hujiecpp commited on
Commit
564a5c5
·
1 Parent(s): 345054e

init project

Browse files
Files changed (1) hide show
  1. app.py +426 -426
app.py CHANGED
@@ -43,395 +43,395 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
43
  pe3r = Models(device)
44
 
45
 
46
- # def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
47
- # cam_color=None, as_pointcloud=False,
48
- # transparent_cams=False, silent=False):
49
- # assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
50
- # pts3d = to_numpy(pts3d)
51
- # imgs = to_numpy(imgs)
52
- # focals = to_numpy(focals)
53
- # cams2world = to_numpy(cams2world)
54
-
55
- # scene = trimesh.Scene()
56
-
57
- # # full pointcloud
58
- # if as_pointcloud:
59
- # pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
60
- # col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
61
- # pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
62
- # scene.add_geometry(pct)
63
- # else:
64
- # meshes = []
65
- # for i in range(len(imgs)):
66
- # meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
67
- # mesh = trimesh.Trimesh(**cat_meshes(meshes))
68
- # scene.add_geometry(mesh)
69
-
70
- # # add each camera
71
- # for i, pose_c2w in enumerate(cams2world):
72
- # if isinstance(cam_color, list):
73
- # camera_edge_color = cam_color[i]
74
- # else:
75
- # camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
76
- # add_scene_cam(scene, pose_c2w, camera_edge_color,
77
- # None if transparent_cams else imgs[i], focals[i],
78
- # imsize=imgs[i].shape[1::-1], screen_width=cam_size)
79
-
80
- # rot = np.eye(4)
81
- # rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
82
- # scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
83
- # outfile = os.path.join(outdir, 'scene.glb')
84
- # if not silent:
85
- # print('(exporting 3D scene to', outfile, ')')
86
- # scene.export(file_obj=outfile)
87
- # return outfile
88
 
89
  # # @spaces.GPU(duration=180)
90
- # def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
91
- # clean_depth=False, transparent_cams=False, cam_size=0.05):
92
- # """
93
- # extract 3D_model (glb file) from a reconstructed scene
94
- # """
95
- # if scene is None:
96
- # return None
97
- # # post processes
98
- # if clean_depth:
99
- # scene = scene.clean_pointcloud()
100
- # if mask_sky:
101
- # scene = scene.mask_sky()
102
-
103
- # # get optimized values from scene
104
- # rgbimg = scene.ori_imgs
105
- # focals = scene.get_focals().cpu()
106
- # cams2world = scene.get_im_poses().cpu()
107
- # # 3D pointcloud from depthmap, poses and intrinsics
108
- # pts3d = to_numpy(scene.get_pts3d())
109
- # scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
110
- # msk = to_numpy(scene.get_masks())
111
- # return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
112
- # transparent_cams=transparent_cams, cam_size=cam_size, silent=silent)
113
-
114
- # def mask_nms(masks, threshold=0.8):
115
- # keep = []
116
- # mask_num = len(masks)
117
- # suppressed = np.zeros((mask_num), dtype=np.int64)
118
- # for i in range(mask_num):
119
- # if suppressed[i] == 1:
120
- # continue
121
- # keep.append(i)
122
- # for j in range(i + 1, mask_num):
123
- # if suppressed[j] == 1:
124
- # continue
125
- # intersection = (masks[i] & masks[j]).sum()
126
- # if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold:
127
- # suppressed[j] = 1
128
- # return keep
129
-
130
- # def filter(masks, keep):
131
- # ret = []
132
- # for i, m in enumerate(masks):
133
- # if i in keep: ret.append(m)
134
- # return ret
135
-
136
- # def mask_to_box(mask):
137
- # if mask.sum() == 0:
138
- # return np.array([0, 0, 0, 0])
139
 
140
- # # Get the rows and columns where the mask is 1
141
- # rows = np.any(mask, axis=1)
142
- # cols = np.any(mask, axis=0)
143
 
144
- # # Get top, bottom, left, right edges
145
- # top = np.argmax(rows)
146
- # bottom = len(rows) - 1 - np.argmax(np.flip(rows))
147
- # left = np.argmax(cols)
148
- # right = len(cols) - 1 - np.argmax(np.flip(cols))
149
 
