Jie Hu
commited on
Commit
·
43b0caa
1
Parent(s):
1d77203
init project
Browse files
app.py
CHANGED
@@ -39,6 +39,8 @@ import torchvision.transforms as tvf
|
|
39 |
|
40 |
|
41 |
silent = False
|
|
|
|
|
42 |
|
43 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
44 |
cam_color=None, as_pointcloud=False,
|
@@ -81,6 +83,7 @@ def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world,
|
|
81 |
if not silent:
|
82 |
print('(exporting 3D scene to', outfile, ')')
|
83 |
# scene.export(file_obj=outfile)
|
|
|
84 |
return outfile
|
85 |
|
86 |
# @spaces.GPU(duration=180)
|
@@ -242,7 +245,6 @@ def slerp_multiple(vectors, t_values):
|
|
242 |
return interpolated_vector
|
243 |
|
244 |
@torch.no_grad
|
245 |
-
@spaces.GPU(duration=180)
|
246 |
def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
|
247 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
248 |
|
@@ -297,24 +299,9 @@ def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, origin
|
|
297 |
|
298 |
return ret_mask
|
299 |
|
300 |
-
@
|
301 |
-
def
|
302 |
-
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
|
303 |
-
scenegraph_type, winsize, refid):
|
304 |
-
"""
|
305 |
-
from a list of images, run dust3r inference, global aligner.
|
306 |
-
then run get_3D_model_from_scene
|
307 |
-
"""
|
308 |
-
if len(filelist) < 2:
|
309 |
-
raise gradio.Error("Please input at least 2 images.")
|
310 |
-
|
311 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
312 |
-
|
313 |
-
pe3r = Models(device)
|
314 |
-
|
315 |
-
images = Images(filelist=filelist, device=device)
|
316 |
-
|
317 |
-
# try:
|
318 |
cog_seg_maps = []
|
319 |
rev_cog_seg_maps = []
|
320 |
inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
|
@@ -447,8 +434,25 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
447 |
multi_view_clip_feats[i] = torch.zeros((1024))
|
448 |
multi_view_clip_feats[mask_num] = torch.zeros((1024))
|
449 |
|
450 |
-
|
451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
453 |
# except Exception as e:
|
454 |
# rev_cog_seg_maps = []
|
@@ -495,10 +499,11 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
495 |
scene.ori_imgs = ori_imgs
|
496 |
print(e)
|
497 |
|
|
|
498 |
|
499 |
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
|
500 |
clean_depth, transparent_cams, cam_size)
|
501 |
-
|
502 |
# also return rgb, depth and confidence imgs
|
503 |
# depth is normalized with the max value for all images
|
504 |
# we apply the jet colormap on the confidence maps
|
@@ -603,11 +608,11 @@ with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
|
|
603 |
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
|
604 |
transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras", visible=False)
|
605 |
|
606 |
-
with gradio.Row():
|
607 |
-
|
608 |
-
|
609 |
|
610 |
-
find_btn = gradio.Button("Find")
|
611 |
|
612 |
outmodel = gradio.Model3D()
|
613 |
# outgallery = gradio.Gallery(label='rgb,depth,confidence', columns=3, height="100%",
|
|
|
39 |
|
40 |
|
41 |
silent = False
|
42 |
+
pe3r = Models('cuda' if torch.cuda.is_available() else 'cpu')
|
43 |
+
|
44 |
|
45 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
46 |
cam_color=None, as_pointcloud=False,
|
|
|
83 |
if not silent:
|
84 |
print('(exporting 3D scene to', outfile, ')')
|
85 |
# scene.export(file_obj=outfile)
|
86 |
+
print('ttttt')
|
87 |
return outfile
|
88 |
|
89 |
# @spaces.GPU(duration=180)
|
|
|
245 |
return interpolated_vector
|
246 |
|
247 |
@torch.no_grad
|
|
|
248 |
def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
|
249 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
250 |
|
|
|
299 |
|
300 |
return ret_mask
|
301 |
|
302 |
+
@torch.no_grad
|
303 |
+
def get_cog_feats(images):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
cog_seg_maps = []
|
306 |
rev_cog_seg_maps = []
|
307 |
inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
|
|
|
434 |
multi_view_clip_feats[i] = torch.zeros((1024))
|
435 |
multi_view_clip_feats[mask_num] = torch.zeros((1024))
|
436 |
|
437 |
+
return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
|
438 |
|
439 |
+
@spaces.GPU(duration=180)
|
440 |
+
def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
441 |
+
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
|
442 |
+
scenegraph_type, winsize, refid):
|
443 |
+
"""
|
444 |
+
from a list of images, run dust3r inference, global aligner.
|
445 |
+
then run get_3D_model_from_scene
|
446 |
+
"""
|
447 |
+
if len(filelist) < 2:
|
448 |
+
raise gradio.Error("Please input at least 2 images.")
|
449 |
+
|
450 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
451 |
+
|
452 |
+
images = Images(filelist=filelist, device=device)
|
453 |
+
|
454 |
+
# try:
|
455 |
+
cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images)
|
456 |
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
457 |
# except Exception as e:
|
458 |
# rev_cog_seg_maps = []
|
|
|
499 |
scene.ori_imgs = ori_imgs
|
500 |
print(e)
|
501 |
|
502 |
+
print('a')
|
503 |
|
504 |
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
|
505 |
clean_depth, transparent_cams, cam_size)
|
506 |
+
print('b')
|
507 |
# also return rgb, depth and confidence imgs
|
508 |
# depth is normalized with the max value for all images
|
509 |
# we apply the jet colormap on the confidence maps
|
|
|
608 |
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
|
609 |
transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras", visible=False)
|
610 |
|
611 |
+
# with gradio.Row():
|
612 |
+
# text_input = gradio.Textbox(label="Query Text")
|
613 |
+
# threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01)
|
614 |
|
615 |
+
# find_btn = gradio.Button("Find")
|
616 |
|
617 |
outmodel = gradio.Model3D()
|
618 |
# outgallery = gradio.Gallery(label='rgb,depth,confidence', columns=3, height="100%",
|