Jie Hu commited on
Commit
abf5f3c
·
1 Parent(s): 83fd361

init project

Browse files
Files changed (2) hide show
  1. app.py +332 -336
  2. modules/pe3r/models.py +32 -32
app.py CHANGED
@@ -37,13 +37,9 @@ from modules.mobilesamv2.utils.transforms import ResizeLongestSide
37
  from modules.pe3r.models import Models
38
  import torchvision.transforms as tvf
39
 
40
- from modules.mast3r.model import AsymmetricMASt3R
41
-
42
  silent = False
43
  device = 'cpu'
44
- # pe3r = Models(device) 'cuda' if torch.cuda.is_available() else
45
- MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
46
- mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
47
 
48
 
49
  def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
@@ -113,329 +109,329 @@ def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False,
113
  return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
114
  transparent_cams=transparent_cams, cam_size=cam_size)
115
 
116
- # def mask_nms(masks, threshold=0.8):
117
- # keep = []
118
- # mask_num = len(masks)
119
- # suppressed = np.zeros((mask_num), dtype=np.int64)
120
- # for i in range(mask_num):
121
- # if suppressed[i] == 1:
122
- # continue
123
- # keep.append(i)
124
- # for j in range(i + 1, mask_num):
125
- # if suppressed[j] == 1:
126
- # continue
127
- # intersection = (masks[i] & masks[j]).sum()
128
- # if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold:
129
- # suppressed[j] = 1
130
- # return keep
131
-
132
- # def filter(masks, keep):
133
- # ret = []
134
- # for i, m in enumerate(masks):
135
- # if i in keep: ret.append(m)
136
- # return ret
137
-
138
- # def mask_to_box(mask):
139
- # if mask.sum() == 0:
140
- # return np.array([0, 0, 0, 0])
141
 
142
- # # Get the rows and columns where the mask is 1
143
- # rows = np.any(mask, axis=1)
144
- # cols = np.any(mask, axis=0)
145
 
146
- # # Get top, bottom, left, right edges
147
- # top = np.argmax(rows)
148
- # bottom = len(rows) - 1 - np.argmax(np.flip(rows))
149
- # left = np.argmax(cols)
150
- # right = len(cols) - 1 - np.argmax(np.flip(cols))
151
 
152
- # return np.array([left, top, right, bottom])
153
-
154
- # def box_xyxy_to_xywh(box_xyxy):
155
- # box_xywh = deepcopy(box_xyxy)
156
- # box_xywh[2] = box_xywh[2] - box_xywh[0]
157
- # box_xywh[3] = box_xywh[3] - box_xywh[1]
158
- # return box_xywh
159
-
160
- # def get_seg_img(mask, box, image):
161
- # image = image.copy()
162
- # x, y, w, h = box
163
- # # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
164
- # box_area = w * h
165
- # mask_area = mask.sum()
166
- # if 1 - (mask_area / box_area) < 0.2:
167
- # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
168
- # else:
169
- # random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8)
170
- # image[mask == 0] = random_values[mask == 0]
171
- # seg_img = image[y:y+h, x:x+w, ...]
172
- # return seg_img
173
-
174
- # def pad_img(img):
175
- # h, w, _ = img.shape
176
- # l = max(w,h)
177
- # pad = np.zeros((l,l,3), dtype=np.uint8) #
178
- # if h > w:
179
- # pad[:,(h-w)//2:(h-w)//2 + w, :] = img
180
- # else:
181
- # pad[(w-h)//2:(w-h)//2 + h, :, :] = img
182
- # return pad
183
-
184
- # def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
185
- # assert len(args) > 0 and all(
186
- # len(a) == len(args[0]) for a in args
187
- # ), "Batched iteration must have inputs of all the same size."
188
- # n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
189
- # for b in range(n_batches):
190
- # yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
191
-
192
- # def slerp(u1, u2, t):
193
- # """
194
- # Perform spherical linear interpolation (Slerp) between two unit vectors.
195
 
196
- # Args:
197
- # - u1 (torch.Tensor): First unit vector, shape (1024,)
198
- # - u2 (torch.Tensor): Second unit vector, shape (1024,)
199
- # - t (float): Interpolation parameter
200
 
201
- # Returns:
202
- # - torch.Tensor: Interpolated vector, shape (1024,)
203
- # """
204
- # # Compute the dot product
205
- # dot_product = torch.sum(u1 * u2)
206
 
207
- # # Ensure the dot product is within the valid range [-1, 1]
208
- # dot_product = torch.clamp(dot_product, -1.0, 1.0)
209
 
210
- # # Compute the angle between the vectors
211
- # theta = torch.acos(dot_product)
212
 