150
- # return np.array([left, top, right, bottom])
151
-
152
- # def box_xyxy_to_xywh(box_xyxy):
153
- # box_xywh = deepcopy(box_xyxy)
154
- # box_xywh[2] = box_xywh[2] - box_xywh[0]
155
- # box_xywh[3] = box_xywh[3] - box_xywh[1]
156
- # return box_xywh
157
-
158
- # def get_seg_img(mask, box, image):
159
- # image = image.copy()
160
- # x, y, w, h = box
161
- # # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
162
- # box_area = w * h
163
- # mask_area = mask.sum()
164
- # if 1 - (mask_area / box_area) < 0.2:
165
- # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
166
- # else:
167
- # random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8)
168
- # image[mask == 0] = random_values[mask == 0]
169
- # seg_img = image[y:y+h, x:x+w, ...]
170
- # return seg_img
171
-
172
- # def pad_img(img):
173
- # h, w, _ = img.shape
174
- # l = max(w,h)
175
- # pad = np.zeros((l,l,3), dtype=np.uint8) #
176
- # if h > w:
177
- # pad[:,(h-w)//2:(h-w)//2 + w, :] = img
178
- # else:
179
- # pad[(w-h)//2:(w-h)//2 + h, :, :] = img
180
- # return pad
181
-
182
- # def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
183
- # assert len(args) > 0 and all(
184
- # len(a) == len(args[0]) for a in args
185
- # ), "Batched iteration must have inputs of all the same size."
186
- # n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
187
- # for b in range(n_batches):
188
- # yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
189
-
190
- # def slerp(u1, u2, t):
191
- # """
192
- # Perform spherical linear interpolation (Slerp) between two unit vectors.
193
 
194
- # Args:
195
- # - u1 (torch.Tensor): First unit vector, shape (1024,)
196
- # - u2 (torch.Tensor): Second unit vector, shape (1024,)
197
- # - t (float): Interpolation parameter
198
 
199
- # Returns:
200
- # - torch.Tensor: Interpolated vector, shape (1024,)
201
- # """
202
- # # Compute the dot product
203
- # dot_product = torch.sum(u1 * u2)
204
 
205
- # # Ensure the dot product is within the valid range [-1, 1]
206
- # dot_product = torch.clamp(dot_product, -1.0, 1.0)
207
 
208
- # # Compute the angle between the vectors
209
- # theta = torch.acos(dot_product)
210
 
211
- # # Compute the coefficients for the interpolation
212
- # sin_theta = torch.sin(theta)
213
- # if sin_theta == 0:
214
- # # Vectors are parallel, return a linear interpolation
215
- # return u1 + t * (u2 - u1)
216
 
217
- # s1 = torch.sin((1 - t) * theta) / sin_theta
218
- # s2 = torch.sin(t * theta) / sin_theta
219
 
220
- # # Perform the interpolation
221
- # return s1 * u1 + s2 * u2
222
 
223
- # def slerp_multiple(vectors, t_values):
224
- # """
225
- # Perform spherical linear interpolation (Slerp) for multiple vectors.
226
 
227
- # Args:
228
- # - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024)
229
- # - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,)
230
 
231
- # Returns:
232
- # - torch.Tensor: Interpolated vector, shape (1024,)
233
- # """
234
- # n = vectors.shape[0]
235
 
236
- # # Initialize the interpolated vector with the first vector
237
- # interpolated_vector = vectors[0]
238
 
239
- # # Perform Slerp iteratively
240
- # for i in range(1, n):
241
- # # Perform Slerp between the current interpolated vector and the next vector
242
- # t = t_values[i] / (t_values[i] + t_values[i-1])
243
- # interpolated_vector = slerp(interpolated_vector, vectors[i], t)
244
 
245
- # return interpolated_vector
246
-
247
- # @torch.no_grad
248
- # def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform, device):
249
- # sam_mask=[]
250
- # img_area = original_size[0] * original_size[1]
251
-
252
- # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False)
253
- # input_boxes1 = obj_results[0].boxes.xyxy
254
- # input_boxes1 = input_boxes1.cpu().numpy()
255
- # input_boxes1 = transform.apply_boxes(input_boxes1, original_size)
256
- # input_boxes = torch.from_numpy(input_boxes1).to(device)
257
 
258
- # # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False)
259
- # # input_boxes2 = obj_results[0].boxes.xyxy
260
- # # input_boxes2 = input_boxes2.cpu().numpy()
261
- # # input_boxes2 = transform.apply_boxes(input_boxes2, original_size)
262
- # # input_boxes2 = torch.from_numpy(input_boxes2).to(device)
263
-
264
- # # input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0)
265
-
266
- # input_image = mobilesamv2.preprocess(sam1_image)
267
- # image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state']
268
-
269
- # image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0)
270
- # prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe()
271
- # prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0)
272
- # for (boxes,) in batch_iterator(320, input_boxes):
273
- # with torch.no_grad():
274
- # image_embedding=image_embedding[0:boxes.shape[0],:,:,:]
275
- # prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:]
276
- # sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder(
277
- # points=None,
278
- # boxes=boxes,
279
- # masks=None,)
280
- # low_res_masks, _ = mobilesamv2.mask_decoder(
281
- # image_embeddings=image_embedding,
282
- # image_pe=prompt_embedding,
283
- # sparse_prompt_embeddings=sparse_embeddings,
284
- # dense_prompt_embeddings=dense_embeddings,
285
- # multimask_output=False,
286
- # simple_type=True,
287
- # )
288
- # low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size)
289
- # sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold)
290
- # for mask in sam_mask_pre:
291
- # if mask.sum() / img_area > 0.002:
292
- # sam_mask.append(mask.squeeze(1))
293
- # sam_mask=torch.cat(sam_mask)
294
- # sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True)
295
- # keep = mask_nms(sorted_sam_mask)
296
- # ret_mask = filter(sorted_sam_mask, keep)
297
-
298
- # return ret_mask
299
-
300
- # @torch.no_grad
301
- # def get_cog_feats(images, device):
302
- # cog_seg_maps = []
303
- # rev_cog_seg_maps = []
304
- # inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
305
- # mask_num = 0
306
-
307
- # sam1_images = images.sam1_images
308
- # sam1_images_size = images.sam1_images_size
309
- # np_images = images.np_images
310
- # np_images_size = images.np_images_size
311
 
