init project
Browse files
app.py
CHANGED
@@ -256,7 +256,7 @@ def slerp_multiple(vectors, t_values):
|
|
256 |
|
257 |
return interpolated_vector
|
258 |
|
259 |
-
@torch.no_grad
|
260 |
def get_mask_from_img_sam1(sam1_image, yolov8_image, original_size, input_size, transform):
|
261 |
|
262 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
@@ -326,7 +326,7 @@ def get_mask_from_img_sam1(sam1_image, yolov8_image, original_size, input_size,
|
|
326 |
|
327 |
return ret_mask
|
328 |
|
329 |
-
@torch.no_grad
|
330 |
def get_cog_feats(images):
|
331 |
|
332 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
@@ -540,7 +540,7 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
540 |
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
|
541 |
clean_depth, transparent_cams, cam_size)
|
542 |
|
543 |
-
|
544 |
torch.cuda.empty_cache()
|
545 |
|
546 |
return scene, outfile
|
|
|
256 |
|
257 |
return interpolated_vector
|
258 |
|
259 |
+
# @torch.no_grad
|
260 |
def get_mask_from_img_sam1(sam1_image, yolov8_image, original_size, input_size, transform):
|
261 |
|
262 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
326 |
|
327 |
return ret_mask
|
328 |
|
329 |
+
# @torch.no_grad
|
330 |
def get_cog_feats(images):
|
331 |
|
332 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
540 |
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
|
541 |
clean_depth, transparent_cams, cam_size)
|
542 |
|
543 |
+
scene.to('cpu')
|
544 |
torch.cuda.empty_cache()
|
545 |
|
546 |
return scene, outfile
|