213
- # # Compute the coefficients for the interpolation
214
- # sin_theta = torch.sin(theta)
215
- # if sin_theta == 0:
216
- # # Vectors are parallel, return a linear interpolation
217
- # return u1 + t * (u2 - u1)
218
 
219
- # s1 = torch.sin((1 - t) * theta) / sin_theta
220
- # s2 = torch.sin(t * theta) / sin_theta
221
 
222
- # # Perform the interpolation
223
- # return s1 * u1 + s2 * u2
224
 
225
- # def slerp_multiple(vectors, t_values):
226
- # """
227
- # Perform spherical linear interpolation (Slerp) for multiple vectors.
228
 
229
- # Args:
230
- # - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024)
231
- # - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,)
232
 
233
- # Returns:
234
- # - torch.Tensor: Interpolated vector, shape (1024,)
235
- # """
236
- # n = vectors.shape[0]
237
 
238
- # # Initialize the interpolated vector with the first vector
239
- # interpolated_vector = vectors[0]
240
 
241
- # # Perform Slerp iteratively
242
- # for i in range(1, n):
243
- # # Perform Slerp between the current interpolated vector and the next vector
244
- # t = t_values[i] / (t_values[i] + t_values[i-1])
245
- # interpolated_vector = slerp(interpolated_vector, vectors[i], t)
246
 
247
- # return interpolated_vector
248
 
249
- # @torch.no_grad
250
- # def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
251
 
252
- # sam_mask=[]
253
- # img_area = original_size[0] * original_size[1]
254
 
255
- # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False)
256
- # input_boxes1 = obj_results[0].boxes.xyxy
257
- # input_boxes1 = input_boxes1.cpu().numpy()
258
- # input_boxes1 = transform.apply_boxes(input_boxes1, original_size)
259
- # input_boxes = torch.from_numpy(input_boxes1).to(device)
260
 
261
- # # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False)
262
- # # input_boxes2 = obj_results[0].boxes.xyxy
263
- # # input_boxes2 = input_boxes2.cpu().numpy()
264
- # # input_boxes2 = transform.apply_boxes(input_boxes2, original_size)
265
- # # input_boxes2 = torch.from_numpy(input_boxes2).to(device)
266
-
267
- # # input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0)
268
-
269
- # input_image = mobilesamv2.preprocess(sam1_image)
270
- # image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state']
271
-
272
- # image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0)
273
- # prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe()
274
- # prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0)
275
- # for (boxes,) in batch_iterator(320, input_boxes):
276
- # with torch.no_grad():
277
- # image_embedding=image_embedding[0:boxes.shape[0],:,:,:]
278
- # prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:]
279
- # sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder(
280
- # points=None,
281
- # boxes=boxes,
282
- # masks=None,)
283
- # low_res_masks, _ = mobilesamv2.mask_decoder(
284
- # image_embeddings=image_embedding,
285
- # image_pe=prompt_embedding,
286
- # sparse_prompt_embeddings=sparse_embeddings,
287
- # dense_prompt_embeddings=dense_embeddings,
288
- # multimask_output=False,
289
- # simple_type=True,
290
- # )
291
- # low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size)
292
- # sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold)
293
- # for mask in sam_mask_pre:
294
- # if mask.sum() / img_area > 0.002:
295
- # sam_mask.append(mask.squeeze(1))
296
- # sam_mask=torch.cat(sam_mask)
297
- # sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True)
298
- # keep = mask_nms(sorted_sam_mask)
299
- # ret_mask = filter(sorted_sam_mask, keep)
300
-
301
- # return ret_mask
302
-
303
- # @torch.no_grad
304
- # def get_cog_feats(images):
305
- # device = 'cuda' if torch.cuda.is_available() else 'cpu'
306
- # cog_seg_maps = []
307
- # rev_cog_seg_maps = []
308
- # inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
309
- # mask_num = 0
310
-
311
- # sam1_images = images.sam1_images
312
- # sam1_images_size = images.sam1_images_size
313
- # np_images = images.np_images
314
- # np_images_size = images.np_images_size
315
 