312
- # sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform, device)
313
- # for mask in sam1_masks:
314
- # _, _, _ = pe3r.sam2.add_new_mask(
315
- # inference_state=inference_state,
316
- # frame_idx=0,
317
- # obj_id=mask_num,
318
- # mask=mask,
319
- # )
320
- # mask_num += 1
321
-
322
- # video_segments = {} # video_segments contains the per-frame segmentation results
323
- # for out_frame_idx, out_obj_ids, out_mask_logits in pe3r.sam2.propagate_in_video(inference_state):
324
- # sam2_masks = (out_mask_logits > 0.0).squeeze(1)
325
-
326
- # video_segments[out_frame_idx] = {
327
- # out_obj_id: sam2_masks[i].cpu().numpy()
328
- # for i, out_obj_id in enumerate(out_obj_ids)
329
- # }
330
-
331
- # if out_frame_idx == 0:
332
- # continue
333
-
334
- # sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform, device)
335
-
336
- # for sam1_mask in sam1_masks:
337
- # flg = 1
338
- # for sam2_mask in sam2_masks:
339
- # # print(sam1_mask.shape, sam2_mask.shape)
340
- # area1 = sam1_mask.sum()
341
- # area2 = sam2_mask.sum()
342
- # intersection = (sam1_mask & sam2_mask).sum()
343
- # if min(intersection / area1, intersection / area2) > 0.25:
344
- # flg = 0
345
- # break
346
- # if flg:
347
- # video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
348
- # mask_num += 1
349
-
350
- # multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
351
- # multi_view_clip_feats_map = {}
352
- # multi_view_clip_area_map = {}
353
- # for now_frame in range(0, len(video_segments), 1):
354
- # image = np_images[now_frame]
355
-
356
- # seg_img_list = []
357
- # out_obj_id_list = []
358
- # out_obj_mask_list = []
359
- # out_obj_area_list = []
360
- # # NOTE: background: -1
361
- # rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
362
- # sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
363
- # for out_obj_id, mask in sorted_dict_items:
364
- # if mask.sum() == 0:
365
- # continue
366
- # rev_seg_map[mask] = out_obj_id
367
- # rev_cog_seg_maps.append(rev_seg_map)
368
-
369
- # seg_map = -np.ones(image.shape[:2], dtype=np.int64)
370
- # sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True)
371
- # for out_obj_id, mask in sorted_dict_items:
372
- # if mask.sum() == 0:
373
- # continue
374
- # box = np.int32(box_xyxy_to_xywh(mask_to_box(mask)))
375
 
376
- # if box[2] == 0 and box[3] == 0:
377
- # continue
378
- # # print(box)
379
- # seg_img = get_seg_img(mask, box, image)
380
- # pad_seg_img = cv2.resize(pad_img(seg_img), (256,256))
381
- # seg_img_list.append(pad_seg_img)
382
- # seg_map[mask] = out_obj_id
383
- # out_obj_id_list.append(out_obj_id)
384
- # out_obj_area_list.append(np.count_nonzero(mask))
385
- # out_obj_mask_list.append(mask)
386
-
387
- # if len(seg_img_list) == 0:
388
- # cog_seg_maps.append(seg_map)
389
- # continue
390
-
391
- # seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
392
- # seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0
393
 
394
- # inputs = pe3r.siglip_processor(images=seg_imgs, return_tensors="pt")
395
- # inputs = {key: value.to(device) for key, value in inputs.items()}
396
 
