (faster grouped) + boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2 + boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2 + + +def clip_coords(coords, shape): + """ + Clip line coordinates to the image boundaries. + + Args: + coords (torch.Tensor | numpy.ndarray): A list of line coordinates. + shape (tuple): A tuple of integers representing the size of the image in the format (height, width). + + Returns: + (None): The function modifies the input `coordinates` in place, by clipping each coordinate to the image boundaries. + """ + if isinstance(coords, torch.Tensor): # faster individually + coords[..., 0].clamp_(0, shape[1]) # x + coords[..., 1].clamp_(0, shape[0]) # y + else: # np.array (faster grouped) + coords[..., 0] = coords[..., 0].clip(0, shape[1]) # x + coords[..., 1] = coords[..., 1].clip(0, shape[0]) # y + + +def scale_image(masks, im0_shape, ratio_pad=None): + """ + Takes a mask, and resizes it to the original image size + + Args: + masks (torch.Tensor): resized and padded masks/images, [h, w, num]/[h, w, 3]. + im0_shape (tuple): the original image shape + ratio_pad (tuple): the ratio of the padding to the original image. + + Returns: + masks (torch.Tensor): The masks that are being returned. + """ + # Rescale coordinates (xyxy) from im1_shape to im0_shape + im1_shape = masks.shape + if im1_shape[:2] == im0_shape[:2]: + return masks + if ratio_pad is None: # calculate from im0_shape + gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new + pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding + else: + gain = ratio_pad[0][0] + pad = ratio_pad[1] + top, left = int(pad[1]), int(pad[0]) # y, x + bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0]) + + if len(masks.shape) < 2: + raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}') + masks = masks[top:bottom, left:right] + # masks = masks.permute(2, 0, 1).contiguous() + # masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0] + # masks = masks.permute(1, 2, 0).contiguous() + cv_limit = 512 + if masks.shape[2] <= cv_limit: + masks = cv2.resize(masks, (im0_shape[1], im0_shape[0])) + else: + # split masks array on batches with max size 512 along channel axis, resize and merge them back + masks = np.concatenate([cv2.resize(masks[:, :, i:min(i + cv_limit, masks.shape[2])], (im0_shape[1], im0_shape[0])) + for i in range(0, masks.shape[2], cv_limit)], axis=2) + if len(masks.shape) == 2: + masks = masks[:, :, None] + + return masks + + +def xyxy2xywh(x): + """ + Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format. + + Args: + x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format. + Returns: + y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format. + """ + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center + y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center + y[..., 2] = x[..., 2] - x[..., 0] # width + y[..., 3] = x[..., 3] - x[..., 1] # height + return y + + +def xywh2xyxy(x): + """ + Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the + top-left corner and (x2, y2) is the bottom-right corner. + + Args: + x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format. + Returns: + y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format. + """ + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x + y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y + y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x + y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y + return y + + +def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): + """ + Convert normalized bounding box coordinates to pixel coordinates. + + Args: + x (np.ndarray | torch.Tensor): The bounding box coordinates. + w (int): Width of the image. Defaults to 640 + h (int): Height of the image. Defaults to 640 + padw (int): Padding width. Defaults to 0 + padh (int): Padding height. Defaults to 0 + Returns: + y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where + x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box. + """ + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x + y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y + y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x + y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y + return y + + +def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): + """ + Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format. + x, y, width and height are normalized to image dimensions + + Args: + x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format. + w (int): The width of the image. Defaults to 640 + h (int): The height of the image. Defaults to 640 + clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False + eps (float): The minimum value of the box's width and height. Defaults to 0.0 + Returns: + y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format + """ + if clip: + clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center + y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center + y[..., 2] = (x[..., 2] - x[..., 0]) / w # width + y[..., 3] = (x[..., 3] - x[..., 1]) / h # height + return y + + +def xyn2xy(x, w=640, h=640, padw=0, padh=0): + """ + Convert normalized coordinates to pixel coordinates of shape (n,2) + + Args: + x (np.ndarray | torch.Tensor): The input tensor of normalized bounding box coordinates + w (int): The width of the image. Defaults to 640 + h (int): The height of the image. Defaults to 640 + padw (int): The width of the padding. Defaults to 0 + padh (int): The height of the padding. Defaults to 0 + Returns: + y (np.ndarray | torch.Tensor): The x and y coordinates of the top left corner of the bounding box + """ + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[..., 0] = w * x[..., 0] + padw # top left x + y[..., 1] = h * x[..., 1] + padh # top left y + return y + + +def xywh2ltwh(x): + """ + Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates. + + Args: + x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format + Returns: + y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format + """ + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x + y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y + return y + + +def xyxy2ltwh(x): + """ + Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right + + Args: + x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format + Returns: + y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format. + """ + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 2] = x[:, 2] - x[:, 0] # width + y[:, 3] = x[:, 3] - x[:, 1] # height + return y + + +def ltwh2xywh(x): + """ + Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center + + Args: + x (torch.Tensor): the input tensor + """ + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = x[:, 0] + x[:, 2] / 2 # center x + y[:, 1] = x[:, 1] + x[:, 3] / 2 # center y + return y + + +def ltwh2xyxy(x): + """ + It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + + Args: + x (np.ndarray | torch.Tensor): the input image + + Returns: + y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes. + """ + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 2] = x[:, 2] + x[:, 0] # width + y[:, 3] = x[:, 3] + x[:, 1] # height + return y + + +def segments2boxes(segments): + """ + It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) + + Args: + segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates + + Returns: + (np.ndarray): the xywh coordinates of the bounding boxes. + """ + boxes = [] + for s in segments: + x, y = s.T # segment xy + boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy + return xyxy2xywh(np.array(boxes)) # cls, xywh + + +def resample_segments(segments, n=1000): + """ + Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each. + + Args: + segments (list): a list of (n,2) arrays, where n is the number of points in the segment. + n (int): number of points to resample the segment to. Defaults to 1000 + + Returns: + segments (list): the resampled segments. + """ + for i, s in enumerate(segments): + s = np.concatenate((s, s[0:1, :]), axis=0) + x = np.linspace(0, len(s) - 1, n) + xp = np.arange(len(s)) + segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)], + dtype=np.float32).reshape(2, -1).T # segment xy + return segments + + +def crop_mask(masks, boxes): + """ + It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box + + Args: + masks (torch.Tensor): [h, w, n] tensor of masks + boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form + + Returns: + (torch.Tensor): The masks are being cropped to the bounding box. + """ + n, h, w = masks.shape + x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(n,1,1) + r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,1,w) + c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(1,h,1) + + return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2)) + + +def process_mask_upsample(protos, masks_in, bboxes, shape): + """ + It takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher + quality but is slower. + + Args: + protos (torch.Tensor): [mask_dim, mask_h, mask_w] + masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms + bboxes (torch.Tensor): [n, 4], n is number of masks after nms + shape (tuple): the size of the input image (h,w) + + Returns: + (torch.Tensor): The upsampled masks. + """ + c, mh, mw = protos.shape # CHW + masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) + masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW + masks = crop_mask(masks, bboxes) # CHW + return masks.gt_(0.5) + + +def process_mask(protos, masks_in, bboxes, shape, upsample=False): + """ + Apply masks to bounding boxes using the output of the mask head. + + Args: + protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w]. + masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS. + bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS. + shape (tuple): A tuple of integers representing the size of the input image in the format (h, w). + upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False. + + Returns: + (torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w + are the height and width of the input image. The mask is applied to the bounding boxes. + """ + + c, mh, mw = protos.shape # CHW + ih, iw = shape + masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW + + downsampled_bboxes = bboxes.clone() + downsampled_bboxes[:, 0] *= mw / iw + downsampled_bboxes[:, 2] *= mw / iw + downsampled_bboxes[:, 3] *= mh / ih + downsampled_bboxes[:, 1] *= mh / ih + + masks = crop_mask(masks, downsampled_bboxes) # CHW + if upsample: + masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW + return masks.gt_(0.5) + + +def process_mask_native(protos, masks_in, bboxes, shape): + """ + It takes the output of the mask head, and crops it after upsampling to the bounding boxes. + + Args: + protos (torch.Tensor): [mask_dim, mask_h, mask_w] + masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms + bboxes (torch.Tensor): [n, 4], n is number of masks after nms + shape (tuple): the size of the input image (h,w) + + Returns: + masks (torch.Tensor): The returned masks with dimensions [h, w, n] + """ + c, mh, mw = protos.shape # CHW + masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) + gain = min(mh / shape[0], mw / shape[1]) # gain = old / new + pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding + top, left = int(pad[1]), int(pad[0]) # y, x + bottom, right = int(mh - pad[1]), int(mw - pad[0]) + masks = masks[:, top:bottom, left:right] + + masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW + masks = crop_mask(masks, bboxes) # CHW + return masks.gt_(0.5) + + +def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False): + """ + Rescale segment coordinates (xyxy) from img1_shape to img0_shape + + Args: + img1_shape (tuple): The shape of the image that the coords are from. + coords (torch.Tensor): the coords to be scaled + img0_shape (tuple): the shape of the image that the segmentation is being applied to + ratio_pad (tuple): the ratio of the image size to the padded image size. + normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False + + Returns: + coords (torch.Tensor): the segmented image. + """ + if ratio_pad is None: # calculate from img0_shape + gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new + pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding + else: + gain = ratio_pad[0][0] + pad = ratio_pad[1] + + coords[..., 0] -= pad[0] # x padding + coords[..., 1] -= pad[1] # y padding + coords[..., 0] /= gain + coords[..., 1] /= gain + clip_coords(coords, img0_shape) + if normalize: + coords[..., 0] /= img0_shape[1] # width + coords[..., 1] /= img0_shape[0] # height + return coords + + +def masks2segments(masks, strategy='largest'): + """ + It takes a list of masks(n,h,w) and returns a list of segments(n,xy) + + Args: + masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160) + strategy (str): 'concat' or 'largest'. Defaults to largest + + Returns: + segments (List): list of segment masks + """ + segments = [] + for x in masks.int().cpu().numpy().astype('uint8'): + c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] + if c: + if strategy == 'concat': # concatenate all segments + c = np.concatenate([x.reshape(-1, 2) for x in c]) + elif strategy == 'largest': # select largest segment + c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2) + else: + c = np.zeros((0, 2)) # no segments found + segments.append(c.astype('float32')) + return segments + + +def clean_str(s): + """ + Cleans a string by replacing special characters with underscore _ + + Args: + s (str): a string needing special characters replaced + + Returns: + (str): a string with special characters replaced by an underscore _ + """ + return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s) diff --git a/modules/ultralytics/yolo/utils/patches.py b/modules/ultralytics/yolo/utils/patches.py new file mode 100644 index 0000000000000000000000000000000000000000..2b023b9072f99f590b8f9082bb8bff900e66ab00 --- /dev/null +++ b/modules/ultralytics/yolo/utils/patches.py @@ -0,0 +1,45 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +""" +Monkey patches to update/extend functionality of existing functions +""" + +from pathlib import Path + +import cv2 +import numpy as np +import torch + +# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------ +_imshow = cv2.imshow # copy to avoid recursion errors + + +def imread(filename, flags=cv2.IMREAD_COLOR): + return cv2.imdecode(np.fromfile(filename, np.uint8), flags) + + +def imwrite(filename, img): + try: + cv2.imencode(Path(filename).suffix, img)[1].tofile(filename) + return True + except Exception: + return False + + +def imshow(path, im): + _imshow(path.encode('unicode_escape').decode(), im) + + +# PyTorch functions ---------------------------------------------------------------------------------------------------- +_torch_save = torch.save # copy to avoid recursion errors + + +def torch_save(*args, **kwargs): + # Use dill (if exists) to serialize the lambda functions where pickle does not do this + try: + import dill as pickle + except ImportError: + import pickle + + if 'pickle_module' not in kwargs: + kwargs['pickle_module'] = pickle + return _torch_save(*args, **kwargs) diff --git a/modules/ultralytics/yolo/utils/plotting.py b/modules/ultralytics/yolo/utils/plotting.py new file mode 100644 index 0000000000000000000000000000000000000000..9061ca1d72c9fa882fba2c117467dbce70754bf7 --- /dev/null +++ b/modules/ultralytics/yolo/utils/plotting.py @@ -0,0 +1,514 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import contextlib +import math +from pathlib import Path + +import cv2 +import matplotlib.pyplot as plt +import numpy as np +import torch +from PIL import Image, ImageDraw, ImageFont +from PIL import __version__ as pil_version +from scipy.ndimage import gaussian_filter1d + +from ultralytics.yolo.utils import LOGGER, TryExcept, plt_settings, threaded + +from .checks import check_font, check_version, is_ascii +from .files import increment_path +from .ops import clip_boxes, scale_image, xywh2xyxy, xyxy2xywh + + +class Colors: + # Ultralytics color palette https://ultralytics.com/ + def __init__(self): + """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values().""" + hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', + '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') + self.palette = [self.hex2rgb(f'#{c}') for c in hexs] + self.n = len(self.palette) + self.pose_palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255], + [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255], + [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102], + [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]], + dtype=np.uint8) + + def __call__(self, i, bgr=False): + """Converts hex color codes to rgb values.""" + c = self.palette[int(i) % self.n] + return (c[2], c[1], c[0]) if bgr else c + + @staticmethod + def hex2rgb(h): # rgb order (PIL) + return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) + + +colors = Colors() # create instance for 'from utils.plots import colors' + + +class Annotator: + # YOLOv8 Annotator for train/val mosaics and jpgs and detect/hub inference annotations + def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): + """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs.""" + assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' + non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic + self.pil = pil or non_ascii + if self.pil: # use PIL + self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) + self.draw = ImageDraw.Draw(self.im) + try: + font = check_font('Arial.Unicode.ttf' if non_ascii else font) + size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12) + self.font = ImageFont.truetype(str(font), size) + except Exception: + self.font = ImageFont.load_default() + # Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string) + if check_version(pil_version, '9.2.0'): + self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height + else: # use cv2 + self.im = im + self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width + # Pose + self.skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9], + [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]] + + self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]] + self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]] + + def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): + """Add one xyxy box to image with label.""" + if isinstance(box, torch.Tensor): + box = box.tolist() + if self.pil or not is_ascii(label): + self.draw.rectangle(box, width=self.lw, outline=color) # box + if label: + w, h = self.font.getsize(label) # text width, height + outside = box[1] - h >= 0 # label fits outside box + self.draw.rectangle( + (box[0], box[1] - h if outside else box[1], box[0] + w + 1, + box[1] + 1 if outside else box[1] + h + 1), + fill=color, + ) + # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0 + self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) + else: # cv2 + p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) + cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) + if label: + tf = max(self.lw - 1, 1) # font thickness + w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height + outside = p1[1] - h >= 3 + p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 + cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled + cv2.putText(self.im, + label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), + 0, + self.lw / 3, + txt_color, + thickness=tf, + lineType=cv2.LINE_AA) + + def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False): + """Plot masks at once. + Args: + masks (tensor): predicted masks on cuda, shape: [n, h, w] + colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n] + im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1] + alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque + """ + if self.pil: + # Convert to numpy first + self.im = np.asarray(self.im).copy() + if len(masks) == 0: + self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 + if im_gpu.device != masks.device: + im_gpu = im_gpu.to(masks.device) + colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 # shape(n,3) + colors = colors[:, None, None] # shape(n,1,1,3) + masks = masks.unsqueeze(3) # shape(n,h,w,1) + masks_color = masks * (colors * alpha) # shape(n,h,w,3) + + inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1) + mcs = masks_color.max(dim=0).values # shape(n,h,w,3) + + im_gpu = im_gpu.flip(dims=[0]) # flip channel + im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3) + im_gpu = im_gpu * inv_alph_masks[-1] + mcs + im_mask = (im_gpu * 255) + im_mask_np = im_mask.byte().cpu().numpy() + self.im[:] = im_mask_np if retina_masks else scale_image(im_mask_np, self.im.shape) + if self.pil: + # Convert im back to PIL and update draw + self.fromarray(self.im) + + def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True): + """Plot keypoints on the image. + + Args: + kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence). + shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width. + radius (int, optional): Radius of the drawn keypoints. Default is 5. + kpt_line (bool, optional): If True, the function will draw lines connecting keypoints + for human pose. Default is True. + + Note: `kpt_line=True` currently only supports human pose plotting. + """ + if self.pil: + # Convert to numpy first + self.im = np.asarray(self.im).copy() + nkpt, ndim = kpts.shape + is_pose = nkpt == 17 and ndim == 3 + kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting + for i, k in enumerate(kpts): + color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i) + x_coord, y_coord = k[0], k[1] + if x_coord % shape[1] != 0 and y_coord % shape[0] != 0: + if len(k) == 3: + conf = k[2] + if conf < 0.5: + continue + cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA) + + if kpt_line: + ndim = kpts.shape[-1] + for i, sk in enumerate(self.skeleton): + pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1])) + pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1])) + if ndim == 3: + conf1 = kpts[(sk[0] - 1), 2] + conf2 = kpts[(sk[1] - 1), 2] + if conf1 < 0.5 or conf2 < 0.5: + continue + if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0: + continue + if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0: + continue + cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA) + if self.pil: + # Convert im back to PIL and update draw + self.fromarray(self.im) + + def rectangle(self, xy, fill=None, outline=None, width=1): + """Add rectangle to image (PIL-only).""" + self.draw.rectangle(xy, fill, outline, width) + + def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False): + """Adds text to an image using PIL or cv2.""" + if anchor == 'bottom': # start y from font bottom + w, h = self.font.getsize(text) # text width, height + xy[1] += 1 - h + if self.pil: + if box_style: + w, h = self.font.getsize(text) + self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color) + # Using `txt_color` for background and draw fg with white color + txt_color = (255, 255, 255) + self.draw.text(xy, text, fill=txt_color, font=self.font) + else: + if box_style: + tf = max(self.lw - 1, 1) # font thickness + w, h = cv2.getTextSize(text, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height + outside = xy[1] - h >= 3 + p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3 + cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled + # Using `txt_color` for background and draw fg with white color + txt_color = (255, 255, 255) + tf = max(self.lw - 1, 1) # font thickness + cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA) + + def fromarray(self, im): + """Update self.im from a numpy array.""" + self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) + self.draw = ImageDraw.Draw(self.im) + + def result(self): + """Return annotated image as array.""" + return np.asarray(self.im) + + +@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395 +@plt_settings() +def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None): + """Save and plot image with no axis or spines.""" + import pandas as pd + import seaborn as sn + + # Plot dataset labels + LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") + b = boxes.transpose() # classes, boxes + nc = int(cls.max() + 1) # number of classes + x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) + + # Seaborn correlogram + sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) + plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) + plt.close() + + # Matplotlib labels + ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() + y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) + with contextlib.suppress(Exception): # color histogram bars by class + [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195 + ax[0].set_ylabel('instances') + if 0 < len(names) < 30: + ax[0].set_xticks(range(len(names))) + ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10) + else: + ax[0].set_xlabel('classes') + sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) + sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) + + # Rectangles + boxes[:, 0:2] = 0.5 # center + boxes = xywh2xyxy(boxes) * 1000 + img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255) + for cls, box in zip(cls[:500], boxes[:500]): + ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot + ax[1].imshow(img) + ax[1].axis('off') + + for a in [0, 1, 2, 3]: + for s in ['top', 'right', 'left', 'bottom']: + ax[a].spines[s].set_visible(False) + + fname = save_dir / 'labels.jpg' + plt.savefig(fname, dpi=200) + plt.close() + if on_plot: + on_plot(fname) + + +def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True): + """Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.""" + b = xyxy2xywh(xyxy.view(-1, 4)) # boxes + if square: + b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square + b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad + xyxy = xywh2xyxy(b).long() + clip_boxes(xyxy, im.shape) + crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] + if save: + file.parent.mkdir(parents=True, exist_ok=True) # make directory + f = str(increment_path(file).with_suffix('.jpg')) + # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue + Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB + return crop + + +@threaded +def plot_images(images, + batch_idx, + cls, + bboxes=np.zeros(0, dtype=np.float32), + masks=np.zeros(0, dtype=np.uint8), + kpts=np.zeros((0, 51), dtype=np.float32), + paths=None, + fname='images.jpg', + names=None, + on_plot=None): + # Plot image grid with labels + if isinstance(images, torch.Tensor): + images = images.cpu().float().numpy() + if isinstance(cls, torch.Tensor): + cls = cls.cpu().numpy() + if isinstance(bboxes, torch.Tensor): + bboxes = bboxes.cpu().numpy() + if isinstance(masks, torch.Tensor): + masks = masks.cpu().numpy().astype(int) + if isinstance(kpts, torch.Tensor): + kpts = kpts.cpu().numpy() + if isinstance(batch_idx, torch.Tensor): + batch_idx = batch_idx.cpu().numpy() + + max_size = 1920 # max image size + max_subplots = 16 # max image subplots, i.e. 4x4 + bs, _, h, w = images.shape # batch size, _, height, width + bs = min(bs, max_subplots) # limit plot images + ns = np.ceil(bs ** 0.5) # number of subplots (square) + if np.max(images[0]) <= 1: + images *= 255 # de-normalise (optional) + + # Build Image + mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init + for i, im in enumerate(images): + if i == max_subplots: # if last batch has fewer images than we expect + break + x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin + im = im.transpose(1, 2, 0) + mosaic[y:y + h, x:x + w, :] = im + + # Resize (optional) + scale = max_size / ns / max(h, w) + if scale < 1: + h = math.ceil(scale * h) + w = math.ceil(scale * w) + mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) + + # Annotate + fs = int((h + w) * ns * 0.01) # font size + annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) + for i in range(i + 1): + x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin + annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders + if paths: + annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames + if len(cls) > 0: + idx = batch_idx == i + classes = cls[idx].astype('int') + + if len(bboxes): + boxes = xywh2xyxy(bboxes[idx, :4]).T + labels = bboxes.shape[1] == 4 # labels if no conf column + conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred) + + if boxes.shape[1]: + if boxes.max() <= 1.01: # if normalized with tolerance 0.01 + boxes[[0, 2]] *= w # scale to pixels + boxes[[1, 3]] *= h + elif scale < 1: # absolute coords need scale if image scales + boxes *= scale + boxes[[0, 2]] += x + boxes[[1, 3]] += y + for j, box in enumerate(boxes.T.tolist()): + c = classes[j] + color = colors(c) + c = names.get(c, c) if names else c + if labels or conf[j] > 0.25: # 0.25 conf thresh + label = f'{c}' if labels else f'{c} {conf[j]:.1f}' + annotator.box_label(box, label, color=color) + elif len(classes): + for c in classes: + color = colors(c) + c = names.get(c, c) if names else c + annotator.text((x, y), f'{c}', txt_color=color, box_style=True) + + # Plot keypoints + if len(kpts): + kpts_ = kpts[idx].copy() + if len(kpts_): + if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: # if normalized with tolerance .01 + kpts_[..., 0] *= w # scale to pixels + kpts_[..., 1] *= h + elif scale < 1: # absolute coords need scale if image scales + kpts_ *= scale + kpts_[..., 0] += x + kpts_[..., 1] += y + for j in range(len(kpts_)): + if labels or conf[j] > 0.25: # 0.25 conf thresh + annotator.kpts(kpts_[j]) + + # Plot masks + if len(masks): + if idx.shape[0] == masks.shape[0]: # overlap_masks=False + image_masks = masks[idx] + else: # overlap_masks=True + image_masks = masks[[i]] # (1, 640, 640) + nl = idx.sum() + index = np.arange(nl).reshape((nl, 1, 1)) + 1 + image_masks = np.repeat(image_masks, nl, axis=0) + image_masks = np.where(image_masks == index, 1.0, 0.0) + + im = np.asarray(annotator.im).copy() + for j, box in enumerate(boxes.T.tolist()): + if labels or conf[j] > 0.25: # 0.25 conf thresh + color = colors(classes[j]) + mh, mw = image_masks[j].shape + if mh != h or mw != w: + mask = image_masks[j].astype(np.uint8) + mask = cv2.resize(mask, (w, h)) + mask = mask.astype(bool) + else: + mask = image_masks[j].astype(bool) + with contextlib.suppress(Exception): + im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6 + annotator.fromarray(im) + annotator.im.save(fname) # save + if on_plot: + on_plot(fname) + + +@plt_settings() +def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False, on_plot=None): + """Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv').""" + import pandas as pd + save_dir = Path(file).parent if file else Path(dir) + if classify: + fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True) + index = [1, 4, 2, 3] + elif segment: + fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True) + index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12] + elif pose: + fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True) + index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13] + else: + fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) + index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7] + ax = ax.ravel() + files = list(save_dir.glob('results*.csv')) + assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' + for f in files: + try: + data = pd.read_csv(f) + s = [x.strip() for x in data.columns] + x = data.values[:, 0] + for i, j in enumerate(index): + y = data.values[:, j].astype('float') + # y[y == 0] = np.nan # don't show zero values + ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) # actual results + ax[i].plot(x, gaussian_filter1d(y, sigma=3), ':', label='smooth', linewidth=2) # smoothing line + ax[i].set_title(s[j], fontsize=12) + # if j in [8, 9, 10]: # share train and val loss y axes + # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) + except Exception as e: + LOGGER.warning(f'WARNING: Plotting error for {f}: {e}') + ax[1].legend() + fname = save_dir / 'results.png' + fig.savefig(fname, dpi=200) + plt.close() + if on_plot: + on_plot(fname) + + +def output_to_target(output, max_det=300): + """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting.""" + targets = [] + for i, o in enumerate(output): + box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) + j = torch.full((conf.shape[0], 1), i) + targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) + targets = torch.cat(targets, 0).numpy() + return targets[:, 0], targets[:, 1], targets[:, 2:] + + +def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')): + """ + Visualize feature maps of a given model module during inference. + + Args: + x (torch.Tensor): Features to be visualized. + module_type (str): Module type. + stage (int): Module stage within the model. + n (int, optional): Maximum number of feature maps to plot. Defaults to 32. + save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp'). + """ + for m in ['Detect', 'Pose', 'Segment']: + if m in module_type: + return + batch, channels, height, width = x.shape # batch, channels, height, width + if height > 1 and width > 1: + f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename + + blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels + n = min(n, channels) # number of plots + fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols + ax = ax.ravel() + plt.subplots_adjust(wspace=0.05, hspace=0.05) + for i in range(n): + ax[i].imshow(blocks[i].squeeze()) # cmap='gray' + ax[i].axis('off') + + LOGGER.info(f'Saving {f}... ({n}/{channels})') + plt.savefig(f, dpi=300, bbox_inches='tight') + plt.close() + np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save diff --git a/modules/ultralytics/yolo/utils/tal.py b/modules/ultralytics/yolo/utils/tal.py new file mode 100644 index 0000000000000000000000000000000000000000..aea8918ce8cca4a78d1ddf16e4d98dc6a6cd145f --- /dev/null +++ b/modules/ultralytics/yolo/utils/tal.py @@ -0,0 +1,276 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch +import torch.nn as nn + +from .checks import check_version +from .metrics import bbox_iou + +TORCH_1_10 = check_version(torch.