316
- # sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform)
317
- # for mask in sam1_masks:
318
- # _, _, _ = pe3r.sam2.add_new_mask(
319
- # inference_state=inference_state,
320
- # frame_idx=0,
321
- # obj_id=mask_num,
322
- # mask=mask,
323
- # )
324
- # mask_num += 1
325
-
326
- # video_segments = {} # video_segments contains the per-frame segmentation results
327
- # for out_frame_idx, out_obj_ids, out_mask_logits in pe3r.sam2.propagate_in_video(inference_state):
328
- # sam2_masks = (out_mask_logits > 0.0).squeeze(1)
329
-
330
- # video_segments[out_frame_idx] = {
331
- # out_obj_id: sam2_masks[i].cpu().numpy()
332
- # for i, out_obj_id in enumerate(out_obj_ids)
333
- # }
334
-
335
- # if out_frame_idx == 0:
336
- # continue
337
-
338
- # sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)
339
-
340
- # for sam1_mask in sam1_masks:
341
- # flg = 1
342
- # for sam2_mask in sam2_masks:
343
- # # print(sam1_mask.shape, sam2_mask.shape)
344
- # area1 = sam1_mask.sum()
345
- # area2 = sam2_mask.sum()
346
- # intersection = (sam1_mask & sam2_mask).sum()
347
- # if min(intersection / area1, intersection / area2) > 0.25:
348
- # flg = 0
349
- # break
350
- # if flg:
351
- # video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
352
- # mask_num += 1
353
-
354
- # multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
355
- # multi_view_clip_feats_map = {}
356
- # multi_view_clip_area_map = {}
357
- # for now_frame in range(0, len(video_segments), 1):
358
- # image = np_images[now_frame]
359
-
360
- # seg_img_list = []
361
- # out_obj_id_list = []
362
- # out_obj_mask_list = []
363
- # out_obj_area_list = []
364
- # # NOTE: background: -1
365
- # rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
366
- # sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
367
- # for out_obj_id, mask in sorted_dict_items:
368
- # if mask.sum() == 0:
369
- # continue
370
- # rev_seg_map[mask] = out_obj_id
371
- # rev_cog_seg_maps.append(rev_seg_map)
372
-
373
- # seg_map = -np.ones(image.shape[:2], dtype=np.int64)
374
- # sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True)
375
- # for out_obj_id, mask in sorted_dict_items:
376
- # if mask.sum() == 0:
377
- # continue
378
- # box = np.int32(box_xyxy_to_xywh(mask_to_box(mask)))
379
 
380
- # if box[2] == 0 and box[3] == 0:
381
- # continue
382
- # # print(box)
383
- # seg_img = get_seg_img(mask, box, image)
384
- # pad_seg_img = cv2.resize(pad_img(seg_img), (256,256))
385
- # seg_img_list.append(pad_seg_img)
386
- # seg_map[mask] = out_obj_id
387
- # out_obj_id_list.append(out_obj_id)
388
- # out_obj_area_list.append(np.count_nonzero(mask))
389
- # out_obj_mask_list.append(mask)
390
-
391
- # if len(seg_img_list) == 0:
392
- # cog_seg_maps.append(seg_map)
393
- # continue
394
-
395
- # seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
396
- # seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0
397
 
398
- # inputs = pe3r.siglip_processor(images=seg_imgs, return_tensors="pt")
399
- # inputs = {key: value.to(device) for key, value in inputs.items()}
400
 
401
- # image_features = pe3r.siglip.get_image_features(**inputs)
402
- # image_features = image_features / image_features.norm(dim=-1, keepdim=True)
403
- # image_features = image_features.detach().cpu()
404
-
405
- # for i in range(len(out_obj_mask_list)):
406
- # for j in range(i + 1, len(out_obj_mask_list)):
407
- # mask1 = out_obj_mask_list[i]
408
- # mask2 = out_obj_mask_list[j]
409
- # intersection = np.logical_and(mask1, mask2).sum()
410
- # area1 = out_obj_area_list[i]
411
- # area2 = out_obj_area_list[j]
412
- # if min(intersection / area1, intersection / area2) > 0.025:
413
- # conf1 = area1 / (area1 + area2)
414
- # # conf2 = area2 / (area1 + area2)
415
- # image_features[j] = slerp(image_features[j], image_features[i], conf1)
416
-
417
- # for i, clip_feat in enumerate(image_features):
418
- # id = out_obj_id_list[i]
419
- # if id in multi_view_clip_feats_map.keys():
420
- # multi_view_clip_feats_map[id].append(clip_feat)
421
- # multi_view_clip_area_map[id].append(out_obj_area_list[i])
422
- # else:
423
- # multi_view_clip_feats_map[id] = [clip_feat]
424
- # multi_view_clip_area_map[id] = [out_obj_area_list[i]]
425
-
426
- # cog_seg_maps.append(seg_map)
427
- # del image_features
428
 
429
- # for i in range(mask_num):
430
- # if i in multi_view_clip_feats_map.keys():
431
- # clip_feats = multi_view_clip_feats_map[i]
432
- # mask_area = multi_view_clip_area_map[i]
433
- # multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area))
434
- # else:
435
- # multi_view_clip_feats[i] = torch.zeros((1024))
436
- # multi_view_clip_feats[mask_num] = torch.zeros((1024))
437
 
