Jie Hu
commited on
Commit
·
abf5f3c
1
Parent(s):
83fd361
init project
Browse files- app.py +332 -336
- modules/pe3r/models.py +32 -32
app.py
CHANGED
@@ -37,13 +37,9 @@ from modules.mobilesamv2.utils.transforms import ResizeLongestSide
|
|
37 |
from modules.pe3r.models import Models
|
38 |
import torchvision.transforms as tvf
|
39 |
|
40 |
-
from modules.mast3r.model import AsymmetricMASt3R
|
41 |
-
|
42 |
silent = False
|
43 |
device = 'cpu'
|
44 |
-
|
45 |
-
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
|
46 |
-
mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
|
47 |
|
48 |
|
49 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
@@ -113,329 +109,329 @@ def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False,
|
|
113 |
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
|
114 |
transparent_cams=transparent_cams, cam_size=cam_size)
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
|
142 |
-
#
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
#
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
#
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
#
|
205 |
-
|
206 |
|
207 |
-
#
|
208 |
-
|
209 |
|
210 |
-
#
|
211 |
-
|
212 |
|
213 |
-
#
|
214 |
-
|
215 |
-
|
216 |
-
#
|
217 |
-
|
218 |
|
219 |
-
|
220 |
-
|
221 |
|
222 |
-
#
|
223 |
-
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
|
238 |
-
#
|
239 |
-
|
240 |
|
241 |
-
#
|
242 |
-
|
243 |
-
#
|
244 |
-
|
245 |
-
|
246 |
|
247 |
-
|
248 |
|
249 |
-
|
250 |
-
|
251 |
|
252 |
-
|
253 |
-
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
|
261 |
-
#
|
262 |
-
#
|
263 |
-
#
|
264 |
-
#
|
265 |
-
#
|
266 |
-
|
267 |
-
#
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
#
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
#
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
|
380 |
-
|
381 |
-
|
382 |
-
#
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
|
398 |
-
|
399 |
-
|
400 |
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
#
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
|
438 |
-
|
439 |
|
440 |
@spaces.GPU(duration=120)
|
441 |
def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
@@ -451,16 +447,16 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
451 |
images = Images(filelist=filelist, device=device)
|
452 |
|
453 |
# try:
|
454 |
-
|
455 |
-
# imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
456 |
-
# except Exception as e:
|
457 |
-
rev_cog_seg_maps = []
|
458 |
-
for tmp_img in images.np_images:
|
459 |
-
rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64)
|
460 |
-
rev_cog_seg_maps.append(rev_seg_map)
|
461 |
-
cog_seg_maps = rev_cog_seg_maps
|
462 |
-
cog_feats = torch.zeros((1, 1024))
|
463 |
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
|
465 |
if len(imgs) == 1:
|
466 |
imgs = [imgs[0], copy.deepcopy(imgs[0])]
|
@@ -472,7 +468,7 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
472 |
scenegraph_type = scenegraph_type + "-" + str(refid)
|
473 |
|
474 |
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
|
475 |
-
output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
|
476 |
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
|
477 |
scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
|
478 |
lr = 0.01
|
@@ -485,7 +481,7 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
485 |
# print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
|
486 |
imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None]
|
487 |
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
|
488 |
-
output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
|
489 |
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
|
490 |
scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
|
491 |
ori_imgs = scene.ori_imgs
|
@@ -504,27 +500,27 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
504 |
|
505 |
return scene, outfile
|
506 |
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
|
523 |
|
524 |
with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
|
525 |
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname)
|
526 |
# model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname)
|
527 |
-
|
528 |