__version__, '1.10.0') + + +def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9): + """select the positive anchor center in gt + + Args: + xy_centers (Tensor): shape(h*w, 4) + gt_bboxes (Tensor): shape(b, n_boxes, 4) + Return: + (Tensor): shape(b, n_boxes, h*w) + """ + n_anchors = xy_centers.shape[0] + bs, n_boxes, _ = gt_bboxes.shape + lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom + bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1) + # return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype) + return bbox_deltas.amin(3).gt_(eps) + + +def select_highest_overlaps(mask_pos, overlaps, n_max_boxes): + """if an anchor box is assigned to multiple gts, + the one with the highest iou will be selected. + + Args: + mask_pos (Tensor): shape(b, n_max_boxes, h*w) + overlaps (Tensor): shape(b, n_max_boxes, h*w) + Return: + target_gt_idx (Tensor): shape(b, h*w) + fg_mask (Tensor): shape(b, h*w) + mask_pos (Tensor): shape(b, n_max_boxes, h*w) + """ + # (b, n_max_boxes, h*w) -> (b, h*w) + fg_mask = mask_pos.sum(-2) + if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes + mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w) + max_overlaps_idx = overlaps.argmax(1) # (b, h*w) + + is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device) + is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1) + + mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w) + fg_mask = mask_pos.sum(-2) + # Find each grid serve which gt(index) + target_gt_idx = mask_pos.argmax(-2) # (b, h*w) + return target_gt_idx, fg_mask, mask_pos + + +class TaskAlignedAssigner(nn.Module): + """ + A task-aligned assigner for object detection. + + This class assigns ground-truth (gt) objects to anchors based on the task-aligned metric, + which combines both classification and localization information. + + Attributes: + topk (int): The number of top candidates to consider. + num_classes (int): The number of object classes. + alpha (float): The alpha parameter for the classification component of the task-aligned metric. + beta (float): The beta parameter for the localization component of the task-aligned metric. + eps (float): A small value to prevent division by zero. + """ + + def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9): + """Initialize a TaskAlignedAssigner object with customizable hyperparameters.""" + super().__init__() + self.topk = topk + self.num_classes = num_classes + self.bg_idx = num_classes + self.alpha = alpha + self.beta = beta + self.eps = eps + + @torch.no_grad() + def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt): + """ + Compute the task-aligned assignment. + Reference https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py + + Args: + pd_scores (Tensor): shape(bs, num_total_anchors, num_classes) + pd_bboxes (Tensor): shape(bs, num_total_anchors, 4) + anc_points (Tensor): shape(num_total_anchors, 2) + gt_labels (Tensor): shape(bs, n_max_boxes, 1) + gt_bboxes (Tensor): shape(bs, n_max_boxes, 4) + mask_gt (Tensor): shape(bs, n_max_boxes, 1) + + Returns: + target_labels (Tensor): shape(bs, num_total_anchors) + target_bboxes (Tensor): shape(bs, num_total_anchors, 4) + target_scores (Tensor): shape(bs, num_total_anchors, num_classes) + fg_mask (Tensor): shape(bs, num_total_anchors) + target_gt_idx (Tensor): shape(bs, num_total_anchors) + """ + self.bs = pd_scores.size(0) + self.n_max_boxes = gt_bboxes.size(1) + + if self.n_max_boxes == 0: + device = gt_bboxes.device + return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device), torch.zeros_like(pd_bboxes).to(device), + torch.zeros_like(pd_scores).to(device), torch.zeros_like(pd_scores[..., 0]).to(device), + torch.zeros_like(pd_scores[..., 0]).to(device)) + + mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, + mask_gt) + + target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes) + + # Assigned target + target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask) + + # Normalize + align_metric *= mask_pos + pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj + pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj + norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1) + target_scores = target_scores * norm_align_metric + + return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx + + def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt): + """Get in_gts mask, (b, max_num_obj, h*w).""" + mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes) + # Get anchor_align metric, (b, max_num_obj, h*w) + align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt) + # Get topk_metric mask, (b, max_num_obj, h*w) + mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool()) + # Merge all mask to a final mask, (b, max_num_obj, h*w) + mask_pos = mask_topk * mask_in_gts * mask_gt + + return mask_pos, align_metric, overlaps + + def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt): + """Compute alignment metric given predicted and ground truth bounding boxes.""" + na = pd_bboxes.shape[-2] + mask_gt = mask_gt.bool() # b, max_num_obj, h*w + overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device) + bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device) + + ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj + ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes) # b, max_num_obj + ind[1] = gt_labels.squeeze(-1) # b, max_num_obj + # Get the scores of each grid for each gt cls + bbox_scores[mask_gt] = pd_scores[ind[0], :, ind[1]][mask_gt] # b, max_num_obj, h*w + + # (b, max_num_obj, 1, 4), (b, 1, h*w, 4) + pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt] + gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt] + overlaps[mask_gt] = bbox_iou(gt_boxes, pd_boxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0) + + align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta) + return align_metric, overlaps + + def select_topk_candidates(self, metrics, largest=True, topk_mask=None): + """ + Select the top-k candidates based on the given metrics. + + Args: + metrics (Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size, + max_num_obj is the maximum number of objects, and h*w represents the + total number of anchor points. + largest (bool): If True, select the largest values; otherwise, select the smallest values. + topk_mask (Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), where + topk is the number of top candidates to consider. If not provided, + the top-k values are automatically computed based on the given metrics. + + Returns: + (Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates. + """ + + # (b, max_num_obj, topk) + topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest) + if topk_mask is None: + topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs) + # (b, max_num_obj, topk) + topk_idxs.masked_fill_(~topk_mask, 0) + + # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w) + count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device) + ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device) + for k in range(self.topk): + # Expand topk_idxs for each value of k and add 1 at the specified positions + count_tensor.scatter_add_(-1, topk_idxs[:, :, k:k + 1], ones) + # count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device)) + # filter invalid bboxes + count_tensor.masked_fill_(count_tensor > 1, 0) + + return count_tensor.to(metrics.dtype) + + def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask): + """ + Compute target labels, target bounding boxes, and target scores for the positive anchor points. + + Args: + gt_labels (Tensor): Ground truth labels of shape (b, max_num_obj, 1), where b is the + batch size and max_num_obj is the maximum number of objects. + gt_bboxes (Tensor): Ground truth bounding boxes of shape (b, max_num_obj, 4). + target_gt_idx (Tensor): Indices of the assigned ground truth objects for positive + anchor points, with shape (b, h*w), where h*w is the total + number of anchor points. + fg_mask (Tensor): A boolean tensor of shape (b, h*w) indicating the positive + (foreground) anchor points. + + Returns: + (Tuple[Tensor, Tensor, Tensor]): A tuple containing the following tensors: + - target_labels (Tensor): Shape (b, h*w), containing the target labels for + positive anchor points. + - target_bboxes (Tensor): Shape (b, h*w, 4), containing the target bounding boxes + for positive anchor points. + - target_scores (Tensor): Shape (b, h*w, num_classes), containing the target scores + for positive anchor points, where num_classes is the number + of object classes. + """ + + # Assigned target labels, (b, 1) + batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None] + target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w) + target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w) + + # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w) + target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx] + + # Assigned target scores + target_labels.clamp_(0) + + # 10x faster than F.one_hot() + target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes), + dtype=torch.int64, + device=target_labels.device) # (b, h*w, 80) + target_scores.scatter_(2, target_labels.unsqueeze(-1), 1) + + fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80) + target_scores = torch.where(fg_scores_mask > 0, target_scores, 0) + + return target_labels, target_bboxes, target_scores + + +def make_anchors(feats, strides, grid_cell_offset=0.5): + """Generate anchors from features.""" + anchor_points, stride_tensor = [], [] + assert feats is not None + dtype, device = feats[0].dtype, feats[0].device + for i, stride in enumerate(strides): + _, _, h, w = feats[i].shape + sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset # shift x + sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset # shift y + sy, sx = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx) + anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2)) + stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device)) + return torch.cat(anchor_points), torch.cat(stride_tensor) + + +def dist2bbox(distance, anchor_points, xywh=True, dim=-1): + """Transform distance(ltrb) to box(xywh or xyxy).""" + lt, rb = distance.chunk(2, dim) + x1y1 = anchor_points - lt + x2y2 = anchor_points + rb + if xywh: + c_xy = (x1y1 + x2y2) / 2 + wh = x2y2 - x1y1 + return torch.cat((c_xy, wh), dim) # xywh bbox + return torch.cat((x1y1, x2y2), dim) # xyxy bbox + + +def bbox2dist(anchor_points, bbox, reg_max): + """Transform bbox(xyxy) to dist(ltrb).""" + x1y1, x2y2 = bbox.chunk(2, -1) + return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp_(0, reg_max - 0.01) # dist (lt, rb) diff --git a/modules/ultralytics/yolo/utils/torch_utils.py b/modules/ultralytics/yolo/utils/torch_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..a9d79178df28568dc9ef0267e7c621dbb4d8e99a --- /dev/null +++ b/modules/ultralytics/yolo/utils/torch_utils.py @@ -0,0 +1,505 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import math +import os +import platform +import random +import time +from contextlib import contextmanager +from copy import deepcopy +from pathlib import Path +from typing import Union + +import numpy as np +import torch +import torch.distributed as dist +import torch.nn as nn +import torch.nn.functional as F +import torchvision + +from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, __version__ +from ultralytics.yolo.utils.checks import check_version + +try: + import thop +except ImportError: + thop = None + +TORCHVISION_0_10 = check_version(torchvision.__version__, '0.10.0') +TORCH_1_9 = check_version(torch.__version__, '1.9.0') +TORCH_1_11 = check_version(torch.__version__, '1.11.0') +TORCH_1_12 = check_version(torch.__version__, '1.12.0') +TORCH_2_0 = check_version(torch.__version__, minimum='2.0') + + +@contextmanager +def torch_distributed_zero_first(local_rank: int): + """Decorator to make all processes in distributed training wait for each local_master to do something.""" + initialized = torch.distributed.is_available() and torch.distributed.is_initialized() + if initialized and local_rank not in (-1, 0): + dist.barrier(device_ids=[local_rank]) + yield + if initialized and local_rank == 0: + dist.barrier(device_ids=[0]) + + +def smart_inference_mode(): + """Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator.""" + + def decorate(fn): + """Applies appropriate torch decorator for inference mode based on torch version.""" + return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn) + + return decorate + + +def select_device(device='', batch=0, newline=False, verbose=True): + """Selects PyTorch Device. Options are device = None or 'cpu' or 0 or '0' or '0,1,2,3'.""" + s = f'Ultralytics YOLOv{__version__} 🚀 Python-{platform.python_version()} torch-{torch.__version__} ' + device = str(device).lower() + for remove in 'cuda:', 'none', '(', ')', '[', ']', "'", ' ': + device = device.replace(remove, '') # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1' + cpu = device == 'cpu' + mps = device == 'mps' # Apple Metal Performance Shaders (MPS) + if cpu or mps: + os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False + elif device: # non-cpu device requested + if device == 'cuda': + device = '0' + visible = os.environ.get('CUDA_VISIBLE_DEVICES', None) + os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available() + if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', ''))): + LOGGER.info(s) + install = 'See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no ' \ + 'CUDA devices are seen by torch.