397
- # image_features = pe3r.siglip.get_image_features(**inputs)
398
- # image_features = image_features / image_features.norm(dim=-1, keepdim=True)
399
- # image_features = image_features.detach().cpu()
400
-
401
- # for i in range(len(out_obj_mask_list)):
402
- # for j in range(i + 1, len(out_obj_mask_list)):
403
- # mask1 = out_obj_mask_list[i]
404
- # mask2 = out_obj_mask_list[j]
405
- # intersection = np.logical_and(mask1, mask2).sum()
406
- # area1 = out_obj_area_list[i]
407
- # area2 = out_obj_area_list[j]
408
- # if min(intersection / area1, intersection / area2) > 0.025:
409
- # conf1 = area1 / (area1 + area2)
410
- # # conf2 = area2 / (area1 + area2)
411
- # image_features[j] = slerp(image_features[j], image_features[i], conf1)
412
-
413
- # for i, clip_feat in enumerate(image_features):
414
- # id = out_obj_id_list[i]
415
- # if id in multi_view_clip_feats_map.keys():
416
- # multi_view_clip_feats_map[id].append(clip_feat)
417
- # multi_view_clip_area_map[id].append(out_obj_area_list[i])
418
- # else:
419
- # multi_view_clip_feats_map[id] = [clip_feat]
420
- # multi_view_clip_area_map[id] = [out_obj_area_list[i]]
421
-
422
- # cog_seg_maps.append(seg_map)
423
- # del image_features
424
 
425
- # for i in range(mask_num):
426
- # if i in multi_view_clip_feats_map.keys():
427
- # clip_feats = multi_view_clip_feats_map[i]
428
- # mask_area = multi_view_clip_area_map[i]
429
- # multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area))
430
- # else:
431
- # multi_view_clip_feats[i] = torch.zeros((1024))
432
- # multi_view_clip_feats[mask_num] = torch.zeros((1024))
433
 
434
- # return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
435
 
436
  @spaces.GPU(duration=180)
437
  def get_reconstructed_scene(outdir, device, silent, filelist, schedule, niter, min_conf_thr,
@@ -444,11 +444,11 @@ def get_reconstructed_scene(outdir, device, silent, filelist, schedule, niter, m
444
  if len(filelist) < 2:
445
  raise gradio.Error("Please input at least 2 images.")
446
 
447
- # images = Images(filelist=filelist, device=device)
448
 
449
  # try:
450
- # cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, device)
451
- # imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
452
  # except Exception as e:
453
  # rev_cog_seg_maps = []
454
  # for tmp_img in images.np_images:
@@ -458,66 +458,66 @@ def get_reconstructed_scene(outdir, device, silent, filelist, schedule, niter, m
458
  # cog_feats = torch.zeros((1, 1024))
459
  # imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
460
 
461
- # if len(imgs) == 1:
462
- # imgs = [imgs[0], copy.deepcopy(imgs[0])]
463
- # imgs[1]['idx'] = 1
464
-
465
- # if scenegraph_type == "swin":
466
- # scenegraph_type = scenegraph_type + "-" + str(winsize)
467
- # elif scenegraph_type == "oneref":
468
- # scenegraph_type = scenegraph_type + "-" + str(refid)
469
-
470
- # pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
471
- # output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent)
472
- # mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
473
- # scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
474
- # lr = 0.01
475
- # # if mode == GlobalAlignerMode.PointCloudOptimizer:
476
- # loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr)
477
 
478
- # try:
479
- # ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
480
- # for i in range(len(imgs)):
481
- # # print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
482
- # imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None]
483
- # pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
484
- # output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent)
485
- # mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
486
- # scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
487
- # ori_imgs = scene.ori_imgs
488
- # lr = 0.01
489
- # # if mode == GlobalAlignerMode.PointCloudOptimizer:
490
- # loss = scene.compute_global_alignment(tune_flg=False, init='mst', niter=niter, schedule=schedule, lr=lr)
491
- # except Exception as e:
492
- # scene = scene_1
493
- # scene.imgs = ori_imgs
494
- # scene.ori_imgs = ori_imgs
495
- # print(e)
496
-
497
-
498
- # outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
499
- # clean_depth, transparent_cams, cam_size)
500
-
501
- # # also return rgb, depth and confidence imgs
502
- # # depth is normalized with the max value for all images
503
- # # we apply the jet colormap on the confidence maps
504
- # rgbimg = scene.imgs
505
- # depths = to_numpy(scene.get_depthmaps())
506
- # confs = to_numpy([c for c in scene.im_conf])
507
- # # confs = to_numpy([c for c in scene.conf_2])
508
- # cmap = pl.get_cmap('jet')
509
- # depths_max = max([d.max() for d in depths])
510
- # depths = [d / depths_max for d in depths]
511
- # confs_max = max([d.max() for d in confs])
512
- # confs = [cmap(d / confs_max) for d in confs]
513
-
514
- # imgs = []
515
- # for i in range(len(rgbimg)):
516
- # imgs.append(rgbimg[i])
517
- # imgs.append(rgb(depths[i]))
518
- # imgs.append(rgb(confs[i]))
519
-
520
- # return scene, outfile, imgs
 
 
 
 
 
 
 
