init project
Browse files- app.py +42 -71
- modules/dust3r/__pycache__/inference.cpython-312.pyc +0 -0
- modules/dust3r/inference.py +4 -4
- modules/dust3r/utils/image.py.bak +0 -163
- modules/dust3r/utils/image.py.ori +0 -143
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import sys
|
3 |
sys.path.append(os.path.abspath('./modules'))
|
4 |
|
5 |
-
import math
|
6 |
import tempfile
|
7 |
import gradio
|
8 |
import torch
|
@@ -11,23 +11,23 @@ import numpy as np
|
|
11 |
import functools
|
12 |
import trimesh
|
13 |
import copy
|
14 |
-
from PIL import Image
|
15 |
from scipy.spatial.transform import Rotation
|
16 |
|
17 |
from modules.pe3r.images import Images
|
18 |
|
19 |
from modules.dust3r.inference import inference
|
20 |
from modules.dust3r.image_pairs import make_pairs
|
21 |
-
from modules.dust3r.utils.image import load_images
|
22 |
from modules.dust3r.utils.device import to_numpy
|
23 |
from modules.dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
|
24 |
from modules.dust3r.cloud_opt import global_aligner, GlobalAlignerMode
|
25 |
-
from copy import deepcopy
|
26 |
-
import cv2
|
27 |
-
from typing import Any, Dict, Generator,List
|
28 |
-
import matplotlib.pyplot as pl
|
29 |
|
30 |
-
from modules.mobilesamv2.utils.transforms import ResizeLongestSide
|
31 |
# from modules.pe3r.models import Models
|
32 |
import torchvision.transforms as tvf
|
33 |
|
@@ -447,7 +447,7 @@ def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False,
|
|
447 |
# return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
|
448 |
|
449 |
|
450 |
-
@spaces.GPU(duration=
|
451 |
def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_conf_thr=3.0,
|
452 |
as_pointcloud=True, mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05,
|
453 |
scenegraph_type='complete', winsize=1, refid=0):
|
@@ -541,7 +541,7 @@ def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_
|
|
541 |
torch.cuda.empty_cache()
|
542 |
return scene, outfile
|
543 |
|
544 |
-
# @spaces.GPU(duration=
|
545 |
# def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
|
546 |
# mask_sky, clean_depth, transparent_cams, cam_size):
|
547 |
|
@@ -561,65 +561,36 @@ def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_
|
|
561 |
# clean_depth, transparent_cams, cam_size)
|
562 |
# return outfile
|
563 |
|
|
|
564 |
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
# with gradio.Row():
|
597 |
-
# adjust the confidence threshold
|
598 |
-
# min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1, visible=False)
|
599 |
-
# adjust the camera size in the output pointcloud
|
600 |
-
# cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001, visible=False)
|
601 |
-
# with gradio.Row():
|
602 |
-
# as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud", visible=False)
|
603 |
-
# two post process implemented
|
604 |
-
# mask_sky = gradio.Checkbox(value=False, label="Mask sky", visible=False)
|
605 |
-
# clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
|
606 |
-
# transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras", visible=False)
|
607 |
-
|
608 |
-
with gradio.Row():
|
609 |
-
text_input = gradio.Textbox(label="Query Text")
|
610 |
-
threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01)
|
611 |
-
|
612 |
-
find_btn = gradio.Button("Find")
|
613 |
-
|
614 |
-
outmodel = gradio.Model3D()
|
615 |
-
# events
|
616 |
-
|
617 |
-
run_btn.click(fn=recon_fun,
|
618 |
-
inputs=[inputfiles],
|
619 |
-
outputs=[scene, outmodel]) # , outgallery
|
620 |
-
|
621 |
-
# find_btn.click(fn=get_3D_object_from_scene_fun,
|
622 |
-
# inputs=[text_input, threshold, scene, min_conf_thr, as_pointcloud, mask_sky,
|
623 |
-