\n' if torch.cuda.device_count() == 0 else '' + raise ValueError(f"Invalid CUDA 'device={device}' requested." + f" Use 'device=cpu' or pass valid CUDA device(s) if available," + f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n" + f'\ntorch.cuda.is_available(): {torch.cuda.is_available()}' + f'\ntorch.cuda.device_count(): {torch.cuda.device_count()}' + f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n" + f'{install}') + + if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available + devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 + n = len(devices) # device count + if n > 1 and batch > 0 and batch % n != 0: # check batch_size is divisible by device_count + raise ValueError(f"'batch={batch}' must be a multiple of GPU count {n}. Try 'batch={batch // n * n}' or " + f"'batch={batch // n * n + n}', the nearest batch sizes evenly divisible by {n}.") + space = ' ' * (len(s) + 1) + for i, d in enumerate(devices): + p = torch.cuda.get_device_properties(i) + s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB + arg = 'cuda:0' + elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available() and TORCH_2_0: + # Prefer MPS if available + s += 'MPS\n' + arg = 'mps' + else: # revert to CPU + s += 'CPU\n' + arg = 'cpu' + + if verbose and RANK == -1: + LOGGER.info(s if newline else s.rstrip()) + return torch.device(arg) + + +def time_sync(): + """PyTorch-accurate time.""" + if torch.cuda.is_available(): + torch.cuda.synchronize() + return time.time() + + +def fuse_conv_and_bn(conv, bn): + """Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/.""" + fusedconv = nn.Conv2d(conv.in_channels, + conv.out_channels, + kernel_size=conv.kernel_size, + stride=conv.stride, + padding=conv.padding, + dilation=conv.dilation, + groups=conv.groups, + bias=True).requires_grad_(False).to(conv.weight.device) + + # Prepare filters + w_conv = conv.weight.clone().view(conv.out_channels, -1) + w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) + fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) + + # Prepare spatial bias + b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias + b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) + fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) + + return fusedconv + + +def fuse_deconv_and_bn(deconv, bn): + """Fuse ConvTranspose2d() and BatchNorm2d() layers.""" + fuseddconv = nn.ConvTranspose2d(deconv.in_channels, + deconv.out_channels, + kernel_size=deconv.kernel_size, + stride=deconv.stride, + padding=deconv.padding, + output_padding=deconv.output_padding, + dilation=deconv.dilation, + groups=deconv.groups, + bias=True).requires_grad_(False).to(deconv.weight.device) + + # Prepare filters + w_deconv = deconv.weight.clone().view(deconv.out_channels, -1) + w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) + fuseddconv.weight.copy_(torch.mm(w_bn, w_deconv).view(fuseddconv.weight.shape)) + + # Prepare spatial bias + b_conv = torch.zeros(deconv.weight.size(1), device=deconv.weight.device) if deconv.bias is None else deconv.bias + b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) + fuseddconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) + + return fuseddconv + + +def model_info(model, detailed=False, verbose=True, imgsz=640): + """Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320].""" + if not verbose: + return + n_p = get_num_params(model) # number of parameters + n_g = get_num_gradients(model) # number of gradients + n_l = len(list(model.modules())) # number of layers + if detailed: + LOGGER.info( + f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") + for i, (name, p) in enumerate(model.named_parameters()): + name = name.replace('module_list.', '') + LOGGER.info('%5g %40s %9s %12g %20s %10.3g %10.3g %10s' % + (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype)) + + flops = get_flops(model, imgsz) + fused = ' (fused)' if getattr(model, 'is_fused', lambda: False)() else '' + fs = f', {flops:.1f} GFLOPs' if flops else '' + yaml_file = getattr(model, 'yaml_file', '') or getattr(model, 'yaml', {}).get('yaml_file', '') + model_name = Path(yaml_file).stem.replace('yolo', 'YOLO') or 'Model' + LOGGER.info(f'{model_name} summary{fused}: {n_l} layers, {n_p} parameters, {n_g} gradients{fs}') + return n_l, n_p, n_g, flops + + +def get_num_params(model): + """Return the total number of parameters in a YOLO model.""" + return sum(x.numel() for x in model.parameters()) + + +def get_num_gradients(model): + """Return the total number of parameters with gradients in a YOLO model.""" + return sum(x.numel() for x in model.parameters() if x.requires_grad) + + +def model_info_for_loggers(trainer): + """ + Return model info dict with useful model information. + + Example for YOLOv8n: + {'model/parameters': 3151904, + 'model/GFLOPs': 8.746, + 'model/speed_ONNX(ms)': 41.244, + 'model/speed_TensorRT(ms)': 3.211, + 'model/speed_PyTorch(ms)': 18.755} + """ + if trainer.args.profile: # profile ONNX and TensorRT times + from ultralytics.yolo.utils.benchmarks import ProfileModels + results = ProfileModels([trainer.last], device=trainer.device).profile()[0] + results.pop('model/name') + else: # only return PyTorch times from most recent validation + results = { + 'model/parameters': get_num_params(trainer.model), + 'model/GFLOPs': round(get_flops(trainer.model), 3)} + results['model/speed_PyTorch(ms)'] = round(trainer.validator.speed['inference'], 3) + return results + + +def get_flops(model, imgsz=640): + """Return a YOLO model's FLOPs.""" + try: + model = de_parallel(model) + p = next(model.parameters()) + stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride + im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format + flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0 # stride GFLOPs + imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float + return flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs + except Exception: + return 0 + + +def get_flops_with_torch_profiler(model, imgsz=640): + # Compute model FLOPs (thop alternative) + model = de_parallel(model) + p = next(model.parameters()) + stride = (max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32) * 2 # max stride + im = torch.zeros((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format + with torch.profiler.profile(with_flops=True) as prof: + model(im) + flops = sum(x.flops for x in prof.key_averages()) / 1E9 + imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float + flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs + return flops + + +def initialize_weights(model): + """Initialize model weights to random values.""" + for m in model.modules(): + t = type(m) + if t is nn.Conv2d: + pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif t is nn.BatchNorm2d: + m.eps = 1e-3 + m.momentum = 0.03 + elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: + m.inplace = True + + +def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) + # Scales img(bs,3,y,x) by ratio constrained to gs-multiple + if ratio == 1.0: + return img + h, w = img.shape[2:] + s = (int(h * ratio), int(w * ratio)) # new size + img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize + if not same_shape: # pad/crop img + h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) + return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean + + +def make_divisible(x, divisor): + """Returns nearest x divisible by divisor.""" + if isinstance(divisor, torch.Tensor): + divisor = int(divisor.max()) # to int + return math.ceil(x / divisor) * divisor + + +def copy_attr(a, b, include=(), exclude=()): + """Copies attributes from object 'b' to object 'a', with options to include/exclude certain attributes.""" + for k, v in b.__dict__.items(): + if (len(include) and k not in include) or k.startswith('_') or k in exclude: + continue + else: + setattr(a, k, v) + + +def get_latest_opset(): + """Return second-most (for maturity) recently supported ONNX opset by this version of torch.""" + return max(int(k[14:]) for k in vars(torch.onnx) if 'symbolic_opset' in k) - 1 # opset + + +def intersect_dicts(da, db, exclude=()): + """Returns a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values.""" + return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape} + + +def is_parallel(model): + """Returns True if model is of type DP or DDP.""" + return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)) + + +def de_parallel(model): + """De-parallelize a model: returns single-GPU model if model is of type DP or DDP.""" + return model.module if is_parallel(model) else model + + +def one_cycle(y1=0.0, y2=1.0, steps=100): + """Returns a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf.""" + return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 + + +def init_seeds(seed=0, deterministic=False): + """Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html.""" + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe + # torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287 + if deterministic: # https://github.com/ultralytics/yolov5/pull/8213 + if TORCH_2_0: + torch.use_deterministic_algorithms(True) + torch.backends.cudnn.deterministic = True + os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' + os.environ['PYTHONHASHSEED'] = str(seed) + else: + LOGGER.warning('WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training.') + else: + torch.use_deterministic_algorithms(False) + torch.backends.cudnn.deterministic = False + + +class ModelEMA: + """Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models + Keeps a moving average of everything in the model state_dict (parameters and buffers) + For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage + To disable EMA set the `enabled` attribute to `False`. + """ + + def __init__(self, model, decay=0.9999, tau=2000, updates=0): + """Create EMA.""" + self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA + self.updates = updates # number of EMA updates + self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs) + for p in self.ema.parameters(): + p.requires_grad_(False) + self.enabled = True + + def update(self, model): + """Update EMA parameters.""" + if self.enabled: + self.updates += 1 + d = self.decay(self.updates) + + msd = de_parallel(model).state_dict() # model state_dict + for k, v in self.ema.state_dict().items(): + if v.dtype.is_floating_point: # true for FP16 and FP32 + v *= d + v += (1 - d) * msd[k].detach() + # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype}, model {msd[k].dtype}' + + def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): + """Updates attributes and saves stripped model with optimizer removed.""" + if self.enabled: + copy_attr(self.ema, model, include, exclude) + + +def strip_optimizer(f: Union[str, Path] = 'best.pt', s: str = '') -> None: + """ + Strip optimizer from 'f' to finalize training, optionally save as 's'. + + Args: + f (str): file path to model to strip the optimizer from. Default is 'best.pt'. + s (str): file path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten. + + Returns: + None + + Usage: + from pathlib import Path + from ultralytics.yolo.utils.torch_utils import strip_optimizer + for f in Path('/Users/glennjocher/Downloads/weights').rglob('*.pt'): + strip_optimizer(f) + """ + # Use dill (if exists) to serialize the lambda functions where pickle does not do this + try: + import dill as pickle + except ImportError: + import pickle + + x = torch.load(f, map_location=torch.device('cpu')) + args = {**DEFAULT_CFG_DICT, **x['train_args']} if 'train_args' in x else None # combine args + if x.get('ema'): + x['model'] = x['ema'] # replace model with ema + for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys + x[k] = None + x['epoch'] = -1 + x['model'].half() # to FP16 + for p in x['model'].parameters(): + p.requires_grad = False + x['train_args'] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # strip non-default keys + # x['model'].args = x['train_args'] + torch.save(x, s or f, pickle_module=pickle) + mb = os.path.getsize(s or f) / 1E6 # filesize + LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB") + + +def profile(input, ops, n=10, device=None): + """ + YOLOv8 speed/memory/FLOPs profiler + + Usage: + input = torch.randn(16, 3, 640, 640) + m1 = lambda x: x * torch.sigmoid(x) + m2 = nn.SiLU() + profile(input, [m1, m2], n=100) # profile over 100 iterations + """ + results = [] + if not isinstance(device, torch.device): + device = select_device(device) + LOGGER.info(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" + f"{'input':>24s}{'output':>24s}") + + for x in input if isinstance(input, list) else [input]: + x = x.to(device) + x.requires_grad = True + for m in ops if isinstance(ops, list) else [ops]: + m = m.to(device) if hasattr(m, 'to') else m # device + m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m + tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward + try: + flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1E9 * 2 if thop else 0 # GFLOPs + except Exception: + flops = 0 + + try: + for _ in range(n): + t[0] = time_sync() + y = m(x) + t[1] = time_sync() + try: + _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() + t[2] = time_sync() + except Exception: # no backward method + # print(e) # for debug + t[2] = float('nan') + tf += (t[1] - t[0]) * 1000 / n # ms per op forward + tb += (t[2] - t[1]) * 1000 / n # ms per op backward + mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) + s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes + p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters + LOGGER.info(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') + results.append([p, flops, mem, tf, tb, s_in, s_out]) + except Exception as e: + LOGGER.info(e) + results.append(None) + torch.cuda.empty_cache() + return results + + +class EarlyStopping: + """ + Early stopping class that stops training when a specified number of epochs have passed without improvement. + """ + + def __init__(self, patience=50): + """ + Initialize early stopping object + + Args: + patience (int, optional): Number of epochs to wait after fitness stops improving before stopping. + """ + self.best_fitness = 0.0 # i.e. mAP + self.best_epoch = 0 + self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop + self.possible_stop = False # possible stop may occur next epoch + + def __call__(self, epoch, fitness): + """ + Check whether to stop training + + Args: + epoch (int): Current epoch of training + fitness (float): Fitness value of current epoch + + Returns: + (bool): True if training should stop, False otherwise + """ + if fitness is None: # check if fitness=None (happens when val=False) + return False + + if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training + self.best_epoch = epoch + self.best_fitness = fitness + delta = epoch - self.best_epoch # epochs without improvement + self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch + stop = delta >= self.patience # stop training if patience exceeded + if stop: + LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' + f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' + f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' + f'i.e. `patience=300` or use `patience=0` to disable EarlyStopping.') + return stop diff --git a/modules/ultralytics/yolo/utils/tuner.py b/modules/ultralytics/yolo/utils/tuner.py new file mode 100644 index 0000000000000000000000000000000000000000..9f57677a539b808af085054817cd8350db5d6ff3 --- /dev/null +++ b/modules/ultralytics/yolo/utils/tuner.py @@ -0,0 +1,44 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from ultralytics.yolo.utils import LOGGER + +try: + from ray import tune + from ray.air import RunConfig, session # noqa + from ray.air.integrations.wandb import WandbLoggerCallback # noqa + from ray.tune.schedulers import ASHAScheduler # noqa + from ray.tune.schedulers import AsyncHyperBandScheduler as AHB # noqa + +except ImportError: + LOGGER.info("Tuning hyperparameters requires ray/tune. Install using `pip install 'ray[tune]'`") + tune = None + +default_space = { + # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']), + 'lr0': tune.uniform(1e-5, 1e-1), + 'lrf': tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) + 'momentum': tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1 + 'weight_decay': tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4 + 'warmup_epochs': tune.uniform(0.0, 5.0), # warmup epochs (fractions ok) + 'warmup_momentum': tune.uniform(0.0, 0.95), # warmup initial momentum + 'box': tune.uniform(0.02, 0.2), # box loss gain + 'cls': tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels) + 'hsv_h': tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction) + 'hsv_s': tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction) + 'hsv_v': tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction) + 'degrees': tune.uniform(0.0, 45.0), # image rotation (+/- deg) + 'translate': tune.uniform(0.0, 0.9), # image translation (+/- fraction) + 'scale': tune.uniform(0.0, 0.9), # image scale (+/- gain) + 'shear': tune.uniform(0.0, 10.0), # image shear (+/- deg) + 'perspective': tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 + 'flipud': tune.uniform(0.0, 1.0), # image flip up-down (probability) + 'fliplr': tune.uniform(0.0, 1.0), # image flip left-right (probability) + 'mosaic': tune.uniform(0.0, 1.0), # image mixup (probability) + 'mixup': tune.uniform(0.0, 1.0), # image mixup (probability) + 'copy_paste': tune.uniform(0.0, 1.0)} # segment copy-paste (probability) + +task_metric_map = { + 'detect': 'metrics/mAP50-95(B)', + 'segment': 'metrics/mAP50-95(M)', + 'classify': 'metrics/accuracy_top1', + 'pose': 'metrics/mAP50-95(P)'} diff --git a/modules/ultralytics/yolo/v8/__init__.py b/modules/ultralytics/yolo/v8/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..adc0351ba42fe55a71d3e8cf236809e2408da207 --- /dev/null +++ b/modules/ultralytics/yolo/v8/__init__.py @@ -0,0 +1,5 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from ultralytics.yolo.v8 import classify, detect, pose, segment + +__all__ = 'classify', 'segment', 'detect', 'pose' diff --git a/modules/ultralytics/yolo/v8/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/v8/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9e9101fa320a433750130dc4d68034f093a58daf Binary files /dev/null and b/modules/ultralytics/yolo/v8/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/classify/__init__.py b/modules/ultralytics/yolo/v8/classify/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2f049ed33b2ac74535c3b4a52a7e88b3c9299ed4 --- /dev/null +++ b/modules/ultralytics/yolo/v8/classify/__init__.py @@ -0,0 +1,7 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from ultralytics.yolo.v8.classify.predict import ClassificationPredictor, predict +from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train +from ultralytics.yolo.v8.classify.val import ClassificationValidator, val + +__all__ = 'ClassificationPredictor', 'predict', 'ClassificationTrainer', 'train', 'ClassificationValidator', 'val' diff --git a/modules/ultralytics/yolo/v8/classify/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/v8/classify/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..435d00785dad845a95a022aa2bcd6b285b4106a9 Binary files /dev/null and b/modules/ultralytics/yolo/v8/classify/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/classify/__pycache__/predict.cpython-312.pyc b/modules/ultralytics/yolo/v8/classify/__pycache__/predict.