438
- # return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
439
 
440
  @spaces.GPU(duration=120)
441
  def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
@@ -451,16 +447,16 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
451
  images = Images(filelist=filelist, device=device)
452
 
453
  # try:
454
- # cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images)
455
- # imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
456
- # except Exception as e:
457
- rev_cog_seg_maps = []
458
- for tmp_img in images.np_images:
459
- rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64)
460
- rev_cog_seg_maps.append(rev_seg_map)
461
- cog_seg_maps = rev_cog_seg_maps
462
- cog_feats = torch.zeros((1, 1024))
463
  imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
 
 
 
 
 
 
 
 
464
 
465
  if len(imgs) == 1:
466
  imgs = [imgs[0], copy.deepcopy(imgs[0])]
@@ -472,7 +468,7 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
472
  scenegraph_type = scenegraph_type + "-" + str(refid)
473
 
474
  pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
475
- output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
476
  mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
477
  scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
478
  lr = 0.01
@@ -485,7 +481,7 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
485
  # print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
486
  imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None]
487
  pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
488
- output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
489
  mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
490
  scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
491
  ori_imgs = scene.ori_imgs
@@ -504,27 +500,27 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
504
 
505
  return scene, outfile
506
 
507
- # @spaces.GPU(duration=180)
508
- # def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
509
- # mask_sky, clean_depth, transparent_cams, cam_size):
510
 
511
- # texts = [text]
512
- # inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
513
- # inputs = {key: value.to(device) for key, value in inputs.items()}
514
- # with torch.no_grad():
515
- # text_feats =pe3r.siglip.get_text_features(**inputs)
516
- # text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True)
517
- # scene.render_image(text_feats, threshold)
518
- # scene.ori_imgs = scene.rendered_imgs
519
- # outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
520
- # clean_depth, transparent_cams, cam_size)
521
- # return outfile
522
 
523
 
524
  with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
525
  recon_fun = functools.partial(get_reconstructed_scene, tmpdirname)
526
  # model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname)
527
- # get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname)
528
 
529
  with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo:
530
  # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
@@ -564,11 +560,11 @@ with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
564
  clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
565
  transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras", visible=False)
566
 
567
- # with gradio.Row():
568
- # text_input = gradio.Textbox(label="Query Text")
569
- # threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01)
570
 
571
- # find_btn = gradio.Button("Find")
572
 
573
  outmodel = gradio.Model3D()
574
  # events
@@ -579,8 +575,8 @@ with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
579
  scenegraph_type, winsize, refid],
580
  outputs=[scene, outmodel]) # , outgallery
581
 
582
- # find_btn.click(fn=get_3D_object_from_scene_fun,
583
- # inputs=[text_input, threshold, scene, min_conf_thr, as_pointcloud, mask_sky,
584
- # clean_depth, transparent_cams, cam_size],
585
- # outputs=outmodel)
586
  demo.launch(show_error=True, share=None, server_name=None, server_port=None)
 
37
  from modules.pe3r.models import Models
38
  import torchvision.transforms as tvf
39
 
 
 
40
  silent = False
41
  device = 'cpu'
42
+ pe3r = Models(device) #'cuda' if torch.cuda.is_available() else
 
 
43
 
44
 
45
  def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
 
109
  return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
110
  transparent_cams=transparent_cams, cam_size=cam_size)
111
 
112
+ def mask_nms(masks, threshold=0.8):
113
+ keep = []
114
+ mask_num = len(masks)
115
+ suppressed = np.zeros((mask_num), dtype=np.int64)
116
+ for i in range(mask_num):
117
+ if suppressed[i] == 1:
118
+ continue
119
+ keep.append(i)
120
+ for j in range(i + 1, mask_num):
121
+ if suppressed[j] == 1:
122
+ continue
123
+ intersection = (masks[i] & masks[j]).sum()
124
+ if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold:
125
+ suppressed[j] = 1
126
+ return keep
127
+
128
+ def filter(masks, keep):
129
+ ret = []
130
+ for i, m in enumerate(masks):
131
+ if i in keep: ret.append(m)
132
+ return ret
133
+
134
+ def mask_to_box(mask):
135
+ if mask.sum() == 0:
136
+ return np.array([0, 0, 0, 0])
137
 
138
+ # Get the rows and columns where the mask is 1
139
+ rows = np.any(mask, axis=1)
140
+ cols = np.any(mask, axis=0)
141
 