|
529 |
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo:
|
530 |
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
|
@@ -564,11 +560,11 @@ with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
|
|
564 |
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
|
565 |
transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras", visible=False)
|
566 |
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
|
571 |
-
|
572 |
|
573 |
outmodel = gradio.Model3D()
|
574 |
# events
|
@@ -579,8 +575,8 @@ with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
|
|
579 |
scenegraph_type, winsize, refid],
|
580 |
outputs=[scene, outmodel]) # , outgallery
|
581 |
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
demo.launch(show_error=True, share=None, server_name=None, server_port=None)
|
|
|
37 |
from modules.pe3r.models import Models
|
38 |
import torchvision.transforms as tvf
|
39 |
|
|
|
|
|
40 |
silent = False
|
41 |
device = 'cpu'
|
42 |
+
pe3r = Models(device) #'cuda' if torch.cuda.is_available() else
|
|
|
|
|
43 |
|
44 |
|
45 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
|
|
109 |
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
|
110 |
transparent_cams=transparent_cams, cam_size=cam_size)
|
111 |
|
112 |
+
def mask_nms(masks, threshold=0.8):
|
113 |
+
keep = []
|
114 |
+
mask_num = len(masks)
|
115 |
+
suppressed = np.zeros((mask_num), dtype=np.int64)
|
116 |
+
for i in range(mask_num):
|
117 |
+
if suppressed[i] == 1:
|
118 |
+
continue
|
119 |
+
keep.append(i)
|
120 |
+
for j in range(i + 1, mask_num):
|
121 |
+
if suppressed[j] == 1:
|
122 |
+
continue
|
123 |
+
intersection = (masks[i] & masks[j]).sum()
|
124 |
+
if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold:
|
125 |
+
suppressed[j] = 1
|
126 |
+
return keep
|
127 |
+
|
128 |
+
def filter(masks, keep):
|
129 |
+
ret = []
|
130 |
+
for i, m in enumerate(masks):
|
131 |
+
if i in keep: ret.append(m)
|
132 |
+
return ret
|
133 |
+
|
134 |
+
def mask_to_box(mask):
|
135 |
+
if mask.sum() == 0:
|
136 |
+
return np.array([0, 0, 0, 0])
|
137 |
|
138 |
+
# Get the rows and columns where the mask is 1
|
139 |
+
rows = np.any(mask, axis=1)
|
140 |
+
cols = np.any(mask, axis=0)
|
141 |
|
142 |
+
# Get top, bottom, left, right edges
|
143 |
+
top = np.argmax(rows)
|
144 |
+
bottom = len(rows) - 1 - np.argmax(np.flip(rows))
|
145 |
+
left = np.argmax(cols)
|
146 |
+
right = len(cols) - 1 - np.argmax(np.flip(cols))
|
147 |
|
148 |
+
return np.array([left, top, right, bottom])
|
149 |
+
|
150 |
+
def box_xyxy_to_xywh(box_xyxy):
|
151 |
+
box_xywh = deepcopy(box_xyxy)
|
152 |
+
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
153 |
+
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
154 |
+
return box_xywh
|
155 |
+
|
156 |
+
def get_seg_img(mask, box, image):
|
157 |
+
image = image.copy()
|
158 |
+
x, y, w, h = box
|
159 |
+
# image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
|
160 |
+
box_area = w * h
|
161 |
+
mask_area = mask.sum()
|
162 |
+
if 1 - (mask_area / box_area) < 0.2:
|
163 |
+
image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
|
164 |
+
else:
|
165 |
+
random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8)
|
166 |
+
image[mask == 0] = random_values[mask == 0]
|
167 |
+
seg_img = image[y:y+h, x:x+w, ...]
|
168 |
+
return seg_img
|
169 |
+
|
170 |
+
def pad_img(img):
|
171 |
+
h, w, _ = img.shape
|
172 |
+
l = max(w,h)
|
173 |
+
pad = np.zeros((l,l,3), dtype=np.uint8) #
|
174 |
+
if h > w:
|
175 |
+
pad[:,(h-w)//2:(h-w)//2 + w, :] = img
|
176 |
+
else:
|
177 |
+
pad[(w-h)//2:(w-h)//2 + h, :, :] = img
|
178 |
+
return pad
|
179 |
+
|
180 |
+
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
181 |
+
assert len(args) > 0 and all(
|
182 |
+
len(a) == len(args[0]) for a in args
|
183 |
+
), "Batched iteration must have inputs of all the same size."
|
184 |
+
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
185 |
+
for b in range(n_batches):
|
186 |
+
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
187 |
+
|
188 |
+
def slerp(u1, u2, t):
|
189 |
+
"""
|
190 |
+
Perform spherical linear interpolation (Slerp) between two unit vectors.