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3987e791ec7055ad06bde3bfe92205c68c4fadca Binary files /dev/null and b/modules/ultralytics/yolo/v8/classify/__pycache__/predict.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/classify/__pycache__/train.cpython-312.pyc b/modules/ultralytics/yolo/v8/classify/__pycache__/train.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fb66cc1332772ceff8b9e4e3691833c4f8178f24 Binary files /dev/null and b/modules/ultralytics/yolo/v8/classify/__pycache__/train.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/classify/__pycache__/val.cpython-312.pyc b/modules/ultralytics/yolo/v8/classify/__pycache__/val.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1704af6755b4baa94a0a82534d63ffa6d2a3318a Binary files /dev/null and b/modules/ultralytics/yolo/v8/classify/__pycache__/val.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/classify/predict.py b/modules/ultralytics/yolo/v8/classify/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..fb486e292e40671a410199b7de27e05213a57341 --- /dev/null +++ b/modules/ultralytics/yolo/v8/classify/predict.py @@ -0,0 +1,51 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch + +from ultralytics.yolo.engine.predictor import BasePredictor +from ultralytics.yolo.engine.results import Results +from ultralytics.yolo.utils import DEFAULT_CFG, ROOT + + +class ClassificationPredictor(BasePredictor): + + def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): + super().__init__(cfg, overrides, _callbacks) + self.args.task = 'classify' + + def preprocess(self, img): + """Converts input image to model-compatible data type.""" + if not isinstance(img, torch.Tensor): + img = torch.stack([self.transforms(im) for im in img], dim=0) + img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) + return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 + + def postprocess(self, preds, img, orig_imgs): + """Postprocesses predictions to return Results objects.""" + results = [] + for i, pred in enumerate(preds): + orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs + path = self.batch[0] + img_path = path[i] if isinstance(path, list) else path + results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred)) + + return results + + +def predict(cfg=DEFAULT_CFG, use_python=False): + """Run YOLO model predictions on input images/videos.""" + model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" + source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ + else 'https://ultralytics.com/images/bus.jpg' + + args = dict(model=model, source=source) + if use_python: + from ultralytics import YOLO + YOLO(model)(**args) + else: + predictor = ClassificationPredictor(overrides=args) + predictor.predict_cli() + + +if __name__ == '__main__': + predict() diff --git a/modules/ultralytics/yolo/v8/classify/train.py b/modules/ultralytics/yolo/v8/classify/train.py new file mode 100644 index 0000000000000000000000000000000000000000..72feb55913d2eabc097ab78f628533eb315857f3 --- /dev/null +++ b/modules/ultralytics/yolo/v8/classify/train.py @@ -0,0 +1,161 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch +import torchvision + +from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight +from ultralytics.yolo import v8 +from ultralytics.yolo.data import ClassificationDataset, build_dataloader +from ultralytics.yolo.engine.trainer import BaseTrainer +from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr +from ultralytics.yolo.utils.plotting import plot_images, plot_results +from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first + + +class ClassificationTrainer(BaseTrainer): + + def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): + """Initialize a ClassificationTrainer object with optional configuration overrides and callbacks.""" + if overrides is None: + overrides = {} + overrides['task'] = 'classify' + if overrides.get('imgsz') is None: + overrides['imgsz'] = 224 + super().__init__(cfg, overrides, _callbacks) + + def set_model_attributes(self): + """Set the YOLO model's class names from the loaded dataset.""" + self.model.names = self.data['names'] + + def get_model(self, cfg=None, weights=None, verbose=True): + """Returns a modified PyTorch model configured for training YOLO.""" + model = ClassificationModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1) + if weights: + model.load(weights) + + for m in model.modules(): + if not self.args.pretrained and hasattr(m, 'reset_parameters'): + m.reset_parameters() + if isinstance(m, torch.nn.Dropout) and self.args.dropout: + m.p = self.args.dropout # set dropout + for p in model.parameters(): + p.requires_grad = True # for training + return model + + def setup_model(self): + """ + load/create/download model for any task + """ + # Classification models require special handling + + if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed + return + + model = str(self.model) + # Load a YOLO model locally, from torchvision, or from Ultralytics assets + if model.endswith('.pt'): + self.model, _ = attempt_load_one_weight(model, device='cpu') + for p in self.model.parameters(): + p.requires_grad = True # for training + elif model.endswith('.yaml'): + self.model = self.get_model(cfg=model) + elif model in torchvision.models.__dict__: + self.model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if self.args.pretrained else None) + else: + FileNotFoundError(f'ERROR: model={model} not found locally or online. Please check model name.') + ClassificationModel.reshape_outputs(self.model, self.data['nc']) + + return # dont return ckpt. Classification doesn't support resume + + def build_dataset(self, img_path, mode='train', batch=None): + return ClassificationDataset(root=img_path, args=self.args, augment=mode == 'train') + + def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'): + """Returns PyTorch DataLoader with transforms to preprocess images for inference.""" + with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP + dataset = self.build_dataset(dataset_path, mode) + + loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank) + # Attach inference transforms + if mode != 'train': + if is_parallel(self.model): + self.model.module.transforms = loader.dataset.torch_transforms + else: + self.model.transforms = loader.dataset.torch_transforms + return loader + + def preprocess_batch(self, batch): + """Preprocesses a batch of images and classes.""" + batch['img'] = batch['img'].to(self.device) + batch['cls'] = batch['cls'].to(self.device) + return batch + + def progress_string(self): + """Returns a formatted string showing training progress.""" + return ('\n' + '%11s' * (4 + len(self.loss_names))) % \ + ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size') + + def get_validator(self): + """Returns an instance of ClassificationValidator for validation.""" + self.loss_names = ['loss'] + return v8.classify.ClassificationValidator(self.test_loader, self.save_dir) + + def label_loss_items(self, loss_items=None, prefix='train'): + """ + Returns a loss dict with labelled training loss items tensor + """ + # Not needed for classification but necessary for segmentation & detection + keys = [f'{prefix}/{x}' for x in self.loss_names] + if loss_items is None: + return keys + loss_items = [round(float(loss_items), 5)] + return dict(zip(keys, loss_items)) + + def resume_training(self, ckpt): + """Resumes training from a given checkpoint.""" + pass + + def plot_metrics(self): + """Plots metrics from a CSV file.""" + plot_results(file=self.csv, classify=True, on_plot=self.on_plot) # save results.png + + def final_eval(self): + """Evaluate trained model and save validation results.""" + for f in self.last, self.best: + if f.exists(): + strip_optimizer(f) # strip optimizers + # TODO: validate best.pt after training completes + # if f is self.best: + # LOGGER.info(f'\nValidating {f}...') + # self.validator.args.save_json = True + # self.metrics = self.validator(model=f) + # self.metrics.pop('fitness', None) + # self.run_callbacks('on_fit_epoch_end') + LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}") + + def plot_training_samples(self, batch, ni): + """Plots training samples with their annotations.""" + plot_images(images=batch['img'], + batch_idx=torch.arange(len(batch['img'])), + cls=batch['cls'].squeeze(-1), + fname=self.save_dir / f'train_batch{ni}.jpg', + on_plot=self.on_plot) + + +def train(cfg=DEFAULT_CFG, use_python=False): + """Train the YOLO classification model.""" + model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" + data = cfg.data or 'mnist160' # or yolo.ClassificationDataset("mnist") + device = cfg.device if cfg.device is not None else '' + + args = dict(model=model, data=data, device=device) + if use_python: + from ultralytics import YOLO + YOLO(model).train(**args) + else: + trainer = ClassificationTrainer(overrides=args) + trainer.train() + + +if __name__ == '__main__': + train() diff --git a/modules/ultralytics/yolo/v8/classify/val.py b/modules/ultralytics/yolo/v8/classify/val.py new file mode 100644 index 0000000000000000000000000000000000000000..f56dea0a2d7af0d88d3185a05aed566c0a8ba8a3 --- /dev/null +++ b/modules/ultralytics/yolo/v8/classify/val.py @@ -0,0 +1,109 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch + +from ultralytics.yolo.data import ClassificationDataset, build_dataloader +from ultralytics.yolo.engine.validator import BaseValidator +from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER +from ultralytics.yolo.utils.metrics import ClassifyMetrics, ConfusionMatrix +from ultralytics.yolo.utils.plotting import plot_images + + +class ClassificationValidator(BaseValidator): + + def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): + """Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar.""" + super().__init__(dataloader, save_dir, pbar, args, _callbacks) + self.args.task = 'classify' + self.metrics = ClassifyMetrics() + + def get_desc(self): + """Returns a formatted string summarizing classification metrics.""" + return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc') + + def init_metrics(self, model): + """Initialize confusion matrix, class names, and top-1 and top-5 accuracy.""" + self.names = model.names + self.nc = len(model.names) + self.confusion_matrix = ConfusionMatrix(nc=self.nc, task='classify') + self.pred = [] + self.targets = [] + + def preprocess(self, batch): + """Preprocesses input batch and returns it.""" + batch['img'] = batch['img'].to(self.device, non_blocking=True) + batch['img'] = batch['img'].half() if self.args.half else batch['img'].float() + batch['cls'] = batch['cls'].to(self.device) + return batch + + def update_metrics(self, preds, batch): + """Updates running metrics with model predictions and batch targets.""" + n5 = min(len(self.model.names), 5) + self.pred.append(preds.argsort(1, descending=True)[:, :n5]) + self.targets.append(batch['cls']) + + def finalize_metrics(self, *args, **kwargs): + """Finalizes metrics of the model such as confusion_matrix and speed.""" + self.confusion_matrix.process_cls_preds(self.pred, self.targets) + if self.args.plots: + for normalize in True, False: + self.confusion_matrix.plot(save_dir=self.save_dir, + names=self.names.values(), + normalize=normalize, + on_plot=self.on_plot) + self.metrics.speed = self.speed + self.metrics.confusion_matrix = self.confusion_matrix + + def get_stats(self): + """Returns a dictionary of metrics obtained by processing targets and predictions.""" + self.metrics.process(self.targets, self.pred) + return self.metrics.results_dict + + def build_dataset(self, img_path): + return ClassificationDataset(root=img_path, args=self.args, augment=False) + + def get_dataloader(self, dataset_path, batch_size): + """Builds and returns a data loader for classification tasks with given parameters.""" + dataset = self.build_dataset(dataset_path) + return build_dataloader(dataset, batch_size, self.args.workers, rank=-1) + + def print_results(self): + """Prints evaluation metrics for YOLO object detection model.""" + pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format + LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5)) + + def plot_val_samples(self, batch, ni): + """Plot validation image samples.""" + plot_images(images=batch['img'], + batch_idx=torch.arange(len(batch['img'])), + cls=batch['cls'].squeeze(-1), + fname=self.save_dir / f'val_batch{ni}_labels.jpg', + names=self.names, + on_plot=self.on_plot) + + def plot_predictions(self, batch, preds, ni): + """Plots predicted bounding boxes on input images and saves the result.""" + plot_images(batch['img'], + batch_idx=torch.arange(len(batch['img'])), + cls=torch.argmax(preds, dim=1), + fname=self.save_dir / f'val_batch{ni}_pred.jpg', + names=self.names, + on_plot=self.on_plot) # pred + + +def val(cfg=DEFAULT_CFG, use_python=False): + """Validate YOLO model using custom data.""" + model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" + data = cfg.data or 'mnist160' + + args = dict(model=model, data=data) + if use_python: + from ultralytics import YOLO + YOLO(model).val(**args) + else: + validator = ClassificationValidator(args=args) + validator(model=args['model']) + + +if __name__ == '__main__': + val() diff --git a/modules/ultralytics/yolo/v8/detect/__init__.py b/modules/ultralytics/yolo/v8/detect/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..481951a9c79e54bb1720b3d174717973fc999059 --- /dev/null +++ b/modules/ultralytics/yolo/v8/detect/__init__.py @@ -0,0 +1,7 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .predict import DetectionPredictor, predict +from .train import DetectionTrainer, train +from .val import DetectionValidator, val + +__all__ = 'DetectionPredictor', 'predict', 'DetectionTrainer', 'train', 'DetectionValidator', 'val' diff --git a/modules/ultralytics/yolo/v8/detect/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/v8/detect/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e7326c1dc7f53c45ceb3f85ed3c06e55c390a445 Binary files /dev/null and b/modules/ultralytics/yolo/v8/detect/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/detect/__pycache__/predict.cpython-312.pyc b/modules/ultralytics/yolo/v8/detect/__pycache__/predict.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..873ff94ebdbb9df2cd7e495cffbc2a7599d72104 Binary files /dev/null and b/modules/ultralytics/yolo/v8/detect/__pycache__/predict.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/detect/__pycache__/train.cpython-312.pyc b/modules/ultralytics/yolo/v8/detect/__pycache__/train.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dc991cf01dbef1434bc86511da2a04463b7b5f50 Binary files /dev/null and b/modules/ultralytics/yolo/v8/detect/__pycache__/train.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/detect/__pycache__/val.cpython-312.pyc b/modules/ultralytics/yolo/v8/detect/__pycache__/val.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a4b3b53aa7cce56281c65c952ef746afab4249a3 Binary files /dev/null and b/modules/ultralytics/yolo/v8/detect/__pycache__/val.