 
 
 
 
 
 
521
 
522
  # @spaces.GPU(duration=180)
523
  # def get_3D_object_from_scene(outdir, pe3r, silent, device, text, threshold, scene, min_conf_thr, as_pointcloud,
 
43
  pe3r = Models(device)
44
 
45
 
46
+ def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
47
+ cam_color=None, as_pointcloud=False,
48
+ transparent_cams=False, silent=False):
49
+ assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
50
+ pts3d = to_numpy(pts3d)
51
+ imgs = to_numpy(imgs)
52
+ focals = to_numpy(focals)
53
+ cams2world = to_numpy(cams2world)
54
+
55
+ scene = trimesh.Scene()
56
+
57
+ # full pointcloud
58
+ if as_pointcloud:
59
+ pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
60
+ col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
61
+ pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
62
+ scene.add_geometry(pct)
63
+ else:
64
+ meshes = []
65
+ for i in range(len(imgs)):
66
+ meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
67
+ mesh = trimesh.Trimesh(**cat_meshes(meshes))
68
+ scene.add_geometry(mesh)
69
+
70
+ # add each camera
71
+ for i, pose_c2w in enumerate(cams2world):
72
+ if isinstance(cam_color, list):
73
+ camera_edge_color = cam_color[i]
74
+ else:
75
+ camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
76
+ add_scene_cam(scene, pose_c2w, camera_edge_color,
77
+ None if transparent_cams else imgs[i], focals[i],
78
+ imsize=imgs[i].shape[1::-1], screen_width=cam_size)
79
+
80
+ rot = np.eye(4)
81
+ rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
82
+ scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
83
+ outfile = os.path.join(outdir, 'scene.glb')
84
+ if not silent:
85
+ print('(exporting 3D scene to', outfile, ')')
86
+ scene.export(file_obj=outfile)
87
+ return outfile
88
 
89
  # # @spaces.GPU(duration=180)
90
+ def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
91
+ clean_depth=False, transparent_cams=False, cam_size=0.05):
92
+ """
93
+ extract 3D_model (glb file) from a reconstructed scene
94
+ """
95
+ if scene is None:
96
+ return None
97
+ # post processes
98
+ if clean_depth:
99
+ scene = scene.clean_pointcloud()
100
+ if mask_sky:
101
+ scene = scene.mask_sky()
102
+
103
+ # get optimized values from scene
104
+ rgbimg = scene.ori_imgs
105
+ focals = scene.get_focals().cpu()
106
+ cams2world = scene.get_im_poses().cpu()
107
+ # 3D pointcloud from depthmap, poses and intrinsics
108
+ pts3d = to_numpy(scene.get_pts3d())
109
+ scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
110
+ msk = to_numpy(scene.get_masks())
111
+ return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
112
+ transparent_cams=transparent_cams, cam_size=cam_size, silent=silent)
113
+
114
+ def mask_nms(masks, threshold=0.8):
115
+ keep = []
116
+ mask_num = len(masks)
117
+ suppressed = np.zeros((mask_num), dtype=np.int64)
118
+ for i in range(mask_num):
119
+ if suppressed[i] == 1:
120
+ continue
121
+ keep.append(i)
122
+ for j in range(i + 1, mask_num):
123
+ if suppressed[j] == 1:
124
+ continue
125
+ intersection = (masks[i] & masks[j]).sum()
126
+ if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold:
127
+ suppressed[j] = 1
128
+ return keep
129
+
130
+ def filter(masks, keep):
131
+ ret = []
132
+ for i, m in enumerate(masks):
133
+ if i in keep: ret.append(m)
134
+ return ret
135
+
136
+ def mask_to_box(mask):
137
+ if mask.sum() == 0:
138
+ return np.array([0, 0, 0, 0])
139
 
140
+ # Get the rows and columns where the mask is 1
141
+ rows = np.any(mask, axis=1)
142
+ cols = np.any(mask, axis=0)
143
 
144
+ # Get top, bottom, left, right edges
145
+ top = np.argmax(rows)
146
+ bottom = len(rows) - 1 - np.argmax(np.flip(rows))
147
+ left = np.argmax(cols)
148
+ right = len(cols) - 1 - np.argmax(np.flip(cols))
149
 