# clean_depth, transparent_cams, cam_size],
|
624 |
-
# outputs=outmodel)
|
625 |
-
demo.launch(show_error=True, share=None, server_name=None, server_port=None)
|
|
|
2 |
import sys
|
3 |
sys.path.append(os.path.abspath('./modules'))
|
4 |
|
5 |
+
# import math
|
6 |
import tempfile
|
7 |
import gradio
|
8 |
import torch
|
|
|
11 |
import functools
|
12 |
import trimesh
|
13 |
import copy
|
14 |
+
# from PIL import Image
|
15 |
from scipy.spatial.transform import Rotation
|
16 |
|
17 |
from modules.pe3r.images import Images
|
18 |
|
19 |
from modules.dust3r.inference import inference
|
20 |
from modules.dust3r.image_pairs import make_pairs
|
21 |
+
from modules.dust3r.utils.image import load_images #, rgb
|
22 |
from modules.dust3r.utils.device import to_numpy
|
23 |
from modules.dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
|
24 |
from modules.dust3r.cloud_opt import global_aligner, GlobalAlignerMode
|
25 |
+
# from copy import deepcopy
|
26 |
+
# import cv2
|
27 |
+
# from typing import Any, Dict, Generator,List
|
28 |
+
# import matplotlib.pyplot as pl
|
29 |
|
30 |
+
# from modules.mobilesamv2.utils.transforms import ResizeLongestSide
|
31 |
# from modules.pe3r.models import Models
|
32 |
import torchvision.transforms as tvf
|
33 |
|
|
|
447 |
# return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
|
448 |
|
449 |
|
450 |
+
@spaces.GPU(duration=30)
|
451 |
def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_conf_thr=3.0,
|
452 |
as_pointcloud=True, mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05,
|
453 |
scenegraph_type='complete', winsize=1, refid=0):
|
|
|
541 |
torch.cuda.empty_cache()
|
542 |
return scene, outfile
|
543 |
|
544 |
+
# @spaces.GPU(duration=30)
|
545 |
# def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
|
546 |
# mask_sky, clean_depth, transparent_cams, cam_size):
|
547 |
|
|
|
561 |
# clean_depth, transparent_cams, cam_size)
|
562 |
# return outfile
|
563 |
|
564 |
+
tmpdirname = tempfile.mkdtemp(suffix='pe3r_gradio_demo')
|
565 |
|
566 |
+
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname)
|
567 |
+
# model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname)
|
568 |
+
# get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname)
|
569 |
+
|
570 |
+
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo:
|
571 |
+
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
|
572 |
+
scene = gradio.State(None)
|
573 |
+
gradio.HTML('<h2 style="text-align: center;">PE3R Demo</h2>')
|
574 |
+
with gradio.Column():
|
575 |
+
inputfiles = gradio.File(file_count="multiple")
|
576 |
+
|
577 |
+
run_btn = gradio.Button("Reconstruct")
|
578 |
+
|
579 |
+
with gradio.Row():
|
580 |
+
text_input = gradio.Textbox(label="Query Text")
|
581 |
+
threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01)
|
582 |
+
|
583 |
+
find_btn = gradio.Button("Find")
|
584 |
+
|
585 |
+
outmodel = gradio.Model3D()
|
586 |
+
# events
|
587 |
+
|
588 |
+
run_btn.click(fn=recon_fun,
|
589 |
+
inputs=[inputfiles],
|
590 |
+
outputs=[scene, outmodel]) # , outgallery
|
591 |
+
|
592 |
+
# find_btn.click(fn=get_3D_object_from_scene_fun,
|
593 |
+
# inputs=[text_input, threshold, scene, min_conf_thr, as_pointcloud, mask_sky,
|
594 |
+
# clean_depth, transparent_cams, cam_size],
|
595 |
+
# outputs=outmodel)
|
596 |
+
demo.launch(show_error=True, share=None, server_name=None, server_port=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/dust3r/__pycache__/inference.cpython-312.pyc
CHANGED
Binary files a/modules/dust3r/__pycache__/inference.cpython-312.pyc and b/modules/dust3r/__pycache__/inference.cpython-312.pyc differ
|
|
modules/dust3r/inference.py
CHANGED