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/detect/predict.py b/modules/ultralytics/yolo/v8/detect/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..31e8a9f28aa93f23e17eb70be4738a465b8fcee0 --- /dev/null +++ b/modules/ultralytics/yolo/v8/detect/predict.py @@ -0,0 +1,48 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch + +from ultralytics.yolo.engine.predictor import BasePredictor +from ultralytics.yolo.engine.results import Results +from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops + + +class DetectionPredictor(BasePredictor): + + def postprocess(self, preds, img, orig_imgs): + """Postprocesses predictions and returns a list of Results objects.""" + preds = ops.non_max_suppression(preds, + self.args.conf, + self.args.iou, + agnostic=self.args.agnostic_nms, + max_det=self.args.max_det, + classes=self.args.classes) + + results = [] + for i, pred in enumerate(preds): + orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs + if not isinstance(orig_imgs, torch.Tensor): + pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) + path = self.batch[0] + img_path = path[i] if isinstance(path, list) else path + results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) + return results + + +def predict(cfg=DEFAULT_CFG, use_python=False): + """Runs YOLO model inference on input image(s).""" + model = cfg.model or 'yolov8n.pt' + source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ + else 'https://ultralytics.com/images/bus.jpg' + + args = dict(model=model, source=source) + if use_python: + from ultralytics import YOLO + YOLO(model)(**args) + else: + predictor = DetectionPredictor(overrides=args) + predictor.predict_cli() + + +if __name__ == '__main__': + predict() diff --git a/modules/ultralytics/yolo/v8/detect/train.py b/modules/ultralytics/yolo/v8/detect/train.py new file mode 100644 index 0000000000000000000000000000000000000000..1b475ed0d600c38d530c5ab4055fbb760130794d --- /dev/null +++ b/modules/ultralytics/yolo/v8/detect/train.py @@ -0,0 +1,143 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +from copy import copy + +import numpy as np + +from ultralytics.nn.tasks import DetectionModel +from ultralytics.yolo import v8 +from ultralytics.yolo.data import build_dataloader, build_yolo_dataset +from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader +from ultralytics.yolo.engine.trainer import BaseTrainer +from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr +from ultralytics.yolo.utils.plotting import plot_images, plot_labels, plot_results +from ultralytics.yolo.utils.torch_utils import de_parallel, torch_distributed_zero_first + + +# BaseTrainer python usage +class DetectionTrainer(BaseTrainer): + + def build_dataset(self, img_path, mode='train', batch=None): + """Build YOLO Dataset + + Args: + img_path (str): Path to the folder containing images. + mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. + batch (int, optional): Size of batches, this is for `rect`. Defaults to None. + """ + gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) + return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs) + + def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'): + """TODO: manage splits differently.""" + # Calculate stride - check if model is initialized + if self.args.v5loader: + LOGGER.warning("WARNING ⚠️ 'v5loader' feature is deprecated and will be removed soon. You can train using " + 'the default YOLOv8 dataloader instead, no argument is needed.') + gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) + return create_dataloader(path=dataset_path, + imgsz=self.args.imgsz, + batch_size=batch_size, + stride=gs, + hyp=vars(self.args), + augment=mode == 'train', + cache=self.args.cache, + pad=0 if mode == 'train' else 0.5, + rect=self.args.rect or mode == 'val', + rank=rank, + workers=self.args.workers, + close_mosaic=self.args.close_mosaic != 0, + prefix=colorstr(f'{mode}: '), + shuffle=mode == 'train', + seed=self.args.seed)[0] + assert mode in ['train', 'val'] + with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP + dataset = self.build_dataset(dataset_path, mode, batch_size) + shuffle = mode == 'train' + if getattr(dataset, 'rect', False) and shuffle: + LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False") + shuffle = False + workers = self.args.workers if mode == 'train' else self.args.workers * 2 + return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader + + def preprocess_batch(self, batch): + """Preprocesses a batch of images by scaling and converting to float.""" + batch['img'] = batch['img'].to(self.device, non_blocking=True).float() / 255 + return batch + + def set_model_attributes(self): + """nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps).""" + # self.args.box *= 3 / nl # scale to layers + # self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers + # self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers + self.model.nc = self.data['nc'] # attach number of classes to model + self.model.names = self.data['names'] # attach class names to model + self.model.args = self.args # attach hyperparameters to model + # TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc + + def get_model(self, cfg=None, weights=None, verbose=True): + """Return a YOLO detection model.""" + model = DetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1) + if weights: + model.load(weights) + return model + + def get_validator(self): + """Returns a DetectionValidator for YOLO model validation.""" + self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss' + return v8.detect.DetectionValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) + + def label_loss_items(self, loss_items=None, prefix='train'): + """ + Returns a loss dict with labelled training loss items tensor + """ + # Not needed for classification but necessary for segmentation & detection + keys = [f'{prefix}/{x}' for x in self.loss_names] + if loss_items is not None: + loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats + return dict(zip(keys, loss_items)) + else: + return keys + + def progress_string(self): + """Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size.""" + return ('\n' + '%11s' * + (4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size') + + def plot_training_samples(self, batch, ni): + """Plots training samples with their annotations.""" + plot_images(images=batch['img'], + batch_idx=batch['batch_idx'], + cls=batch['cls'].squeeze(-1), + bboxes=batch['bboxes'], + paths=batch['im_file'], + fname=self.save_dir / f'train_batch{ni}.jpg', + on_plot=self.on_plot) + + def plot_metrics(self): + """Plots metrics from a CSV file.""" + plot_results(file=self.csv, on_plot=self.on_plot) # save results.png + + def plot_training_labels(self): + """Create a labeled training plot of the YOLO model.""" + boxes = np.concatenate([lb['bboxes'] for lb in self.train_loader.dataset.labels], 0) + cls = np.concatenate([lb['cls'] for lb in self.train_loader.dataset.labels], 0) + plot_labels(boxes, cls.squeeze(), names=self.data['names'], save_dir=self.save_dir, on_plot=self.on_plot) + + +def train(cfg=DEFAULT_CFG, use_python=False): + """Train and optimize YOLO model given training data and device.""" + model = cfg.model or 'yolov8n.pt' + data = cfg.data or 'coco128.yaml' # or yolo.ClassificationDataset("mnist") + device = cfg.device if cfg.device is not None else '' + + args = dict(model=model, data=data, device=device) + if use_python: + from ultralytics import YOLO + YOLO(model).train(**args) + else: + trainer = DetectionTrainer(overrides=args) + trainer.train() + + +if __name__ == '__main__': + train() diff --git a/modules/ultralytics/yolo/v8/detect/val.py b/modules/ultralytics/yolo/v8/detect/val.py new file mode 100644 index 0000000000000000000000000000000000000000..77d346ca4b98c13ea31dc3a6499bce64e28dda21 --- /dev/null +++ b/modules/ultralytics/yolo/v8/detect/val.py @@ -0,0 +1,296 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import os +from pathlib import Path + +import numpy as np +import torch + +from ultralytics.yolo.data import build_dataloader, build_yolo_dataset +from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader +from ultralytics.yolo.engine.validator import BaseValidator +from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, colorstr, ops +from ultralytics.yolo.utils.checks import check_requirements +from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou +from ultralytics.yolo.utils.plotting import output_to_target, plot_images +from ultralytics.yolo.utils.torch_utils import de_parallel + + +class DetectionValidator(BaseValidator): + + def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): + """Initialize detection model with necessary variables and settings.""" + super().__init__(dataloader, save_dir, pbar, args, _callbacks) + self.args.task = 'detect' + self.is_coco = False + self.class_map = None + self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot) + self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95 + self.niou = self.iouv.numel() + + def preprocess(self, batch): + """Preprocesses batch of images for YOLO training.""" + batch['img'] = batch['img'].to(self.device, non_blocking=True) + batch['img'] = (batch['img'].half() if self.args.half else batch['img'].float()) / 255 + for k in ['batch_idx', 'cls', 'bboxes']: + batch[k] = batch[k].to(self.device) + + nb = len(batch['img']) + self.lb = [torch.cat([batch['cls'], batch['bboxes']], dim=-1)[batch['batch_idx'] == i] + for i in range(nb)] if self.args.save_hybrid else [] # for autolabelling + + return batch + + def init_metrics(self, model): + """Initialize evaluation metrics for YOLO.""" + val = self.data.get(self.args.split, '') # validation path + self.is_coco = isinstance(val, str) and 'coco' in val and val.endswith(f'{os.sep}val2017.txt') # is COCO + self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000)) + self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO + self.names = model.names + self.nc = len(model.names) + self.metrics.names = self.names + self.metrics.plot = self.args.plots + self.confusion_matrix = ConfusionMatrix(nc=self.nc) + self.seen = 0 + self.jdict = [] + self.stats = [] + + def get_desc(self): + """Return a formatted string summarizing class metrics of YOLO model.""" + return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)') + + def postprocess(self, preds): + """Apply Non-maximum suppression to prediction outputs.""" + return ops.non_max_suppression(preds, + self.args.conf, + self.args.iou, + labels=self.lb, + multi_label=True, + agnostic=self.args.single_cls, + max_det=self.args.max_det) + + def update_metrics(self, preds, batch): + """Metrics.""" + for si, pred in enumerate(preds): + idx = batch['batch_idx'] == si + cls = batch['cls'][idx] + bbox = batch['bboxes'][idx] + nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions + shape = batch['ori_shape'][si] + correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init + self.seen += 1 + + if npr == 0: + if nl: + self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1))) + if self.args.plots: + self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) + continue + + # Predictions + if self.args.single_cls: + pred[:, 5] = 0 + predn = pred.clone() + ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape, + ratio_pad=batch['ratio_pad'][si]) # native-space pred + + # Evaluate + if nl: + height, width = batch['img'].shape[2:] + tbox = ops.xywh2xyxy(bbox) * torch.tensor( + (width, height, width, height), device=self.device) # target boxes + ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape, + ratio_pad=batch['ratio_pad'][si]) # native-space labels + labelsn = torch.cat((cls, tbox), 1) # native-space labels + correct_bboxes = self._process_batch(predn, labelsn) + # TODO: maybe remove these `self.` arguments as they already are member variable + if self.args.plots: + self.confusion_matrix.process_batch(predn, labelsn) + self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls) + + # Save + if self.args.save_json: + self.pred_to_json(predn, batch['im_file'][si]) + if self.args.save_txt: + file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt' + self.save_one_txt(predn, self.args.save_conf, shape, file) + + def finalize_metrics(self, *args, **kwargs): + """Set final values for metrics speed and confusion matrix.""" + self.metrics.speed = self.speed + self.metrics.confusion_matrix = self.confusion_matrix + + def get_stats(self): + """Returns metrics statistics and results dictionary.""" + stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy + if len(stats) and stats[0].any(): + self.metrics.process(*stats) + self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class + return self.metrics.results_dict + + def print_results(self): + """Prints training/validation set metrics per class.""" + pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) # print format + LOGGER.info(pf % ('all', self.seen, self.nt_per_class.sum(), *self.metrics.mean_results())) + if self.nt_per_class.sum() == 0: + LOGGER.warning( + f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels') + + # Print results per class + if self.args.verbose and not self.training and self.nc > 1 and len(self.stats): + for i, c in enumerate(self.metrics.ap_class_index): + LOGGER.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i))) + + if self.args.plots: + for normalize in True, False: + self.confusion_matrix.plot(save_dir=self.save_dir, + names=self.names.values(), + normalize=normalize, + on_plot=self.on_plot) + + def _process_batch(self, detections, labels): + """ + Return correct prediction matrix + Arguments: + detections (array[N, 6]), x1, y1, x2, y2, conf, class + labels (array[M, 5]), class, x1, y1, x2, y2 + Returns: + correct (array[N, 10]), for 10 IoU levels + """ + iou = box_iou(labels[:, 1:], detections[:, :4]) + correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool) + correct_class = labels[:, 0:1] == detections[:, 5] + for i in range(len(self.iouv)): + x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), + 1).cpu().numpy() # [label, detect, iou] + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + # matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + correct[matches[:, 1].astype(int), i] = True + return torch.tensor(correct, dtype=torch.bool, device=detections.device) + + def build_dataset(self, img_path, mode='val', batch=None): + """Build YOLO Dataset + + Args: + img_path (str): Path to the folder containing images. + mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. + batch (int, optional): Size of batches, this is for `rect`. Defaults to None. + """ + gs = max(int(de_parallel(self.model).stride if self.model else 0), 32) + return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=gs) + + def get_dataloader(self, dataset_path, batch_size): + """TODO: manage splits differently.""" + # Calculate stride - check if model is initialized + if self.args.v5loader: + LOGGER.warning("WARNING ⚠️ 'v5loader' feature is deprecated and will be removed soon. You can train using " + 'the default YOLOv8 dataloader instead, no argument is needed.') + gs = max(int(de_parallel(self.model).stride if self.model else 0), 32) + return create_dataloader(path=dataset_path, + imgsz=self.args.imgsz, + batch_size=batch_size, + stride=gs, + hyp=vars(self.args), + cache=False, + pad=0.5, + rect=self.args.rect, + workers=self.args.workers, + prefix=colorstr(f'{self.args.mode}: '), + shuffle=False, + seed=self.args.seed)[0] + + dataset = self.build_dataset(dataset_path, batch=batch_size, mode='val') + dataloader = build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1) + return dataloader + + def plot_val_samples(self, batch, ni): + """Plot validation image samples.""" + plot_images(batch['img'], + batch['batch_idx'], + batch['cls'].squeeze(-1), + batch['bboxes'], + paths=batch['im_file'], + fname=self.save_dir / f'val_batch{ni}_labels.jpg', + names=self.names, + on_plot=self.on_plot) + + def plot_predictions(self, batch, preds, ni): + """Plots predicted bounding boxes on input images and saves the result.""" + plot_images(batch['img'], + *output_to_target(preds, max_det=self.args.max_det), + paths=batch['im_file'], + fname=self.save_dir / f'val_batch{ni}_pred.jpg', + names=self.names, + on_plot=self.on_plot) # pred + + def save_one_txt(self, predn, save_conf, shape, file): + """Save YOLO detections to a txt file in normalized coordinates in a specific format.""" + gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh + for *xyxy, conf, cls in predn.tolist(): + xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh + line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format + with open(file, 'a') as f: + f.write(('%g ' * len(line)).rstrip() % line + '\n') + + def pred_to_json(self, predn, filename): + """Serialize YOLO predictions to COCO json format.""" + stem = Path(filename).stem + image_id = int(stem) if