|
191 |
|
192 |
+
Args:
|
193 |
+
- u1 (torch.Tensor): First unit vector, shape (1024,)
|
194 |
+
- u2 (torch.Tensor): Second unit vector, shape (1024,)
|
195 |
+
- t (float): Interpolation parameter
|
196 |
|
197 |
+
Returns:
|
198 |
+
- torch.Tensor: Interpolated vector, shape (1024,)
|
199 |
+
"""
|
200 |
+
# Compute the dot product
|
201 |
+
dot_product = torch.sum(u1 * u2)
|
202 |
|
203 |
+
# Ensure the dot product is within the valid range [-1, 1]
|
204 |
+
dot_product = torch.clamp(dot_product, -1.0, 1.0)
|
205 |
|
206 |
+
# Compute the angle between the vectors
|
207 |
+
theta = torch.acos(dot_product)
|
208 |
|
209 |
+
# Compute the coefficients for the interpolation
|
210 |
+
sin_theta = torch.sin(theta)
|
211 |
+
if sin_theta == 0:
|
212 |
+
# Vectors are parallel, return a linear interpolation
|
213 |
+
return u1 + t * (u2 - u1)
|
214 |
|
215 |
+
s1 = torch.sin((1 - t) * theta) / sin_theta
|
216 |
+
s2 = torch.sin(t * theta) / sin_theta
|
217 |
|
218 |
+
# Perform the interpolation
|
219 |
+
return s1 * u1 + s2 * u2
|
220 |
|
221 |
+
def slerp_multiple(vectors, t_values):
|
222 |
+
"""
|
223 |
+
Perform spherical linear interpolation (Slerp) for multiple vectors.
|
224 |
|
225 |
+
Args:
|
226 |
+
- vectors (torch.Tensor): Tensor of vectors, shape (n, 1024)
|
227 |
+
- a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,)
|
228 |
|
229 |
+
Returns:
|
230 |
+
- torch.Tensor: Interpolated vector, shape (1024,)
|
231 |
+
"""
|
232 |
+
n = vectors.shape[0]
|
233 |
|
234 |
+
# Initialize the interpolated vector with the first vector
|
235 |
+
interpolated_vector = vectors[0]
|
236 |
|
237 |
+
# Perform Slerp iteratively
|
238 |
+
for i in range(1, n):
|
239 |
+
# Perform Slerp between the current interpolated vector and the next vector
|
240 |
+
t = t_values[i] / (t_values[i] + t_values[i-1])
|
241 |
+
interpolated_vector = slerp(interpolated_vector, vectors[i], t)
|
242 |
|
243 |
+
return interpolated_vector
|
244 |
|
245 |
+
@torch.no_grad
|
246 |
+
def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
|
247 |
|
248 |
+
sam_mask=[]
|
249 |
+
img_area = original_size[0] * original_size[1]
|
250 |
|
251 |
+
obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False)
|
252 |
+
input_boxes1 = obj_results[0].boxes.xyxy
|
253 |
+
input_boxes1 = input_boxes1.cpu().numpy()
|
254 |
+
input_boxes1 = transform.apply_boxes(input_boxes1, original_size)
|
255 |
+
input_boxes = torch.from_numpy(input_boxes1).to(device)
|
256 |
|
257 |
+
# obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False)
|
258 |
+
# input_boxes2 = obj_results[0].boxes.xyxy
|
259 |
+
# input_boxes2 = input_boxes2.cpu().numpy()
|
260 |
+
# input_boxes2 = transform.apply_boxes(input_boxes2, original_size)
|
261 |
+
# input_boxes2 = torch.from_numpy(input_boxes2).to(device)
|
262 |
+
|
263 |
+
# input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0)
|
264 |
+
|
265 |
+
input_image = mobilesamv2.preprocess(sam1_image)
|
266 |
+
image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state']
|
267 |
+
|
268 |
+
image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0)
|
269 |
+
prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe()
|
270 |
+
prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0)
|
271 |
+
for (boxes,) in batch_iterator(320, input_boxes):
|
272 |
+
with torch.no_grad():
|
273 |
+
image_embedding=image_embedding[0:boxes.shape[0],:,:,:]
|
274 |
+
prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:]
|
275 |
+
sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder(
|
276 |
+
points=None,
|
277 |
+
boxes=boxes,
|
278 |
+
masks=None,)
|
279 |
+
low_res_masks, _ = mobilesamv2.mask_decoder(
|
280 |
+
image_embeddings=image_embedding,
|
281 |
+
image_pe=prompt_embedding,
|
282 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
283 |
+
dense_prompt_embeddings=dense_embeddings,
|
284 |
+
multimask_output=False,
|
285 |
+
simple_type=True,
|
286 |
+
)
|
287 |
+