@@ -41,12 +41,12 @@ def loss_of_one_batch(batch, model, criterion, device, symmetrize_batch=False, u
|
|
41 |
if symmetrize_batch:
|
42 |
view1, view2 = make_batch_symmetric(batch)
|
43 |
|
44 |
-
with torch.cuda.amp.autocast(enabled=bool(use_amp)):
|
45 |
-
|
46 |
|
47 |
# loss is supposed to be symmetric
|
48 |
-
with torch.cuda.amp.autocast(enabled=False):
|
49 |
-
|
50 |
|
51 |
result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss)
|
52 |
return result[ret] if ret else result
|
|
|
41 |
if symmetrize_batch:
|
42 |
view1, view2 = make_batch_symmetric(batch)
|
43 |
|
44 |
+
# with torch.cuda.amp.autocast(enabled=bool(use_amp)):
|
45 |
+
pred1, pred2 = model(view1, view2)
|
46 |
|
47 |
# loss is supposed to be symmetric
|
48 |
+
# with torch.cuda.amp.autocast(enabled=False):
|
49 |
+
loss = criterion(view1, view2, pred1, pred2) if criterion is not None else None
|
50 |
|
51 |
result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss)
|
52 |
return result[ret] if ret else result
|
modules/dust3r/utils/image.py.bak
DELETED
@@ -1,163 +0,0 @@
|
|
1 |
-
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
|
2 |
-
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
|
3 |
-
#
|
4 |
-
# --------------------------------------------------------
|
5 |
-
# utilitary functions about images (loading/converting...)
|
6 |
-
# --------------------------------------------------------
|
7 |
-
import os
|
8 |
-
import torch
|
9 |
-
import numpy as np
|
10 |
-
import PIL.Image
|
11 |
-
from PIL.ImageOps import exif_transpose
|
12 |
-
import torchvision.transforms as tvf
|
13 |
-
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
|
14 |
-
import cv2 # noqa
|
15 |
-
|
16 |
-
try:
|
17 |
-
from pillow_heif import register_heif_opener # noqa
|
18 |
-
register_heif_opener()
|
19 |
-
heif_support_enabled = True
|
20 |
-
except ImportError:
|
21 |
-
heif_support_enabled = False
|
22 |
-
|
23 |
-
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
24 |
-
|
25 |
-
|
26 |
-
def img_to_arr( img ):
|
27 |
-
if isinstance(img, str):
|
28 |
-
img = imread_cv2(img)
|
29 |
-
return img
|
30 |
-
|
31 |
-
def imread_cv2(path, options=cv2.IMREAD_COLOR):
|
32 |
-
""" Open an image or a depthmap with opencv-python.
|
33 |
-
"""
|
34 |
-
if path.endswith(('.exr', 'EXR')):
|
35 |
-
options = cv2.IMREAD_ANYDEPTH
|
36 |
-
img = cv2.imread(path, options)
|
37 |
-
if img is None:
|
38 |
-
raise IOError(f'Could not load image={path} with {options=}')
|
39 |
-
if img.ndim == 3:
|
40 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
41 |
-
return img
|
42 |
-
|
43 |
-
|
44 |
-
def rgb(ftensor, true_shape=None):
|
45 |
-
if isinstance(ftensor, list):
|
46 |
-
return [rgb(x, true_shape=true_shape) for x in ftensor]
|
47 |
-
if isinstance(ftensor, torch.Tensor):
|
48 |
-
ftensor = ftensor.detach().cpu().numpy() # H,W,3
|
49 |
-
if ftensor.ndim == 3 and ftensor.shape[0] == 3:
|
50 |
-
ftensor = ftensor.transpose(1, 2, 0)
|
51 |
-
elif ftensor.ndim == 4 and ftensor.shape[1] == 3:
|
52 |
-
ftensor = ftensor.transpose(0, 2, 3, 1)
|
53 |
-
if true_shape is not None:
|
54 |
-
H, W = true_shape
|
55 |
-
ftensor = ftensor[:H, :W]
|
56 |
-
if ftensor.dtype == np.uint8:
|
57 |
-
img = np.float32(ftensor) / 255
|
58 |
-
else:
|
59 |
-
img = (ftensor * 0.5) + 0.5
|
60 |
-
return img.clip(min=0, max=1)
|
61 |
-
|
62 |
-
|
63 |
-
def _resize_pil_image(img, long_edge_size):
|
64 |
-
S = max(img.size)
|
65 |
-
if S > long_edge_size:
|
66 |
-
interp = PIL.Image.LANCZOS
|
67 |
-
elif S <= long_edge_size:
|
68 |
-
interp = PIL.Image.BICUBIC
|
69 |
-
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
|
70 |
-
return img.resize(new_size, interp)
|
71 |
-
|
72 |