stem.isnumeric() else stem + box = ops.xyxy2xywh(predn[:, :4]) # xywh + box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner + for p, b in zip(predn.tolist(), box.tolist()): + self.jdict.append({ + 'image_id': image_id, + 'category_id': self.class_map[int(p[5])], + 'bbox': [round(x, 3) for x in b], + 'score': round(p[4], 5)}) + + def eval_json(self, stats): + """Evaluates YOLO output in JSON format and returns performance statistics.""" + if self.args.save_json and self.is_coco and len(self.jdict): + anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations + pred_json = self.save_dir / 'predictions.json' # predictions + LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') + try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb + check_requirements('pycocotools>=2.0.6') + from pycocotools.coco import COCO # noqa + from pycocotools.cocoeval import COCOeval # noqa + + for x in anno_json, pred_json: + assert x.is_file(), f'{x} file not found' + anno = COCO(str(anno_json)) # init annotations api + pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) + eval = COCOeval(anno, pred, 'bbox') + if self.is_coco: + eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval + eval.evaluate() + eval.accumulate() + eval.summarize() + stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50 + except Exception as e: + LOGGER.warning(f'pycocotools unable to run: {e}') + return stats + + +def val(cfg=DEFAULT_CFG, use_python=False): + """Validate trained YOLO model on validation dataset.""" + model = cfg.model or 'yolov8n.pt' + data = cfg.data or 'coco128.yaml' + + args = dict(model=model, data=data) + if use_python: + from ultralytics import YOLO + YOLO(model).val(**args) + else: + validator = DetectionValidator(args=args) + validator(model=args['model']) + + +if __name__ == '__main__': + val() diff --git a/modules/ultralytics/yolo/v8/pose/__init__.py b/modules/ultralytics/yolo/v8/pose/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..8ec6d58771ab6dd02633eba23a0c7032e7cc02d9 --- /dev/null +++ b/modules/ultralytics/yolo/v8/pose/__init__.py @@ -0,0 +1,7 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .predict import PosePredictor, predict +from .train import PoseTrainer, train +from .val import PoseValidator, val + +__all__ = 'PoseTrainer', 'train', 'PoseValidator', 'val', 'PosePredictor', 'predict' diff --git a/modules/ultralytics/yolo/v8/pose/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/v8/pose/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7ddc6a6418e63cd7f1f8a6ed92a0ddc651d61229 Binary files /dev/null and b/modules/ultralytics/yolo/v8/pose/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/pose/__pycache__/predict.cpython-312.pyc b/modules/ultralytics/yolo/v8/pose/__pycache__/predict.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad1252b6ec418438bccf5ac9a0375f0effadab67 Binary files /dev/null and b/modules/ultralytics/yolo/v8/pose/__pycache__/predict.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/pose/__pycache__/train.cpython-312.pyc b/modules/ultralytics/yolo/v8/pose/__pycache__/train.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7e86b6f119208e2f5d38065f17268811581af7a8 Binary files /dev/null and b/modules/ultralytics/yolo/v8/pose/__pycache__/train.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/pose/__pycache__/val.cpython-312.pyc b/modules/ultralytics/yolo/v8/pose/__pycache__/val.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f6545249702e0e1d16409d479c91a413b05c8a04 Binary files /dev/null and b/modules/ultralytics/yolo/v8/pose/__pycache__/val.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/pose/predict.py b/modules/ultralytics/yolo/v8/pose/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..ad3246e11a55a0696b54af2b91bd2beb30352352 --- /dev/null +++ b/modules/ultralytics/yolo/v8/pose/predict.py @@ -0,0 +1,58 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from ultralytics.yolo.engine.results import Results +from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops +from ultralytics.yolo.v8.detect.predict import DetectionPredictor + + +class PosePredictor(DetectionPredictor): + + def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): + super().__init__(cfg, overrides, _callbacks) + self.args.task = 'pose' + + def postprocess(self, preds, img, orig_imgs): + """Return detection results for a given input image or list of images.""" + preds = ops.non_max_suppression(preds, + self.args.conf, + self.args.iou, + agnostic=self.args.agnostic_nms, + max_det=self.args.max_det, + classes=self.args.classes, + nc=len(self.model.names)) + + results = [] + for i, pred in enumerate(preds): + orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs + shape = orig_img.shape + pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() + pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:] + pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape) + path = self.batch[0] + img_path = path[i] if isinstance(path, list) else path + results.append( + Results(orig_img=orig_img, + path=img_path, + names=self.model.names, + boxes=pred[:, :6], + keypoints=pred_kpts)) + return results + + +def predict(cfg=DEFAULT_CFG, use_python=False): + """Runs YOLO to predict objects in an image or video.""" + model = cfg.model or 'yolov8n-pose.pt' + source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ + else 'https://ultralytics.com/images/bus.jpg' + + args = dict(model=model, source=source) + if use_python: + from ultralytics import YOLO + YOLO(model)(**args) + else: + predictor = PosePredictor(overrides=args) + predictor.predict_cli() + + +if __name__ == '__main__': + predict() diff --git a/modules/ultralytics/yolo/v8/pose/train.py b/modules/ultralytics/yolo/v8/pose/train.py new file mode 100644 index 0000000000000000000000000000000000000000..af3043c1942ffe88ae8eedcb45ef7bf5bb70a45a --- /dev/null +++ b/modules/ultralytics/yolo/v8/pose/train.py @@ -0,0 +1,77 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from copy import copy + +from ultralytics.nn.tasks import PoseModel +from ultralytics.yolo import v8 +from ultralytics.yolo.utils import DEFAULT_CFG +from ultralytics.yolo.utils.plotting import plot_images, plot_results + + +# BaseTrainer python usage +class PoseTrainer(v8.detect.DetectionTrainer): + + def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): + """Initialize a PoseTrainer object with specified configurations and overrides.""" + if overrides is None: + overrides = {} + overrides['task'] = 'pose' + super().__init__(cfg, overrides, _callbacks) + + def get_model(self, cfg=None, weights=None, verbose=True): + """Get pose estimation model with specified configuration and weights.""" + model = PoseModel(cfg, ch=3, nc=self.data['nc'], data_kpt_shape=self.data['kpt_shape'], verbose=verbose) + if weights: + model.load(weights) + + return model + + def set_model_attributes(self): + """Sets keypoints shape attribute of PoseModel.""" + super().set_model_attributes() + self.model.kpt_shape = self.data['kpt_shape'] + + def get_validator(self): + """Returns an instance of the PoseValidator class for validation.""" + self.loss_names = 'box_loss', 'pose_loss', 'kobj_loss', 'cls_loss', 'dfl_loss' + return v8.pose.PoseValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) + + def plot_training_samples(self, batch, ni): + """Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints.""" + images = batch['img'] + kpts = batch['keypoints'] + cls = batch['cls'].squeeze(-1) + bboxes = batch['bboxes'] + paths = batch['im_file'] + batch_idx = batch['batch_idx'] + plot_images(images, + batch_idx, + cls, + bboxes, + kpts=kpts, + paths=paths, + fname=self.save_dir / f'train_batch{ni}.jpg', + on_plot=self.on_plot) + + def plot_metrics(self): + """Plots training/val metrics.""" + plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png + + +def train(cfg=DEFAULT_CFG, use_python=False): + """Train the YOLO model on the given data and device.""" + model = cfg.model or 'yolov8n-pose.yaml' + data = cfg.data or 'coco8-pose.yaml' + device = cfg.device if cfg.device is not None else '' + + args = dict(model=model, data=data, device=device) + if use_python: + from ultralytics import YOLO + YOLO(model).train(**args) + else: + trainer = PoseTrainer(overrides=args) + trainer.train() + + +if __name__ == '__main__': + train() diff --git a/modules/ultralytics/yolo/v8/pose/val.py b/modules/ultralytics/yolo/v8/pose/val.py new file mode 100644 index 0000000000000000000000000000000000000000..f3fc1ac871e4becbe5950ab6556591f7a637af3c --- /dev/null +++ b/modules/ultralytics/yolo/v8/pose/val.py @@ -0,0 +1,224 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from pathlib import Path + +import numpy as np +import torch + +from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, ops +from ultralytics.yolo.utils.checks import check_requirements +from ultralytics.yolo.utils.metrics import OKS_SIGMA, PoseMetrics, box_iou, kpt_iou +from ultralytics.yolo.utils.plotting import output_to_target, plot_images +from ultralytics.yolo.v8.detect import DetectionValidator + + +class PoseValidator(DetectionValidator): + + def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): + """Initialize a 'PoseValidator' object with custom parameters and assigned attributes.""" + super().__init__(dataloader, save_dir, pbar, args, _callbacks) + self.args.task = 'pose' + self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot) + + def preprocess(self, batch): + """Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device.""" + batch = super().preprocess(batch) + batch['keypoints'] = batch['keypoints'].to(self.device).float() + return batch + + def get_desc(self): + """Returns description of evaluation metrics in string format.""" + return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Pose(P', + 'R', 'mAP50', 'mAP50-95)') + + def postprocess(self, preds): + """Apply non-maximum suppression and return detections with high confidence scores.""" + return ops.non_max_suppression(preds, + self.args.conf, + self.args.iou, + labels=self.lb, + multi_label=True, + agnostic=self.args.single_cls, + max_det=self.args.max_det, + nc=self.nc) + + def init_metrics(self, model): + """Initiate pose estimation metrics for YOLO model.""" + super().init_metrics(model) + self.kpt_shape = self.data['kpt_shape'] + is_pose = self.kpt_shape == [17, 3] + nkpt = self.kpt_shape[0] + self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt + + def update_metrics(self, preds, batch): + """Metrics.""" + for si, pred in enumerate(preds): + idx = batch['batch_idx'] == si + cls = batch['cls'][idx] + bbox = batch['bboxes'][idx] + kpts = batch['keypoints'][idx] + nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions + nk = kpts.shape[1] # number of keypoints + shape = batch['ori_shape'][si] + correct_kpts = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init + correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init + self.seen += 1 + + if npr == 0: + if nl: + self.stats.append((correct_bboxes, correct_kpts, *torch.zeros( + (2, 0), device=self.device), cls.squeeze(-1))) + if self.args.plots: + self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) + continue + + # Predictions + if self.args.single_cls: + pred[:, 5] = 0 + predn = pred.clone() + ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape, + ratio_pad=batch['ratio_pad'][si]) # native-space pred + pred_kpts = predn[:, 6:].view(npr, nk, -1) + ops.scale_coords(batch['img'][si].shape[1:], pred_kpts, shape, ratio_pad=batch['ratio_pad'][si]) + + # Evaluate + if nl: + height, width = batch['img'].shape[2:] + tbox = ops.xywh2xyxy(bbox) * torch.tensor( + (width, height, width, height), device=self.device) # target boxes + ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape, + ratio_pad=batch['ratio_pad'][si]) # native-space labels + tkpts = kpts.clone() + tkpts[..., 0] *= width + tkpts[..., 1] *= height + tkpts = ops.scale_coords(batch['img'][si].shape[1:], tkpts, shape, ratio_pad=batch['ratio_pad'][si]) + labelsn = torch.cat((cls, tbox), 1) # native-space labels + correct_bboxes = self._process_batch(predn[:, :6], labelsn) + correct_kpts = self._process_batch(predn[:, :6], labelsn, pred_kpts, tkpts) + if self.args.plots: + self.confusion_matrix.process_batch(predn, labelsn) + + # Append correct_masks, correct_boxes, pconf, pcls, tcls + self.stats.append((correct_bboxes, correct_kpts, pred[:, 4], pred[:, 5], cls.squeeze(-1))) + + # Save + if self.args.save_json: + self.pred_to_json(predn, batch['im_file'][si]) + # if self.args.save_txt: + # save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') + + def _process_batch(self, detections, labels, pred_kpts=None, gt_kpts=None): + """ + Return correct prediction matrix + Arguments: + detections (array[N, 6]), x1, y1, x2, y2, conf, class + labels (array[M, 5]), class, x1, y1, x2, y2 + pred_kpts (array[N, 51]), 51 = 17 * 3 + gt_kpts (array[N, 51]) + Returns: + correct (array[N, 10]), for 10 IoU levels + """ + if pred_kpts is not None and gt_kpts is not None: + # `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384 + area = ops.xyxy2xywh(labels[:, 1:])[:, 2:].prod(1) * 0.53 + iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area) + else: # boxes + iou = box_iou(labels[:, 1:], detections[:, :4]) + + correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool) + correct_class = labels[:, 0:1] == detections[:, 5] + for i in range(len(self.iouv)): + x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), + 1).cpu().numpy() # [label, detect, iou] + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + # matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + correct[matches[:, 1].astype(int), i] = True + return torch.tensor(correct, dtype=torch.bool, device=detections.device) + + def plot_val_samples(self, batch, ni): + """Plots and saves validation set samples with predicted bounding boxes and keypoints.""" + plot_images(batch['img'], + batch['batch_idx'], + batch['cls'].squeeze(-1), + batch['bboxes'], + kpts=batch['keypoints'], + paths=batch['im_file'], + fname=self.save_dir / f'val_batch{ni}_labels.jpg', + names=self.names, + on_plot=self.on_plot) + + def plot_predictions(self, batch, preds, ni): + """Plots predictions for YOLO model.""" + pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0) + plot_images(batch['img'], + *output_to_target(preds, max_det=self.args.max_det), + kpts=pred_kpts, + paths=batch['im_file'], + fname=self.save_dir / f'val_batch{ni}_pred.jpg', + names=self.names, + on_plot=self.on_plot) # pred + + def pred_to_json(self, predn, filename): + """Converts YOLO predictions to COCO JSON format.""" + stem = Path(filename).stem + image_id = int(stem) if stem.isnumeric() else stem + box = ops.xyxy2xywh(predn[:, :4]) # xywh + box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner + for p, b in zip(predn.tolist(), box.tolist()): + self.jdict.append({ + 'image_id': image_id, + 'category_id': self.class_map[int(p[5])], + 'bbox': [round(x, 3) for x in b], + 'keypoints': p[6:], + 'score': round(p[4], 5)}) + + def eval_json(self, stats): + """Evaluates object detection model using COCO JSON format.""" + if self.args.save_json and self.is_coco and len(self.jdict): + anno_json = self.data['path'] / 'annotations/person_keypoints_val2017.json' # annotations + pred_json = self.save_dir / 'predictions.json' # predictions + LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') + try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb + check_requirements('pycocotools>=2.0.6') + from pycocotools.coco import COCO # noqa + from pycocotools.cocoeval import COCOeval # noqa + + for x in anno_json, pred_json: + assert x.is_file(), f'{x} file not found' + anno = COCO(str(anno_json)) # init annotations api + pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) + for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'keypoints')]): + if self.is_coco: + eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval + eval.evaluate() + eval.accumulate() + eval.summarize() + idx = i * 4 + 2 + stats[self.metrics.keys[idx + 1]], stats[ + self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50 + except Exception as e: + LOGGER.warning(f'pycocotools unable to run: {e}') + return stats + + +def val(cfg=DEFAULT_CFG, use_python=False): + """Performs validation on YOLO model using given data.""" + model = cfg.model or 'yolov8n-pose.pt' + data = cfg.data or 'coco8-pose.yaml' + + args = dict(model=model, data=data) + if use_python: + from ultralytics import YOLO + YOLO(model).val(**args) + else: + validator = PoseValidator(args=args) + validator(model=args['model']) + + +if __name__ == '__main__': + val() diff --git a/modules/ultralytics/yolo/v8/segment/__init__.py b/modules/ultralytics/yolo/v8/segment/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..61a9efe98d484814996b03f3386653c3b2e44bf6 --- /dev/null +++ b/modules/ultralytics/yolo/v8/segment/__init__.py @@ -0,0 +1,7 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from .predict import SegmentationPredictor, predict +from .train import SegmentationTrainer, train +from .val import SegmentationValidator, val + +__all__ = 'SegmentationPredictor', 'predict', 'SegmentationTrainer', 'train', 'SegmentationValidator', 'val' diff --git a/modules/ultralytics/yolo/v8/segment/__pycache__/__init__.cpython-312.pyc b/modules/ultralytics/yolo/v8/segment/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c309a2d3da085374aa8889a42046b0af6db0dc73 Binary files /dev/null and b/modules/ultralytics/yolo/v8/segment/__pycache__/__init__.