142
+ # Get top, bottom, left, right edges
143
+ top = np.argmax(rows)
144
+ bottom = len(rows) - 1 - np.argmax(np.flip(rows))
145
+ left = np.argmax(cols)
146
+ right = len(cols) - 1 - np.argmax(np.flip(cols))
147
 
148
+ return np.array([left, top, right, bottom])
149
+
150
+ def box_xyxy_to_xywh(box_xyxy):
151
+ box_xywh = deepcopy(box_xyxy)
152
+ box_xywh[2] = box_xywh[2] - box_xywh[0]
153
+ box_xywh[3] = box_xywh[3] - box_xywh[1]
154
+ return box_xywh
155
+
156
+ def get_seg_img(mask, box, image):
157
+ image = image.copy()
158
+ x, y, w, h = box
159
+ # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
160
+ box_area = w * h
161
+ mask_area = mask.sum()
162
+ if 1 - (mask_area / box_area) < 0.2:
163
+ image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
164
+ else:
165
+ random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8)
166
+ image[mask == 0] = random_values[mask == 0]
167
+ seg_img = image[y:y+h, x:x+w, ...]
168
+ return seg_img
169
+
170
+ def pad_img(img):
171
+ h, w, _ = img.shape
172
+ l = max(w,h)
173
+ pad = np.zeros((l,l,3), dtype=np.uint8) #
174
+ if h > w:
175
+ pad[:,(h-w)//2:(h-w)//2 + w, :] = img
176
+ else:
177
+ pad[(w-h)//2:(w-h)//2 + h, :, :] = img
178
+ return pad
179
+
180
+ def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
181
+ assert len(args) > 0 and all(
182
+ len(a) == len(args[0]) for a in args
183
+ ), "Batched iteration must have inputs of all the same size."
184
+ n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
185
+ for b in range(n_batches):
186
+ yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
187
+
188
+ def slerp(u1, u2, t):
189
+ """
190
+ Perform spherical linear interpolation (Slerp) between two unit vectors.
191
 
192
+ Args:
193
+ - u1 (torch.Tensor): First unit vector, shape (1024,)
194
+ - u2 (torch.Tensor): Second unit vector, shape (1024,)
195
+ - t (float): Interpolation parameter
196
 
197
+ Returns:
198
+ - torch.Tensor: Interpolated vector, shape (1024,)
199
+ """
200
+ # Compute the dot product
201
+ dot_product = torch.sum(u1 * u2)
202
 
203
+ # Ensure the dot product is within the valid range [-1, 1]
204
+ dot_product = torch.clamp(dot_product, -1.0, 1.0)
205
 
206
+ # Compute the angle between the vectors
207
+ theta = torch.acos(dot_product)
208
 
209
+ # Compute the coefficients for the interpolation
210
+ sin_theta = torch.sin(theta)
211
+ if sin_theta == 0:
212
+ # Vectors are parallel, return a linear interpolation
213
+ return u1 + t * (u2 - u1)
214
 
215
+ s1 = torch.sin((1 - t) * theta) / sin_theta
216
+ s2 = torch.sin(t * theta) / sin_theta
217
 
218
+ # Perform the interpolation
219
+ return s1 * u1 + s2 * u2
220
 
221
+ def slerp_multiple(vectors, t_values):
222
+ """
223
+ Perform spherical linear interpolation (Slerp) for multiple vectors.
224
 
225
+ Args:
226
+ - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024)
227
+ - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,)
228
 
229
+ Returns:
230
+ - torch.Tensor: Interpolated vector, shape (1024,)
231
+ """
232
+ n = vectors.shape[0]
233
 
234
+ # Initialize the interpolated vector with the first vector
235
+ interpolated_vector = vectors[0]
236
 
237
+ # Perform Slerp iteratively
238
+ for i in range(1, n):
239
+ # Perform Slerp between the current interpolated vector and the next vector
240
+ t = t_values[i] / (t_values[i] + t_values[i-1])
241
+ interpolated_vector = slerp(interpolated_vector, vectors[i], t)
242
 
243
+ return interpolated_vector
244
 
245
+ @torch.no_grad
246
+ def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
247
 
248
+ sam_mask=[]
249
+ img_area = original_size[0] * original_size[1]
250
 
251
+ obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False)
252
+ input_boxes1 = obj_results[0].boxes.xyxy
253
+ input_boxes1 = input_boxes1.cpu().numpy()
254
+ input_boxes1 = transform.apply_boxes(input_boxes1, original_size)
255
+ input_boxes = torch.from_numpy(input_boxes1).to(device)
256
 