-
|
73 |
-
def load_images(folder_or_list, cog_seg_maps, size, square_ok=False, verbose=True):
|
74 |
-
""" open and convert all images in a list or folder to proper input format for DUSt3R
|
75 |
-
"""
|
76 |
-
if isinstance(folder_or_list, str):
|
77 |
-
if verbose:
|
78 |
-
print(f'>> Loading images from {folder_or_list}')
|
79 |
-
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
|
80 |
-
|
81 |
-
elif isinstance(folder_or_list, list):
|
82 |
-
if verbose:
|
83 |
-
print(f'>> Loading a list of {len(folder_or_list)} images')
|
84 |
-
root, folder_content = '', folder_or_list
|
85 |
-
|
86 |
-
else:
|
87 |
-
raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')
|
88 |
-
|
89 |
-
supported_images_extensions = ['.jpg', '.jpeg', '.png']
|
90 |
-
if heif_support_enabled:
|
91 |
-
supported_images_extensions += ['.heic', '.heif']
|
92 |
-
supported_images_extensions = tuple(supported_images_extensions)
|
93 |
-
|
94 |
-
imgs = []
|
95 |
-
for path in enumerate(folder_content):
|
96 |
-
if not path.lower().endswith(supported_images_extensions):
|
97 |
-
continue
|
98 |
-
img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB')
|
99 |
-
|
100 |
-
W1, H1 = img.size
|
101 |
-
if size == 224:
|
102 |
-
# resize short side to 224 (then crop)
|
103 |
-
img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
|
104 |
-
else:
|
105 |
-
# resize long side to 512
|
106 |
-
img = _resize_pil_image(img, size)
|
107 |
-
|
108 |
-
W, H = img.size
|
109 |
-
cx, cy = W//2, H//2
|
110 |
-
if size == 224:
|
111 |
-
half = min(cx, cy)
|
112 |
-
img = img.crop((cx-half, cy-half, cx+half, cy+half))
|
113 |
-
else:
|
114 |
-
halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8
|
115 |
-
if not (square_ok) and W == H:
|
116 |
-
halfh = 3*halfw/4
|
117 |
-
img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))
|
118 |
-
|
119 |
-
W2, H2 = img.size
|
120 |
-
if verbose:
|
121 |
-
print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
|
122 |
-
imgs.append(dict(img=img, ori_img=ImgNorm(img)[None], true_shape=np.int32(
|
123 |
-
[img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))
|
124 |
-
|
125 |
-
mean_colors = {}
|
126 |
-
mean_colors_cnt = {}
|
127 |
-
for i in range(len(imgs)):
|
128 |
-
img_np = imgs[i]['img']
|
129 |
-
seg_map = cog_seg_maps[i]
|
130 |
-
unique_labels = np.unique(seg_map)
|
131 |
-
for label in unique_labels:
|
132 |
-
if label == -1:
|
133 |
-
continue
|
134 |
-
mask = (seg_map == label)
|
135 |
-
mean_color = img_np[mask].mean(axis=0)
|
136 |
-
if label in mean_colors.keys():
|
137 |
-
mean_colors[label] += mean_color
|
138 |
-
mean_colors_cnt[label] += 1
|
139 |
-
else:
|
140 |
-
mean_colors[label] = mean_color
|
141 |
-
mean_colors_cnt[label] = 1
|
142 |
-
for key in mean_colors.keys():
|
143 |
-
mean_colors[key] /= mean_colors_cnt[key]
|
144 |
-
|
145 |
-
for i in range(len(imgs)):
|
146 |
-
img_np = np.array(imgs[i]['img'])
|
147 |
-
smoothed_image = np.zeros_like(img_np)
|
148 |
-
seg_map = cog_seg_maps[i]
|
149 |
-
unique_labels = np.unique(seg_map)
|
150 |
-
for label in unique_labels:
|
151 |
-
if label == -1:
|
152 |
-
continue
|
153 |
-
mask = (seg_map == label)
|
154 |
-
mean_color = mean_colors[label]
|
155 |
-
smoothed_image[mask] = mean_color
|
156 |
-
smoothed_image = cv2.addWeighted(img_np, 0.1, smoothed_image, 0.9, 0)
|
157 |
-
smoothed_image = PIL.Image.fromarray(smoothed_image)
|
158 |
-
imgs[i]['img'] = ImgNorm(smoothed_image)[None]
|
159 |
-
|
160 |
-
assert imgs, 'no images foud at '+root
|
161 |
-
if verbose:
|
162 |
-
print(f' (Found {len(imgs)} images)')
|
163 |
-
return imgs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/dust3r/utils/image.py.ori
