init project
Browse files
app.py
CHANGED
@@ -38,8 +38,7 @@ from modules.pe3r.models import Models
|
|
38 |
import torchvision.transforms as tvf
|
39 |
|
40 |
silent = False
|
41 |
-
|
42 |
-
pe3r = Models(device) #
|
43 |
|
44 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
45 |
cam_color=None, as_pointcloud=False,
|
@@ -244,6 +243,8 @@ def slerp_multiple(vectors, t_values):
|
|
244 |
@torch.no_grad
|
245 |
def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
|
246 |
|
|
|
|
|
247 |
sam_mask=[]
|
248 |
img_area = original_size[0] * original_size[1]
|
249 |
|
@@ -297,7 +298,9 @@ def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, origin
|
|
297 |
|
298 |
@torch.no_grad
|
299 |
def get_cog_feats(images):
|
|
|
300 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
301 |
cog_seg_maps = []
|
302 |
rev_cog_seg_maps = []
|
303 |
inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
|
@@ -441,6 +444,9 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
441 |
from a list of images, run dust3r inference, global aligner.
|
442 |
then run get_3D_model_from_scene
|
443 |
"""
|
|
|
|
|
|
|
444 |
if len(filelist) < 2:
|
445 |
raise gradio.Error("Please input at least 2 images.")
|
446 |
|
@@ -504,6 +510,8 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
504 |
def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
|
505 |
mask_sky, clean_depth, transparent_cams, cam_size):
|
506 |
|
|
|
|
|
507 |
texts = [text]
|
508 |
inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
|
509 |
inputs = {key: value.to(device) for key, value in inputs.items()}
|
|
|
38 |
import torchvision.transforms as tvf
|
39 |
|
40 |
silent = False
|
41 |
+
pe3r = Models('cpu') #
|
|
|
42 |
|
43 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
44 |
cam_color=None, as_pointcloud=False,
|
|
|
243 |
@torch.no_grad
|
244 |
def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
|
245 |
|
246 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
247 |
+
|
248 |
sam_mask=[]
|
249 |
img_area = original_size[0] * original_size[1]
|
250 |
|
|
|
298 |
|
299 |
@torch.no_grad
|
300 |
def get_cog_feats(images):
|
301 |
+
|
302 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
303 |
+
|
304 |
cog_seg_maps = []
|
305 |
rev_cog_seg_maps = []
|
306 |
inference_state = pe3r.sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
|
|
|
444 |
from a list of images, run dust3r inference, global aligner.
|
445 |
then run get_3D_model_from_scene
|
446 |
"""
|
447 |
+
|
448 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
449 |
+
|
450 |
if len(filelist) < 2:
|
451 |
raise gradio.Error("Please input at least 2 images.")
|
452 |
|
|
|
510 |
def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
|
511 |
mask_sky, clean_depth, transparent_cams, cam_size):
|
512 |
|
513 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
514 |
+
|
515 |
texts = [text]
|
516 |
inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
|
517 |
inputs = {key: value.to(device) for key, value in inputs.items()}
|