150
+ return np.array([left, top, right, bottom])
151
+
152
+ def box_xyxy_to_xywh(box_xyxy):
153
+ box_xywh = deepcopy(box_xyxy)
154
+ box_xywh[2] = box_xywh[2] - box_xywh[0]
155
+ box_xywh[3] = box_xywh[3] - box_xywh[1]
156
+ return box_xywh
157
+
158
+ def get_seg_img(mask, box, image):
159
+ image = image.copy()
160
+ x, y, w, h = box
161
+ # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
162
+ box_area = w * h
163
+ mask_area = mask.sum()
164
+ if 1 - (mask_area / box_area) < 0.2:
165
+ image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
166
+ else:
167
+ random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8)
168
+ image[mask == 0] = random_values[mask == 0]
169
+ seg_img = image[y:y+h, x:x+w, ...]
170
+ return seg_img
171
+
172
+ def pad_img(img):
173
+ h, w, _ = img.shape
174
+ l = max(w,h)
175
+ pad = np.zeros((l,l,3), dtype=np.uint8) #
176
+ if h > w:
177
+ pad[:,(h-w)//2:(h-w)//2 + w, :] = img
178
+ else:
179
+ pad[(w-h)//2:(w-h)//2 + h, :, :] = img
180
+ return pad
181
+
182
+ def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
183
+ assert len(args) > 0 and all(
184
+ len(a) == len(args[0]) for a in args
185
+ ), "Batched iteration must have inputs of all the same size."
186
+ n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
187
+ for b in range(n_batches):
188
+ yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
189
+
190
+ def slerp(u1, u2, t):
191
+ """
192
+ Perform spherical linear interpolation (Slerp) between two unit vectors.
193
 
194
+ Args:
195
+ - u1 (torch.Tensor): First unit vector, shape (1024,)
196
+ - u2 (torch.Tensor): Second unit vector, shape (1024,)
197
+ - t (float): Interpolation parameter
198
 
199
+ Returns:
200
+ - torch.Tensor: Interpolated vector, shape (1024,)
201
+ """
202
+ # Compute the dot product
203
+ dot_product = torch.sum(u1 * u2)
204
 
205
+ # Ensure the dot product is within the valid range [-1, 1]
206
+ dot_product = torch.clamp(dot_product, -1.0, 1.0)
207
 
208
+ # Compute the angle between the vectors
209
+ theta = torch.acos(dot_product)
210
 
211
+ # Compute the coefficients for the interpolation
212
+ sin_theta = torch.sin(theta)
213
+ if sin_theta == 0:
214
+ # Vectors are parallel, return a linear interpolation
215
+ return u1 + t * (u2 - u1)
216
 
217
+ s1 = torch.sin((1 - t) * theta) / sin_theta
218
+ s2 = torch.sin(t * theta) / sin_theta
219
 
220
+ # Perform the interpolation
221
+ return s1 * u1 + s2 * u2
222
 
223
+ def slerp_multiple(vectors, t_values):
224
+ """
225
+ Perform spherical linear interpolation (Slerp) for multiple vectors.
226
 
227
+ Args:
228
+ - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024)
229
+ - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,)
230
 
231
+ Returns:
232
+ - torch.Tensor: Interpolated vector, shape (1024,)
233
+ """
234
+ n = vectors.shape[0]
235
 
236
+ # Initialize the interpolated vector with the first vector
237
+ interpolated_vector = vectors[0]
238
 
239
+ # Perform Slerp iteratively
240
+ for i in range(1, n):
241
+ # Perform Slerp between the current interpolated vector and the next vector
242
+ t = t_values[i] / (t_values[i] + t_values[i-1])
243
+ interpolated_vector = slerp(interpolated_vector, vectors[i], t)
244
 
245
+ return interpolated_vector
246
+
247
+ @torch.no_grad
248
+ def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform, device):
249
+ sam_mask=[]
250
+ img_area = original_size[0] * original_size[1]
251
+
252
+ obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False)
253
+ input_boxes1 = obj_results[0].boxes.xyxy
254
+ input_boxes1 = input_boxes1.cpu().numpy()
255
+ input_boxes1 = transform.apply_boxes(input_boxes1, original_size)
256
+ input_boxes = torch.from_numpy(input_boxes1).to(device)
257
 
258
+ # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False)
259
+ # input_boxes2 = obj_results[0].boxes.xyxy
260
+ # input_boxes2 = input_boxes2.cpu().numpy()
261
+ # input_boxes2 = transform.apply_boxes(input_boxes2, original_size)
262
+ # input_boxes2 = torch.from_numpy(input_boxes2).to(device)
263
+
264
+ # input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0)
265
+
266
+ input_image = mobilesamv2.preprocess(sam1_image)
267
+ image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state']
268
+
269
+ image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0)
270
+ prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe()
271
+ prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0)
272
+ for (boxes,) in batch_iterator(320, input_boxes):
273
+ with torch.no_grad():
274
+ image_embedding=image_embedding[0:boxes.shape[0],:,:,:]
275
+ prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:]
276
+ sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder(
277
+ points=None,
278
+ boxes=boxes,
279
+ masks=None,)
280
+ low_res_masks, _ = mobilesamv2.mask_decoder(
281
+ image_embeddings=image_embedding,
282
+ image_pe=prompt_embedding,
283
+ sparse_prompt_embeddings=sparse_embeddings,
284
+ dense_prompt_embeddings=dense_embeddings,
285
+ multimask_output=False,
286
+ simple_type=True,
287
+ )
288
+ low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size)
289
+ sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold)
290
+ for mask in sam_mask_pre:
291
+ if mask.sum() / img_area > 0.002:
292
+ sam_mask.append(mask.squeeze(1))
293
+ sam_mask=torch.cat(sam_mask)
294
+ sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True)
295
+ keep = mask_nms(sorted_sam_mask)
296
+ ret_mask = filter(sorted_sam_mask, keep)
297
+
298
+ return ret_mask
299
+
300
+ @torch.no_grad
301
+ def get_cog_feats(images, device):
302
+ cog_seg_maps = []
303
+ rev_cog_seg_maps = []
304
+ inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
305
+ mask_num = 0
306
+
307
+ sam1_images = images.sam1_images
308
+ sam1_images_size = images.sam1_images_size
309
+ np_images = images.np_images
310
+ np_images_size = images.np_images_size
311
 