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
|
2 |
-
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
|
3 |
-
#
|
4 |
-
# --------------------------------------------------------
|
5 |
-
# utilitary functions about images (loading/converting...)
|
6 |
-
# --------------------------------------------------------
|
7 |
-
import os
|
8 |
-
import torch
|
9 |
-
import numpy as np
|
10 |
-
import PIL.Image
|
11 |
-
from PIL.ImageOps import exif_transpose
|
12 |
-
import torchvision.transforms as tvf
|
13 |
-
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
|
14 |
-
import cv2 # noqa
|
15 |
-
|
16 |
-
try:
|
17 |
-
from pillow_heif import register_heif_opener # noqa
|
18 |
-
register_heif_opener()
|
19 |
-
heif_support_enabled = True
|
20 |
-
except ImportError:
|
21 |
-
heif_support_enabled = False
|
22 |
-
|
23 |
-
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
24 |
-
|
25 |
-
|
26 |
-
def img_to_arr( img ):
|
27 |
-
if isinstance(img, str):
|
28 |
-
img = imread_cv2(img)
|
29 |
-
return img
|
30 |
-
|
31 |
-
def imread_cv2(path, options=cv2.IMREAD_COLOR):
|
32 |
-
""" Open an image or a depthmap with opencv-python.
|
33 |
-
"""
|
34 |
-
if path.endswith(('.exr', 'EXR')):
|
35 |
-
options = cv2.IMREAD_ANYDEPTH
|
36 |
-
img = cv2.imread(path, options)
|
37 |
-
if img is None:
|
38 |
-
raise IOError(f'Could not load image={path} with {options=}')
|
39 |
-
if img.ndim == 3:
|
40 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
41 |
-
return img
|
42 |
-
|
43 |
-
|
44 |
-
def rgb(ftensor, true_shape=None):
|
45 |
-
if isinstance(ftensor, list):
|
46 |
-
return [rgb(x, true_shape=true_shape) for x in ftensor]
|
47 |
-
if isinstance(ftensor, torch.Tensor):
|
48 |
-
ftensor = ftensor.detach().cpu().numpy() # H,W,3
|
49 |
-
if ftensor.ndim == 3 and ftensor.shape[0] == 3:
|
50 |
-
ftensor = ftensor.transpose(1, 2, 0)
|
51 |
-
elif ftensor.ndim == 4 and ftensor.shape[1] == 3:
|
52 |
-
ftensor = ftensor.transpose(0, 2, 3, 1)
|
53 |
-
if true_shape is not None:
|
54 |
-
H, W = true_shape
|
55 |
-
ftensor = ftensor[:H, :W]
|
56 |
-
if ftensor.dtype == np.uint8:
|
57 |
-
img = np.float32(ftensor) / 255
|
58 |
-
else:
|
59 |
-
img = (ftensor * 0.5) + 0.5
|
60 |
-
return img.clip(min=0, max=1)
|
61 |
-
|
62 |
-
|
63 |
-
def _resize_pil_image(img, long_edge_size):
|
64 |
-
S = max(img.size)
|
65 |
-
if S > long_edge_size:
|
66 |
-
interp = PIL.Image.LANCZOS
|
67 |
-
elif S <= long_edge_size:
|
68 |
-
interp = PIL.Image.BICUBIC
|
69 |
-
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
|
70 |
-
return img.resize(new_size, interp)
|
71 |
-
|
72 |
-
|
73 |
-
def load_images(folder_or_list, cog_seg_maps, size, square_ok=False, verbose=True):
|
74 |
-
""" open and convert all images in a list or folder to proper input format for DUSt3R
|
75 |
-
"""
|
76 |
-
if isinstance(folder_or_list, str):
|
77 |
-
if verbose:
|
78 |
-