low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size)
|
288 |
+
sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold)
|
289 |
+
for mask in sam_mask_pre:
|
290 |
+
if mask.sum() / img_area > 0.002:
|
291 |
+
sam_mask.append(mask.squeeze(1))
|
292 |
+
sam_mask=torch.cat(sam_mask)
|
293 |
+
sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True)
|
294 |
+
keep = mask_nms(sorted_sam_mask)
|
295 |
+
ret_mask = filter(sorted_sam_mask, keep)
|
296 |
+
|
297 |
+
return ret_mask
|
298 |
+
|
299 |
+
@torch.no_grad
|
300 |
+
def get_cog_feats(images):
|
301 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
302 |
+
cog_seg_maps = []
|
303 |
+
rev_cog_seg_maps = []
|
304 |
+
inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
|
305 |
+
mask_num = 0
|
306 |
+
|
307 |
+
sam1_images = images.sam1_images
|
308 |
+
sam1_images_size = images.sam1_images_size
|
309 |
+
np_images = images.np_images
|
310 |
+
np_images_size = images.np_images_size
|
311 |
|
312 |
+
sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform)
|
313 |
+
for mask in sam1_masks:
|
314 |
+
_, _, _ = pe3r.sam2.add_new_mask(
|
315 |
+
inference_state=inference_state,
|
316 |
+
frame_idx=0,
|
317 |
+
obj_id=mask_num,
|
318 |
+
mask=mask,
|
319 |
+
)
|
320 |
+
mask_num += 1
|
321 |
+
|
322 |
+
video_segments = {} # video_segments contains the per-frame segmentation results
|
323 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in pe3r.sam2.propagate_in_video(inference_state):
|
324 |
+
sam2_masks = (out_mask_logits > 0.0).squeeze(1)
|
325 |
+
|
326 |
+
video_segments[out_frame_idx] = {
|
327 |
+
out_obj_id: sam2_masks[i].cpu().numpy()
|
328 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
329 |
+
}
|
330 |
+
|
331 |
+
if out_frame_idx == 0:
|
332 |
+
continue
|
333 |
+
|
334 |
+
sam1_masks = get_mask_from_img_sam1(pe3r.mobilesamv2, pe3r.yolov8, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)
|
335 |
+
|
336 |
+
for sam1_mask in sam1_masks:
|
337 |
+
flg = 1
|
338 |
+
for sam2_mask in sam2_masks:
|
339 |
+
# print(sam1_mask.shape, sam2_mask.shape)
|
340 |
+
area1 = sam1_mask.sum()
|
341 |
+
area2 = sam2_mask.sum()
|
342 |
+
intersection = (sam1_mask & sam2_mask).sum()
|
343 |
+
if min(intersection / area1, intersection / area2) > 0.25:
|
344 |
+
flg = 0
|
345 |
+
break
|
346 |
+
if flg:
|
347 |
+
video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
|
348 |
+
mask_num += 1
|
349 |
+
|
350 |
+
multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
|
351 |
+
multi_view_clip_feats_map = {}
|
352 |
+
multi_view_clip_area_map = {}
|
353 |
+
for now_frame in range(0, len(video_segments), 1):
|
354 |
+
image = np_images[now_frame]
|
355 |
+
|
356 |
+
seg_img_list = []
|
357 |
+
out_obj_id_list = []
|
358 |
+
out_obj_mask_list = []
|
359 |
+
out_obj_area_list = []
|
360 |
+
# NOTE: background: -1
|
361 |
+
rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
|
362 |
+
sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
|
363 |
+
for out_obj_id, mask in sorted_dict_items:
|
364 |
+
if mask.sum() == 0:
|
365 |
+
continue
|
366 |
+
rev_seg_map[mask] = out_obj_id
|
367 |
+
rev_cog_seg_maps.append(rev_seg_map)
|
368 |
+
|
369 |
+
seg_map = -np.ones(image.shape[:2], dtype=np.int64)
|
370 |
+
sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True)
|
371 |
+
for out_obj_id, mask in sorted_dict_items:
|
372 |
+
if mask.sum() == 0:
|
373 |
+
continue
|
374 |
+
box = np.int32(box_xyxy_to_xywh(mask_to_box(mask)))
|
375 |
|
376 |
+
if box[2] == 0 and box[3] == 0:
|
377 |
+
continue
|
378 |
+
# print(box)
|
379 |
+
seg_img = get_seg_img(mask, box, image)
|
380 |
+
pad_seg_img = cv2.resize(pad_img(seg_img), (256,256))
|
381 |
+
seg_img_list.append(pad_seg_img)
|
382 |
+
seg_map[mask] = out_obj_id
|
383 |
+
out_obj_id_list.append(out_obj_id)
|
384 |
+
out_obj_area_list.append(np.count_nonzero(mask))
|
385 |
+
out_obj_mask_list.append(mask)
|
386 |
+
|
387 |
+
if len(seg_img_list) == 0:
|
388 |
+