312
+ sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform, device)
313
+ for mask in sam1_masks:
314
+ _, _, _ = pe3r.sam2.add_new_mask(
315
+ inference_state=inference_state,
316
+ frame_idx=0,
317
+ obj_id=mask_num,
318
+ mask=mask,
319
+ )
320
+ mask_num += 1
321
+
322
+ video_segments = {} # video_segments contains the per-frame segmentation results
323
+ for out_frame_idx, out_obj_ids, out_mask_logits in pe3r.sam2.propagate_in_video(inference_state):
324
+ sam2_masks = (out_mask_logits > 0.0).squeeze(1)
325
+
326
+ video_segments[out_frame_idx] = {
327
+ out_obj_id: sam2_masks[i].cpu().numpy()
328
+ for i, out_obj_id in enumerate(out_obj_ids)
329
+ }
330
+
331
+ if out_frame_idx == 0:
332
+ continue
333
+
334
+ sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform, device)
335
+
336
+ for sam1_mask in sam1_masks:
337
+ flg = 1
338
+ for sam2_mask in sam2_masks:
339
+ # print(sam1_mask.shape, sam2_mask.shape)
340
+ area1 = sam1_mask.sum()
341
+ area2 = sam2_mask.sum()
342
+ intersection = (sam1_mask & sam2_mask).sum()
343
+ if min(intersection / area1, intersection / area2) > 0.25:
344
+ flg = 0
345
+ break
346
+ if flg:
347
+ video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
348
+ mask_num += 1
349
+
350
+ multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
351
+ multi_view_clip_feats_map = {}
352
+ multi_view_clip_area_map = {}
353
+ for now_frame in range(0, len(video_segments), 1):
354
+ image = np_images[now_frame]
355
+
356
+ seg_img_list = []
357
+ out_obj_id_list = []
358
+ out_obj_mask_list = []
359
+ out_obj_area_list = []
360
+ # NOTE: background: -1
361
+ rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
362
+ sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
363
+ for out_obj_id, mask in sorted_dict_items:
364
+ if mask.sum() == 0:
365
+ continue
366
+ rev_seg_map[mask] = out_obj_id
367
+ rev_cog_seg_maps.append(rev_seg_map)
368
+
369
+ seg_map = -np.ones(image.shape[:2], dtype=np.int64)
370
+ sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True)
371
+ for out_obj_id, mask in sorted_dict_items:
372
+ if mask.sum() == 0:
373
+ continue
374
+ box = np.int32(box_xyxy_to_xywh(mask_to_box(mask)))
375
 
376
+ if box[2] == 0 and box[3] == 0:
377
+ continue
378
+ # print(box)
379
+ seg_img = get_seg_img(mask, box, image)
380
+ pad_seg_img = cv2.resize(pad_img(seg_img), (256,256))
381
+ seg_img_list.append(pad_seg_img)
382
+ seg_map[mask] = out_obj_id
383
+ out_obj_id_list.append(out_obj_id)
384
+ out_obj_area_list.append(np.count_nonzero(mask))
385
+ out_obj_mask_list.append(mask)
386
+
387
+ if len(seg_img_list) == 0:
388
+ cog_seg_maps.append(seg_map)
389
+ continue
390
+
391
+ seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
392
+ seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0
393
 
394
+ inputs = pe3r.siglip_processor(images=seg_imgs, return_tensors="pt")
395
+ inputs = {key: value.to(device) for key, value in inputs.items()}
396
 