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/segment/__pycache__/predict.cpython-312.pyc b/modules/ultralytics/yolo/v8/segment/__pycache__/predict.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..308581fbf6ebc4d469e186becb8f93049c8e66d9 Binary files /dev/null and b/modules/ultralytics/yolo/v8/segment/__pycache__/predict.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/segment/__pycache__/train.cpython-312.pyc b/modules/ultralytics/yolo/v8/segment/__pycache__/train.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b3bd196937c0a5551ce6f4c84b00db3023c940f7 Binary files /dev/null and b/modules/ultralytics/yolo/v8/segment/__pycache__/train.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/segment/__pycache__/val.cpython-312.pyc b/modules/ultralytics/yolo/v8/segment/__pycache__/val.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b06ffd0aea6000aa21ddef8325ebdd04178a1b1 Binary files /dev/null and b/modules/ultralytics/yolo/v8/segment/__pycache__/val.cpython-312.pyc differ diff --git a/modules/ultralytics/yolo/v8/segment/predict.py b/modules/ultralytics/yolo/v8/segment/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..0b6ebc494d22bffc6cc3a4f5607d4691b425db24 --- /dev/null +++ b/modules/ultralytics/yolo/v8/segment/predict.py @@ -0,0 +1,63 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +import torch + +from ultralytics.yolo.engine.results import Results +from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops +from ultralytics.yolo.v8.detect.predict import DetectionPredictor + + +class SegmentationPredictor(DetectionPredictor): + + def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): + super().__init__(cfg, overrides, _callbacks) + self.args.task = 'segment' + + def postprocess(self, preds, img, orig_imgs): + """TODO: filter by classes.""" + p = ops.non_max_suppression(preds[0], + self.args.conf, + self.args.iou, + agnostic=self.args.agnostic_nms, + max_det=self.args.max_det, + nc=len(self.model.names), + classes=self.args.classes) + results = [] + proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported + for i, pred in enumerate(p): + orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs + path = self.batch[0] + img_path = path[i] if isinstance(path, list) else path + if not len(pred): # save empty boxes + results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])) + continue + if self.args.retina_masks: + if not isinstance(orig_imgs, torch.Tensor): + pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) + masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC + else: + masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC + if not isinstance(orig_imgs, torch.Tensor): + pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) + results.append( + Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)) + return results + + +def predict(cfg=DEFAULT_CFG, use_python=False): + """Runs YOLO object detection on an image or video source.""" + model = cfg.model or 'yolov8n-seg.pt' + source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ + else 'https://ultralytics.com/images/bus.jpg' + + args = dict(model=model, source=source) + if use_python: + from ultralytics import YOLO + YOLO(model)(**args) + else: + predictor = SegmentationPredictor(overrides=args) + predictor.predict_cli() + + +if __name__ == '__main__': + predict() diff --git a/modules/ultralytics/yolo/v8/segment/train.py b/modules/ultralytics/yolo/v8/segment/train.py new file mode 100644 index 0000000000000000000000000000000000000000..ab66cf061ac2bdd6ac86b8a8139ba2f81999d62d --- /dev/null +++ b/modules/ultralytics/yolo/v8/segment/train.py @@ -0,0 +1,65 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +from copy import copy + +from ultralytics.nn.tasks import SegmentationModel +from ultralytics.yolo import v8 +from ultralytics.yolo.utils import DEFAULT_CFG, RANK +from ultralytics.yolo.utils.plotting import plot_images, plot_results + + +# BaseTrainer python usage +class SegmentationTrainer(v8.detect.DetectionTrainer): + + def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): + """Initialize a SegmentationTrainer object with given arguments.""" + if overrides is None: + overrides = {} + overrides['task'] = 'segment' + super().__init__(cfg, overrides, _callbacks) + + def get_model(self, cfg=None, weights=None, verbose=True): + """Return SegmentationModel initialized with specified config and weights.""" + model = SegmentationModel(cfg, ch=3, nc=self.data['nc'], verbose=verbose and RANK == -1) + if weights: + model.load(weights) + + return model + + def get_validator(self): + """Return an instance of SegmentationValidator for validation of YOLO model.""" + self.loss_names = 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss' + return v8.segment.SegmentationValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) + + def plot_training_samples(self, batch, ni): + """Creates a plot of training sample images with labels and box coordinates.""" + plot_images(batch['img'], + batch['batch_idx'], + batch['cls'].squeeze(-1), + batch['bboxes'], + batch['masks'], + paths=batch['im_file'], + fname=self.save_dir / f'train_batch{ni}.jpg', + on_plot=self.on_plot) + + def plot_metrics(self): + """Plots training/val metrics.""" + plot_results(file=self.csv, segment=True, on_plot=self.on_plot) # save results.png + + +def train(cfg=DEFAULT_CFG, use_python=False): + """Train a YOLO segmentation model based on passed arguments.""" + model = cfg.model or 'yolov8n-seg.pt' + data = cfg.data or 'coco128-seg.yaml' # or yolo.ClassificationDataset("mnist") + device = cfg.device if cfg.device is not None else '' + + args = dict(model=model, data=data, device=device) + if use_python: + from ultralytics import YOLO + YOLO(model).train(**args) + else: + trainer = SegmentationTrainer(overrides=args) + trainer.train() + + +if __name__ == '__main__': + train() diff --git a/modules/ultralytics/yolo/v8/segment/val.py b/modules/ultralytics/yolo/v8/segment/val.py new file mode 100644 index 0000000000000000000000000000000000000000..73c2fe834fc16daf5435f5db90046f5d7698e20e --- /dev/null +++ b/modules/ultralytics/yolo/v8/segment/val.py @@ -0,0 +1,262 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license + +from multiprocessing.pool import ThreadPool +from pathlib import Path + +import numpy as np +import torch +import torch.nn.functional as F + +from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, NUM_THREADS, ops +from ultralytics.yolo.utils.checks import check_requirements +from ultralytics.yolo.utils.metrics import SegmentMetrics, box_iou, mask_iou +from ultralytics.yolo.utils.plotting import output_to_target, plot_images +from ultralytics.yolo.v8.detect import DetectionValidator + + +class SegmentationValidator(DetectionValidator): + + def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): + """Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics.""" + super().__init__(dataloader, save_dir, pbar, args, _callbacks) + self.args.task = 'segment' + self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot) + + def preprocess(self, batch): + """Preprocesses batch by converting masks to float and sending to device.""" + batch = super().preprocess(batch) + batch['masks'] = batch['masks'].to(self.device).float() + return batch + + def init_metrics(self, model): + """Initialize metrics and select mask processing function based on save_json flag.""" + super().init_metrics(model) + self.plot_masks = [] + if self.args.save_json: + check_requirements('pycocotools>=2.0.6') + self.process = ops.process_mask_upsample # more accurate + else: + self.process = ops.process_mask # faster + + def get_desc(self): + """Return a formatted description of evaluation metrics.""" + return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', + 'R', 'mAP50', 'mAP50-95)') + + def postprocess(self, preds): + """Postprocesses YOLO predictions and returns output detections with proto.""" + p = ops.non_max_suppression(preds[0], + self.args.conf, + self.args.iou, + labels=self.lb, + multi_label=True, + agnostic=self.args.single_cls, + max_det=self.args.max_det, + nc=self.nc) + proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported + return p, proto + + def update_metrics(self, preds, batch): + """Metrics.""" + for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): + idx = batch['batch_idx'] == si + cls = batch['cls'][idx] + bbox = batch['bboxes'][idx] + nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions + shape = batch['ori_shape'][si] + correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init + correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init + self.seen += 1 + + if npr == 0: + if nl: + self.stats.append((correct_bboxes, correct_masks, *torch.zeros( + (2, 0), device=self.device), cls.squeeze(-1))) + if self.args.plots: + self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) + continue + + # Masks + midx = [si] if self.args.overlap_mask else idx + gt_masks = batch['masks'][midx] + pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:]) + + # Predictions + if self.args.single_cls: + pred[:, 5] = 0 + predn = pred.clone() + ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape, + ratio_pad=batch['ratio_pad'][si]) # native-space pred + + # Evaluate + if nl: + height, width = batch['img'].shape[2:] + tbox = ops.xywh2xyxy(bbox) * torch.tensor( + (width, height, width, height), device=self.device) # target boxes + ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape, + ratio_pad=batch['ratio_pad'][si]) # native-space labels + labelsn = torch.cat((cls, tbox), 1) # native-space labels + correct_bboxes = self._process_batch(predn, labelsn) + # TODO: maybe remove these `self.` arguments as they already are member variable + correct_masks = self._process_batch(predn, + labelsn, + pred_masks, + gt_masks, + overlap=self.args.overlap_mask, + masks=True) + if self.args.plots: + self.confusion_matrix.process_batch(predn, labelsn) + + # Append correct_masks, correct_boxes, pconf, pcls, tcls + self.stats.append((correct_bboxes, correct_masks, pred[:, 4], pred[:, 5], cls.squeeze(-1))) + + pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) + if self.args.plots and self.batch_i < 3: + self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot + + # Save + if self.args.save_json: + pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), + shape, + ratio_pad=batch['ratio_pad'][si]) + self.pred_to_json(predn, batch['im_file'][si], pred_masks) + # if self.args.save_txt: + # save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') + + def finalize_metrics(self, *args, **kwargs): + """Sets speed and confusion matrix for evaluation metrics.""" + self.metrics.speed = self.speed + self.metrics.confusion_matrix = self.confusion_matrix + + def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False): + """ + Return correct prediction matrix + Arguments: + detections (array[N, 6]), x1, y1, x2, y2, conf, class + labels (array[M, 5]), class, x1, y1, x2, y2 + Returns: + correct (array[N, 10]), for 10 IoU levels + """ + if masks: + if overlap: + nl = len(labels) + index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 + gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) + gt_masks = torch.where(gt_masks == index, 1.0, 0.0) + if gt_masks.shape[1:] != pred_masks.shape[1:]: + gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0] + gt_masks = gt_masks.gt_(0.5) + iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) + else: # boxes + iou = box_iou(labels[:, 1:], detections[:, :4]) + + correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool) + correct_class = labels[:, 0:1] == detections[:, 5] + for i in range(len(self.iouv)): + x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), + 1).cpu().numpy() # [label, detect, iou] + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + # matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + correct[matches[:, 1].astype(int), i] = True + return torch.tensor(correct, dtype=torch.bool, device=detections.device) + + def plot_val_samples(self, batch, ni): + """Plots validation samples with bounding box labels.""" + plot_images(batch['img'], + batch['batch_idx'], + batch['cls'].squeeze(-1), + batch['bboxes'], + batch['masks'], + paths=batch['im_file'], + fname=self.save_dir / f'val_batch{ni}_labels.jpg', + names=self.names, + on_plot=self.on_plot) + + def plot_predictions(self, batch, preds, ni): + """Plots batch predictions with masks and bounding boxes.""" + plot_images( + batch['img'], + *output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed + torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks, + paths=batch['im_file'], + fname=self.save_dir / f'val_batch{ni}_pred.jpg', + names=self.names, + on_plot=self.on_plot) # pred + self.plot_masks.clear() + + def pred_to_json(self, predn, filename, pred_masks): + """Save one JSON result.""" + # Example result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} + from pycocotools.mask import encode # noqa + + def single_encode(x): + """Encode predicted masks as RLE and append results to jdict.""" + rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0] + rle['counts'] = rle['counts'].decode('utf-8') + return rle + + stem = Path(filename).stem + image_id = int(stem) if stem.isnumeric() else stem + box = ops.xyxy2xywh(predn[:, :4]) # xywh + box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner + pred_masks = np.transpose(pred_masks, (2, 0, 1)) + with ThreadPool(NUM_THREADS) as pool: + rles = pool.map(single_encode, pred_masks) + for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): + self.jdict.append({ + 'image_id': image_id, + 'category_id': self.class_map[int(p[5])], + 'bbox': [round(x, 3) for x in b], + 'score': round(p[4], 5), + 'segmentation': rles[i]}) + + def eval_json(self, stats): + """Return COCO-style object detection evaluation metrics.""" + if self.args.save_json and self.is_coco and len(self.jdict): + anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations + pred_json = self.save_dir / 'predictions.json' # predictions + LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') + try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb + check_requirements('pycocotools>=2.0.6') + from pycocotools.coco import COCO # noqa + from pycocotools.cocoeval import COCOeval # noqa + + for x in anno_json, pred_json: + assert x.is_file(), f'{x} file not found' + anno = COCO(str(anno_json)) # init annotations api + pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) + for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]): + if self.is_coco: + eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval + eval.evaluate() + eval.accumulate() + eval.summarize() + idx = i * 4 + 2 + stats[self.metrics.keys[idx + 1]], stats[ + self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50 + except Exception as e: + LOGGER.warning(f'pycocotools unable to run: {e}') + return stats + + +def val(cfg=DEFAULT_CFG, use_python=False): + """Validate trained YOLO model on validation data.""" + model = cfg.model or 'yolov8n-seg.pt' + data = cfg.data or 'coco128-seg.yaml' + + args = dict(model=model, data=data) + if use_python: + from ultralytics import YOLO + YOLO(model).val(**args) + else: + validator = SegmentationValidator(args=args) + validator(model=args['model']) + + +if __name__ == '__main__': + val() diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..e6023a87bce44aa7ac3b10302163c37bf709f141 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,2 @@ +opencv-python +transformers \ No newline at end of file