cog_seg_maps.append(seg_map)
|
389 |
+
continue
|
390 |
+
|
391 |
+
seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
|
392 |
+
seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0
|
393 |
|
394 |
+
inputs = pe3r.siglip_processor(images=seg_imgs, return_tensors="pt")
|
395 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
396 |
|
397 |
+
image_features = pe3r.siglip.get_image_features(**inputs)
|
398 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
399 |
+
image_features = image_features.detach().cpu()
|
400 |
+
|
401 |
+
for i in range(len(out_obj_mask_list)):
|
402 |
+
for j in range(i + 1, len(out_obj_mask_list)):
|
403 |
+
mask1 = out_obj_mask_list[i]
|
404 |
+
mask2 = out_obj_mask_list[j]
|
405 |
+
intersection = np.logical_and(mask1, mask2).sum()
|
406 |
+
area1 = out_obj_area_list[i]
|
407 |
+
area2 = out_obj_area_list[j]
|
408 |
+
if min(intersection / area1, intersection / area2) > 0.025:
|
409 |
+
conf1 = area1 / (area1 + area2)
|
410 |
+
# conf2 = area2 / (area1 + area2)
|
411 |
+
image_features[j] = slerp(image_features[j], image_features[i], conf1)
|
412 |
+
|
413 |
+
for i, clip_feat in enumerate(image_features):
|
414 |
+
id = out_obj_id_list[i]
|
415 |
+
if id in multi_view_clip_feats_map.keys():
|
416 |
+
multi_view_clip_feats_map[id].append(clip_feat)
|
417 |
+
multi_view_clip_area_map[id].append(out_obj_area_list[i])
|
418 |
+
else:
|
419 |
+
multi_view_clip_feats_map[id] = [clip_feat]
|
420 |
+
multi_view_clip_area_map[id] = [out_obj_area_list[i]]
|
421 |
+
|
422 |
+
cog_seg_maps.append(seg_map)
|
423 |
+
del image_features
|
424 |
|
425 |
+
for i in range(mask_num):
|
426 |
+
if i in multi_view_clip_feats_map.keys():
|
427 |
+
clip_feats = multi_view_clip_feats_map[i]
|
428 |
+
mask_area = multi_view_clip_area_map[i]
|
429 |
+
multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area))
|
430 |
+
else:
|
431 |
+
multi_view_clip_feats[i] = torch.zeros((1024))
|
432 |
+
multi_view_clip_feats[mask_num] = torch.zeros((1024))
|
433 |
|
434 |
+
return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
|
435 |
|
436 |
@spaces.GPU(duration=120)
|
437 |
def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
|
447 |
images = Images(filelist=filelist, device=device)
|
448 |
|
449 |
# try:
|
450 |
+
cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
452 |
+
# except Exception as e:
|
453 |
+
# rev_cog_seg_maps = []
|
454 |
+
# for tmp_img in images.np_images:
|
455 |
+
# rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64)
|
456 |
+
# rev_cog_seg_maps.append(rev_seg_map)
|
457 |
+
# cog_seg_maps = rev_cog_seg_maps
|
458 |
+
# cog_feats = torch.zeros((1, 1024))
|
459 |
+
# imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
460 |
|
461 |
if len(imgs) == 1:
|
462 |
imgs = [imgs[0], copy.deepcopy(imgs[0])]
|
|
|
468 |
scenegraph_type = scenegraph_type + "-" + str(refid)
|
469 |
|
470 |
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
|
471 |
+
output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent)
|
472 |
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
|
473 |
scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
|
474 |
lr = 0.01
|
|
|
481 |
# print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
|
482 |
imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None]
|
483 |
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
|
484 |
+
output = inference(pairs, pe3r.mast3r, device, batch_size=1, verbose=not silent)
|
485 |
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
|
486 |
scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
|
487 |
ori_imgs = scene.ori_imgs
|
|
|
500 |
|
501 |
return scene, outfile
|
502 |
|
503 |
+
@spaces.GPU(duration=180)
|
504 |
+
def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
|
505 |
+
mask_sky, clean_depth, transparent_cams, cam_size):
|
506 |
|
507 |
+
texts = [text]
|
508 |
+
inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
|