397
+ image_features = pe3r.siglip.get_image_features(**inputs)
398
+ image_features = image_features / image_features.norm(dim=-1, keepdim=True)
399
+ image_features = image_features.detach().cpu()
400
+
401
+ for i in range(len(out_obj_mask_list)):
402
+ for j in range(i + 1, len(out_obj_mask_list)):
403
+ mask1 = out_obj_mask_list[i]
404
+ mask2 = out_obj_mask_list[j]
405
+ intersection = np.logical_and(mask1, mask2).sum()
406
+ area1 = out_obj_area_list[i]
407
+ area2 = out_obj_area_list[j]
408
+ if min(intersection / area1, intersection / area2) > 0.025:
409
+ conf1 = area1 / (area1 + area2)
410
+ # conf2 = area2 / (area1 + area2)
411
+ image_features[j] = slerp(image_features[j], image_features[i], conf1)
412
+
413
+ for i, clip_feat in enumerate(image_features):
414
+ id = out_obj_id_list[i]
415
+ if id in multi_view_clip_feats_map.keys():
416
+ multi_view_clip_feats_map[id].append(clip_feat)
417
+ multi_view_clip_area_map[id].append(out_obj_area_list[i])
418
+ else:
419
+ multi_view_clip_feats_map[id] = [clip_feat]
420
+ multi_view_clip_area_map[id] = [out_obj_area_list[i]]
421
+
422
+ cog_seg_maps.append(seg_map)
423
+ del image_features
424
 
425
+ for i in range(mask_num):
426
+ if i in multi_view_clip_feats_map.keys():
427
+ clip_feats = multi_view_clip_feats_map[i]
428
+ mask_area = multi_view_clip_area_map[i]
429
+ multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area))
430
+ else:
431
+ multi_view_clip_feats[i] = torch.zeros((1024))
432
+ multi_view_clip_feats[mask_num] = torch.zeros((1024))
433
 
434
+ return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
435
 
436
  @spaces.GPU(duration=180)
437
  def get_reconstructed_scene(outdir, device, silent, filelist, schedule, niter, min_conf_thr,
 
444
  if len(filelist) < 2:
445
  raise gradio.Error("Please input at least 2 images.")
446
 
447
+ images = Images(filelist=filelist, device=device)
448
 
449
  # try:
450
+ cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, device)
451
+ imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
452
  # except Exception as e:
453
  # rev_cog_seg_maps = []
454
  # for tmp_img in images.np_images:
 
458
  # cog_feats = torch.zeros((1, 1024))
459
  # imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
460
 
461
+ if len(imgs) == 1:
462
+ imgs = [imgs[0], copy.deepcopy(imgs[0])]
463
+ imgs[1]['idx'] = 1
 
 
 
 
 
 
 
 
 
 
 
 
 
464
 
465
+ if scenegraph_type == "swin":
466
+ scenegraph_type = scenegraph_type + "-" + str(winsize)
467
+ elif scenegraph_type == "oneref":
468
+ scenegraph_type = scenegraph_type + "-" + str(refid)
469
+
470
+ pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
471
+ output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent)
472
+ mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
473
+ scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
474
+ lr = 0.01
475
+ # if mode == GlobalAlignerMode.PointCloudOptimizer:
476
+ loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr)
477
+
478
+ try:
479
+ ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
480
+ for i in range(len(imgs)):
481
+ # print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
482
+ imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None]
483
+ pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
484
+ output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent)
485
+ mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
486
+ scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
487
+ ori_imgs = scene.ori_imgs
488
+ lr = 0.01
489
+ # if mode == GlobalAlignerMode.PointCloudOptimizer:
490
+ loss = scene.compute_global_alignment(tune_flg=False, init='mst', niter=niter, schedule=schedule, lr=lr)
491
+ except Exception as e:
492
+ scene = scene_1
493
+ scene.imgs = ori_imgs
494
+ scene.ori_imgs = ori_imgs
495
+ print(e)
496
+
497
+
498
+ outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
499
+ clean_depth, transparent_cams, cam_size)
500
+
501
+ # also return rgb, depth and confidence imgs
502
+ # depth is normalized with the max value for all images
503
+ # we apply the jet colormap on the confidence maps
504
+ rgbimg = scene.imgs
505
+ depths = to_numpy(scene.get_depthmaps())
506
+ confs = to_numpy([c for c in scene.im_conf])
507
+ # confs = to_numpy([c for c in scene.conf_2])
508
+ cmap = pl.get_cmap('jet')
509
+ depths_max = max([d.max() for d in depths])
510
+ depths = [d / depths_max for d in depths]
511
+ confs_max = max([d.max() for d in confs])
512
+ confs = [cmap(d / confs_max) for d in confs]
513
+
514
+ imgs = []
515
+ for i in range(len(rgbimg)):
516
+ imgs.append(rgbimg[i])
517
+ imgs.append(rgb(depths[i]))
518
+ imgs.append(rgb(confs[i]))
519
+
520
+ return scene, outfile, imgs
521
 
522
  # @spaces.GPU(duration=180)
523
  # def get_3D_object_from_scene(outdir, pe3r, silent, device, text, threshold, scene, min_conf_thr, as_pointcloud,