print(f'>> Loading images from {folder_or_list}')
|
79 |
-
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
|
80 |
-
|
81 |
-
elif isinstance(folder_or_list, list):
|
82 |
-
if verbose:
|
83 |
-
print(f'>> Loading a list of {len(folder_or_list)} images')
|
84 |
-
root, folder_content = '', folder_or_list
|
85 |
-
|
86 |
-
else:
|
87 |
-
raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')
|
88 |
-
|
89 |
-
supported_images_extensions = ['.jpg', '.jpeg', '.png']
|
90 |
-
if heif_support_enabled:
|
91 |
-
supported_images_extensions += ['.heic', '.heif']
|
92 |
-
supported_images_extensions = tuple(supported_images_extensions)
|
93 |
-
|
94 |
-
imgs = []
|
95 |
-
for i, path in enumerate(folder_content):
|
96 |
-
if not path.lower().endswith(supported_images_extensions):
|
97 |
-
continue
|
98 |
-
img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB')
|
99 |
-
|
100 |
-
img_np = np.array(img)
|
101 |
-
smoothed_image = np.zeros_like(img_np)
|
102 |
-
seg_map = cog_seg_maps[i]
|
103 |
-
unique_labels = np.unique(seg_map)
|
104 |
-
for label in unique_labels:
|
105 |
-
mask = (seg_map == label)
|
106 |
-
mean_color = img_np[mask].mean(axis=0)
|
107 |
-
smoothed_image[mask] = mean_color
|
108 |
-
smoothed_image = cv2.addWeighted(img_np, 0.05, smoothed_image, 0.95, 0)
|
109 |
-
smoothed_image = PIL.Image.fromarray(smoothed_image)
|
110 |
-
|
111 |
-
W1, H1 = img.size
|
112 |
-
if size == 224:
|
113 |
-
# resize short side to 224 (then crop)
|
114 |
-
img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
|
115 |
-
smoothed_image = _resize_pil_image(smoothed_image, round(size * max(W1/H1, H1/W1)))
|
116 |
-
else:
|
117 |
-
# resize long side to 512
|
118 |
-
img = _resize_pil_image(img, size)
|
119 |
-
smoothed_image = _resize_pil_image(smoothed_image, size)
|
120 |
-
|
121 |
-
W, H = img.size
|
122 |
-
cx, cy = W//2, H//2
|
123 |
-
if size == 224:
|
124 |
-
half = min(cx, cy)
|
125 |
-
img = img.crop((cx-half, cy-half, cx+half, cy+half))
|
126 |
-
smoothed_image = smoothed_image.crop((cx-half, cy-half, cx+half, cy+half))
|
127 |
-
else:
|
128 |
-
halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8
|
129 |
-
if not (square_ok) and W == H:
|
130 |
-
halfh = 3*halfw/4
|
131 |
-
img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))
|
132 |
-
smoothed_image = smoothed_image.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))
|
133 |
-
|
134 |
-
W2, H2 = img.size
|
135 |
-
if verbose:
|
136 |
-
print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
|
137 |
-
imgs.append(dict(img=ImgNorm(smoothed_image)[None], ori_img=ImgNorm(img)[None], true_shape=np.int32(
|
138 |
-
[img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))
|
139 |
-
|
140 |
-
assert imgs, 'no images foud at '+root
|
141 |
-
if verbose:
|
142 |
-
print(f' (Found {len(imgs)} images)')
|
143 |
-
return imgs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|