509 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
510 |
+
with torch.no_grad():
|
511 |
+
text_feats =pe3r.siglip.get_text_features(**inputs)
|
512 |
+
text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True)
|
513 |
+
scene.render_image(text_feats, threshold)
|
514 |
+
scene.ori_imgs = scene.rendered_imgs
|
515 |
+
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
|
516 |
+
clean_depth, transparent_cams, cam_size)
|
517 |
+
return outfile
|
518 |
|
519 |
|
520 |
with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
|
521 |
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname)
|
522 |
# model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname)
|
523 |
+
get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname)
|
524 |
|
525 |
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo:
|
526 |
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
|
|
|
560 |
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
|
561 |
transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras", visible=False)
|
562 |
|
563 |
+
with gradio.Row():
|
564 |
+
text_input = gradio.Textbox(label="Query Text")
|
565 |
+
threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01)
|
566 |
|
567 |
+
find_btn = gradio.Button("Find")
|
568 |
|
569 |
outmodel = gradio.Model3D()
|
570 |
# events
|
|
|
575 |
scenegraph_type, winsize, refid],
|
576 |
outputs=[scene, outmodel]) # , outgallery
|
577 |
|
578 |
+
find_btn.click(fn=get_3D_object_from_scene_fun,
|
579 |
+
inputs=[text_input, threshold, scene, min_conf_thr, as_pointcloud, mask_sky,
|
580 |
+
clean_depth, transparent_cams, cam_size],
|
581 |
+
outputs=outmodel)
|
582 |
demo.launch(show_error=True, share=None, server_name=None, server_port=None)
|
modules/pe3r/models.py
CHANGED
@@ -18,35 +18,35 @@ class Models:
|
|
18 |
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
|
19 |
self.mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
|
20 |
|
21 |
-
#
|
22 |
-
#
|
23 |
-
#
|
24 |
-
#
|
25 |
-
#
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
#
|
30 |
-
#
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
#
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
18 |
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
|
19 |
self.mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
|
20 |
|
21 |
+
# -- sam2 --
|
22 |
+
# SAM2_CKP = "./checkpoints/sam2.1_hiera_large.pt"
|
23 |
+
# SAM2_CKP = 'hujiecpp/sam2-1-hiera-large'
|
24 |
+
# SAM2_CONFIG = "./configs/sam2.1/sam2.1_hiera_l.yaml"
|
25 |
+
# self.sam2 = build_sam2_video_predictor(SAM2_CONFIG, SAM2_CKP, device=device, apply_postprocessing=False)
|
26 |
+
# self.sam2.eval()
|
27 |
+
self.sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
|
28 |
+
|
29 |
+
# -- mobilesamv2 & sam1 --
|
30 |
+
# SAM1_ENCODER_CKP = './checkpoints/sam_vit_h.pt'
|
31 |
+
# SAM1_ENCODER_CKP = 'facebook/sam-vit-huge/model.safetensors'
|
32 |
+
SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
|
33 |
+
self.mobilesamv2 = sam_model_registry['sam_vit_h'](None)
|
34 |
+
# image_encoder=sam_model_registry['sam_vit_h_encoder'](SAM1_ENCODER_CKP)
|
35 |
+
sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
|
36 |
+
image_encoder = sam1.vision_encoder
|
37 |
+
|
38 |
+
prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
|
39 |
+
self.mobilesamv2.prompt_encoder = prompt_encoder
|
40 |
+
self.mobilesamv2.mask_decoder = mask_decoder
|
41 |
+
self.mobilesamv2.image_encoder=image_encoder
|
42 |
+
self.mobilesamv2.to(device=device)
|
43 |
+
self.mobilesamv2.eval()
|
44 |
+
|
45 |
+
# -- yolov8 --
|
46 |
+
YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
|
47 |
+
self.yolov8 = ObjectAwareModel(YOLO8_CKP)
|
48 |
+
|
49 |
+
# -- siglip --
|
50 |
+
self.siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
|
51 |
+
self.siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256", device_map=device)
|
52 |
+
self.siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256", device_map=device)
|