init project
Browse files
app.py
CHANGED
@@ -503,8 +503,8 @@ def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_
|
|
503 |
|
504 |
sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
|
505 |
|
506 |
-
siglip = AutoModel.from_pretrained("google/
|
507 |
-
siglip_processor = AutoProcessor.from_pretrained("google/
|
508 |
|
509 |
SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
|
510 |
mobilesamv2 = sam_model_registry['sam_vit_h'](None)
|
@@ -602,8 +602,8 @@ def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr=3.0, a
|
|
602 |
mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05):
|
603 |
|
604 |
device = 'cpu'
|
605 |
-
siglip_tokenizer = AutoTokenizer.from_pretrained("google/
|
606 |
-
siglip = AutoModel.from_pretrained("google/
|
607 |
|
608 |
texts = [text]
|
609 |
inputs = siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
|
|
|
503 |
|
504 |
sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
|
505 |
|
506 |
+
siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device).eval()
|
507 |
+
siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256")
|
508 |
|
509 |
SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
|
510 |
mobilesamv2 = sam_model_registry['sam_vit_h'](None)
|
|
|
602 |
mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05):
|
603 |
|
604 |
device = 'cpu'
|
605 |
+
siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256")
|
606 |
+
siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device).eval()
|
607 |
|
608 |
texts = [text]
|
609 |
inputs = siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
|