257
+ # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False)
258
+ # input_boxes2 = obj_results[0].boxes.xyxy
259
+ # input_boxes2 = input_boxes2.cpu().numpy()
260
+ # input_boxes2 = transform.apply_boxes(input_boxes2, original_size)
261
+ # input_boxes2 = torch.from_numpy(input_boxes2).to(device)
262
+
263
+ # input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0)
264
+
265
+ input_image = mobilesamv2.preprocess(sam1_image)
266
+ image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state']
267
+
268
+ image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0)
269
+ prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe()
270
+ prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0)
271
+ for (boxes,) in batch_iterator(320, input_boxes):
272
+ with torch.no_grad():
273
+ image_embedding=image_embedding[0:boxes.shape[0],:,:,:]
274
+ prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:]
275
+ sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder(
276
+ points=None,
277
+ boxes=boxes,
278
+ masks=None,)
279
+ low_res_masks, _ = mobilesamv2.mask_decoder(
280
+ image_embeddings=image_embedding,
281
+ image_pe=prompt_embedding,
282
+ sparse_prompt_embeddings=sparse_embeddings,
283
+ dense_prompt_embeddings=dense_embeddings,
284
+ multimask_output=False,
285
+ simple_type=True,
286
+ )
287
+ low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size)
288
+ sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold)
289
+ for mask in sam_mask_pre:
290
+ if mask.sum() / img_area > 0.002:
291
+ sam_mask.append(mask.squeeze(1))
292
+ sam_mask=torch.cat(sam_mask)
293
+ sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True)
294
+ keep = mask_nms(sorted_sam_mask)
295
+ ret_mask = filter(sorted_sam_mask, keep)
296
+
297
+ return ret_mask
298
+
299
+ @torch.no_grad
300
+ def get_cog_feats(images):
301
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
302
+ cog_seg_maps = []
303
+ rev_cog_seg_maps = []
304
+ inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
305
+ mask_num = 0
306
+
307
+ sam1_images = images.sam1_images
308
+ sam1_images_size = images.sam1_images_size
309
+ np_images = images.np_images
310
+ np_images_size = images.np_images_size
311
 
312
+ sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform)
313
+ for mask in sam1_masks:
314
+ _, _, _ = pe3r.sam2.add_new_mask(
315
+ inference_state=inference_state,
316
+ frame_idx=0,
317
+ obj_id=mask_num,
318
+ mask=mask,
319
+ )
320
+ mask_num += 1
321
+
322
+ video_segments = {} # video_segments contains the per-frame segmentation results
323
+ for out_frame_idx, out_obj_ids, out_mask_logits in pe3r.sam2.propagate_in_video(inference_state):
324
+ sam2_masks = (out_mask_logits > 0.0).squeeze(1)
325
+
326
+ video_segments[out_frame_idx] = {
327
+ out_obj_id: sam2_masks[i].cpu().numpy()
328
+ for i, out_obj_id in enumerate(out_obj_ids)
329
+ }
330
+
331
+ if out_frame_idx == 0:
332
+ continue
333
+
334
+ sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)
335
+
336
+ for sam1_mask in sam1_masks:
337
+ flg = 1
338
+ for sam2_mask in sam2_masks:
339
+ # print(sam1_mask.shape, sam2_mask.shape)
340
+ area1 = sam1_mask.sum()
341
+ area2 = sam2_mask.sum()
342
+ intersection = (sam1_mask & sam2_mask).sum()
343
+ if min(intersection / area1, intersection / area2) > 0.25:
344
+ flg = 0
345
+ break
346
+ if flg:
347
+ video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
348
+ mask_num += 1
349
+
350
+ multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
351
+ multi_view_clip_feats_map = {}
352
+ multi_view_clip_area_map = {}
353
+ for now_frame in range(0, len(video_segments), 1):
354
+ image = np_images[now_frame]
355
+
356
+ seg_img_list = []
357
+ out_obj_id_list = []
358
+ out_obj_mask_list = []
359
+ out_obj_area_list = []
360
+ # NOTE: background: -1
361
+ rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
362
+ sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
363
+ for out_obj_id, mask in sorted_dict_items:
364
+ if mask.sum() == 0:
365
+ continue
366
+ rev_seg_map[mask] = out_obj_id
367
+ rev_cog_seg_maps.append(rev_seg_map)
368
+
369
+ seg_map = -np.ones(image.shape[:2], dtype=np.int64)
370
+ sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True)
371
+ for out_obj_id, mask in sorted_dict_items:
372
+ if mask.sum() == 0:
373
+ continue
374
+ box = np.int32(box_xyxy_to_xywh(mask_to_box(mask)))
375
 
376
+ if box[2] == 0 and box[3] == 0:
377
+ continue
378
+ # print(box)
379
+ seg_img = get_seg_img(mask, box, image)
380
+ pad_seg_img = cv2.resize(pad_img(seg_img), (256,256))
381
+ seg_img_list.append(pad_seg_img)
382
+ seg_map[mask] = out_obj_id
383
+ out_obj_id_list.append(out_obj_id)
384
+ out_obj_area_list.append(np.count_nonzero(mask))
385
+ out_obj_mask_list.append(mask)
386
+
387
+ if len(seg_img_list) == 0:
388
+ cog_seg_maps.append(seg_map)
389
+ continue
390
+
391
+ seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
392
+ seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0
393
 
394
+ inputs = pe3r.siglip_processor(images=seg_imgs, return_tensors="pt")
395
+ inputs = {key: value.to(device) for key, value in inputs.items()}
396
 
397
+ image_features = pe3r.siglip.get_image_features(**inputs)
398
+ image_features = image_features / image_features.norm(dim=-1, keepdim=True)
399
+ image_features = image_features.detach().cpu()
400
+
401
+ for i in range(len(out_obj_mask_list)):
402
+ for j in range(i + 1, len(out_obj_mask_list)):
403
+ mask1 = out_obj_mask_list[i]
404
+ mask2 = out_obj_mask_list[j]
405
+ intersection = np.logical_and(mask1, mask2).sum()
406
+ area1 = out_obj_area_list[i]
407
+ area2 = out_obj_area_list[j]
408
+ if min(intersection / area1, intersection / area2) > 0.025:
409
+ conf1 = area1 / (area1 + area2)
410
+ # conf2 = area2 / (area1 + area2)
411
+ image_features[j] = slerp(image_features[j], image_features[i], conf1)
412
+
413
+ for i, clip_feat in enumerate(image_features):
414
+ id = out_obj_id_list[i]
415
+ if id in multi_view_clip_feats_map.keys():
416
+ multi_view_clip_feats_map[id].append(clip_feat)
417
+ multi_view_clip_area_map[id].append(out_obj_area_list[i])
418
+ else:
419
+ multi_view_clip_feats_map[id] = [clip_feat]
420
+ multi_view_clip_area_map[id] = [out_obj_area_list[i]]
421
+
422
+ cog_seg_maps.append(seg_map)
423
+ del image_features
424
 
425
+ for i in range(mask_num):
426
+ if i in multi_view_clip_feats_map.keys():
427
+ clip_feats = multi_view_clip_feats_map[i]
428
+ mask_area = multi_view_clip_area_map[i]
429
+ multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area))
430
+ else:
431
+ multi_view_clip_feats[i] = torch.zeros((1024))
432
+ multi_view_clip_feats[mask_num] = torch.zeros((1024))
433
 
434
+ return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
435
 
436
  @spaces.GPU(duration=120)
437
  def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
 
447
  images = Images(filelist=filelist, device=device)
448
 
449
  # try:
450
+ cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images)
 
 
 
 
 
 
 
 
451
  imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
452
+ # except Exception as e:
453
+ # rev_cog_seg_maps = []
454
+ # for tmp_img in images.np_images:
455
+ # rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64)
456
+ # rev_cog_seg_maps.append(rev_seg_map)
457
+ # cog_seg_maps = rev_cog_seg_maps
458
+ # cog_feats = torch.zeros((1, 1024))
459
+ # imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
460
 
461
  if len(imgs) == 1:
462
  imgs = [imgs[0], copy.deepcopy(imgs[0])]
 
468
  scenegraph_type = scenegraph_type + "-" + str(refid)
469
 
470
  pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
471
+ output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent)
472
  mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
473
  scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
474
  lr = 0.01
 
481
  # print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
482
  imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None]
483
  pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
484
+ output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent)
485
  mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
486
  scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
487
  ori_imgs = scene.ori_imgs
 
500
 
501
  return scene, outfile
502
 
503
+ @spaces.GPU(duration=180)
504
+ def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
505
+ mask_sky, clean_depth, transparent_cams, cam_size):
506
 
507
+ texts = [text]
508
+ inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
509
+ inputs = {key: value.to(device) for key, value in inputs.items()}
510
+ with torch.no_grad():
511
+ text_feats =pe3r.siglip.get_text_features(**inputs)
512
+ text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True)
513
+ scene.render_image(text_feats, threshold)
514
+ scene.ori_imgs = scene.rendered_imgs
515
+ outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
516
+ clean_depth, transparent_cams, cam_size)
517
+ return outfile
518
 
519
 
520
  with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
521
  recon_fun = functools.partial(get_reconstructed_scene, tmpdirname)
522
  # model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname)
523
+ get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname)
524
 
525
  with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo:
526
  # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
 
560
  clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
561
  transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras", visible=False)
562
 
563
+ with gradio.Row():
564
+ text_input = gradio.Textbox(label="Query Text")
565
+ threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01)
566
 
567
+ find_btn = gradio.Button("Find")
568
 
569
  outmodel = gradio.Model3D()
570
  # events
 
575
  scenegraph_type, winsize, refid],
576
  outputs=[scene, outmodel]) # , outgallery
577
 
578
+ find_btn.click(fn=get_3D_object_from_scene_fun,
579
+ inputs=[text_input, threshold, scene, min_conf_thr, as_pointcloud, mask_sky,
580
+ clean_depth, transparent_cams, cam_size],
581
+ outputs=outmodel)
582
  demo.launch(show_error=True, share=None, server_name=None, server_port=None)
modules/pe3r/models.py CHANGED
@@ -18,35 +18,35 @@ class Models:
18
  MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
19
  self.mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
20
 
21
- # # -- sam2 --
22
- # # SAM2_CKP = "./checkpoints/sam2.1_hiera_large.pt"
23
- # # SAM2_CKP = 'hujiecpp/sam2-1-hiera-large'
24
- # # SAM2_CONFIG = "./configs/sam2.1/sam2.1_hiera_l.yaml"
25
- # # self.sam2 = build_sam2_video_predictor(SAM2_CONFIG, SAM2_CKP, device=device, apply_postprocessing=False)
26
- # # self.sam2.eval()
27
- # self.sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
28
-
29
- # # -- mobilesamv2 & sam1 --
30
- # # SAM1_ENCODER_CKP = './checkpoints/sam_vit_h.pt'
31
- # # SAM1_ENCODER_CKP = 'facebook/sam-vit-huge/model.safetensors'
32
- # SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
33
- # self.mobilesamv2 = sam_model_registry['sam_vit_h'](None)
34
- # # image_encoder=sam_model_registry['sam_vit_h_encoder'](SAM1_ENCODER_CKP)
35
- # sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
36
- # image_encoder = sam1.vision_encoder
37
-
38
- # prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
39
- # self.mobilesamv2.prompt_encoder = prompt_encoder
40
- # self.mobilesamv2.mask_decoder = mask_decoder
41
- # self.mobilesamv2.image_encoder=image_encoder
42
- # self.mobilesamv2.to(device=device)
43
- # self.mobilesamv2.eval()
44
-
45
- # # -- yolov8 --
46
- # YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
47
- # self.yolov8 = ObjectAwareModel(YOLO8_CKP)
48
-
49
- # # -- siglip --
50
- # self.siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
51
- # self.siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256", device_map=device)
52
- # self.siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256", device_map=device)
 
18
  MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
19
  self.mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
20
 
21
+ # -- sam2 --
22
+ # SAM2_CKP = "./checkpoints/sam2.1_hiera_large.pt"
23
+ # SAM2_CKP = 'hujiecpp/sam2-1-hiera-large'
24
+ # SAM2_CONFIG = "./configs/sam2.1/sam2.1_hiera_l.yaml"
25
+ # self.sam2 = build_sam2_video_predictor(SAM2_CONFIG, SAM2_CKP, device=device, apply_postprocessing=False)
26
+ # self.sam2.eval()
27
+ self.sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
28
+
29
+ # -- mobilesamv2 & sam1 --
30
+ # SAM1_ENCODER_CKP = './checkpoints/sam_vit_h.pt'
31
+ # SAM1_ENCODER_CKP = 'facebook/sam-vit-huge/model.safetensors'
32
+ SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
33
+ self.mobilesamv2 = sam_model_registry['sam_vit_h'](None)
34
+ # image_encoder=sam_model_registry['sam_vit_h_encoder'](SAM1_ENCODER_CKP)
35
+ sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
36
+ image_encoder = sam1.vision_encoder
37
+
38
+ prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
39
+ self.mobilesamv2.prompt_encoder = prompt_encoder
40
+ self.mobilesamv2.mask_decoder = mask_decoder
41
+ self.mobilesamv2.image_encoder=image_encoder
42
+ self.mobilesamv2.to(device=device)
43
+ self.mobilesamv2.eval()
44
+
45
+ # -- yolov8 --
46
+ YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
47
+ self.yolov8 = ObjectAwareModel(YOLO8_CKP)
48
+
49
+ # -- siglip --
50
+ self.siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
51
+ self.siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256", device_map=device)
52
+ self.siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256", device_map=device)